
Kai-Min Chung
Yu Sasaki (Eds.)

LN
CS

 1
54

91

30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings. Part VIII

Advances in Cryptology –
ASIACRYPT 2024

Lecture Notes in Computer Science 15491
Founding Editor
Juris Hartmanis

Series Editor
Gerhard Goos, Karlsruhe Institute of Technology, Karlsruhe, Germany

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Kai-Min Chung · Yu Sasaki
Editors

Advances in Cryptology –
ASIACRYPT 2024
30th International Conference on the Theory
and Application of Cryptology and Information Security
Kolkata, India, December 9–13, 2024
Proceedings, Part VIII

Editors
Kai-Min Chung
Academia Sinica
Taipei, Taiwan

Yu Sasaki
NTT Social Informatics Laboratories
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-96-0943-7 ISBN 978-981-96-0944-4 (eBook)
https://doi.org/10.1007/978-981-96-0944-4

© International Association for Cryptologic Research 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-3356-369X
https://orcid.org/0000-0002-1273-2394
https://doi.org/10.1007/978-981-96-0944-4

Preface

The 30th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2024) was held in Kolkata, India, on December 9–
13, 2024. The conference covered all technical aspects of cryptology and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a record 433 paper submissions for Asiacrypt from around the world.
The Program Committee (PC) selected 127 papers for publication in the proceedings of
the conference. As in the previous year, the Asiacrypt 2024 program had three tracks.

The two program chairs are greatly indebted to the six area chairs for their great
contributions throughout the paper selection process. The area chairs were Siyao Guo
for Information-Theoretic and Complexity-Theoretic Cryptography, Bo-Yin Yang for
Efficient and Secure Implementations, Goichiro Hanaoka for Public-Key Cryptogra-
phy Algorithms and Protocols, Arpita Patra for Multi-Party Computation and Zero-
Knowledge, Prabhanjan Ananth for Public-Key Primitives with Advanced Functional-
ities, and Tetsu Iwata for Symmetric-Key Cryptography. The area chairs helped sug-
gest candidates to form a strong program committee, foster and moderate discussions
together with the PC members assigned as paper discussion leads to form consensus,
suggest decisions on submissions in their areas, and nominate outstanding PCmembers.
We are sincerely grateful for the invaluable contributions of the area chairs.

To review and evaluate the submissions, while keeping the load per PCmemberman-
ageable, we selected the PCmembers consisting of 105 leading experts from all over the
world, in all six topic areas of cryptology, and we also had approximately 468 external
reviewers, whose input was critical to the selection of papers. The review process was
conducted using double-blind peer review. The conference operated a two-round review
system with a rebuttal phase. This year, we continued the interactive rebuttal from Asi-
acrypt 2023. After the reviews and first-round discussions, PC members and area chairs
selected 264 submissions to proceed to the second round. The remaining 169 papers
were rejected, including two desk-rejects. Then, the authors were invited to participate
in a two-step interactive rebuttal phase, where the authors needed to submit a rebuttal
in five days and then interact with the reviewers to address questions and concerns the
following week. We believe the interactive form of the rebuttal encouraged discussions
between the authors and the reviewers to clarify the concerns and contributions of the
submissions and improved the reviewprocess. Then, after severalweeks of second-round
discussions, the committee selected the final 127 papers to appear in these proceedings.
This year, we received seven resubmissions from the revise-and-resubmit experiment
from Crypto 2024, of which five were accepted. The nine volumes of the conference
proceedings contain the revised versions of the 127 papers that were selected. The final
revised versions of papers were not reviewed again and the authors are responsible for
their contents.

The PC nominated and voted for three papers to receive the Best Paper Awards. The
Best Paper Awards went to Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama,

vi Preface

Sandra Guasch and Dimitar Jetchev for their paper “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”, Xiaoyang Dong, Yingxin Li,
Fukang Liu, Siwei Sun and Gaoli Wang for their paper “The First Practical Collision
for 31-Step SHA-256”, and Valerio Cini and Hoeteck Wee for their paper “Unbounded
ABE for Circuits from LWE, Revisited”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology.

The program of Asiacrypt 2024 also featured the 2024 IACR Distinguished Lecture
delivered by Paul Kocher and one invited talk, nominated and voted by the PC. The
invited speaker had not yet been determined when this preface was written. Following
Eurocrypt 2024, we selected seven PC members for the Distinguished PC Members
Awards, nominated by the area chairs and program chairs. The Outstanding PC Mem-
bers Awards went to Sherman S. M. Chow, Elizabeth Crites, Matthias J. Kannwischer,
Mustafa Khairallah, Ruben Niederhagen, Maciej Obremski and Keita Xagawa.

Following Crypto 2024, Asiacrypt 2024 included an artifact evaluation process for
the first time. Authors of accepted papers were invited to submit associated artifacts,
such as software or datasets, for archiving alongside their papers; 14 artifacts were
submitted. Rei Ueno was the Artifact Chair and led an artifact evaluation committee
of 10 members listed below. In the interactive review process between authors and
reviewers, the goal was not just to evaluate artifacts but also to improve them. Artifacts
that passed successfully through the artifact review process were publicly archived by
the IACR at https://artifacts.iacr.org/.

Numerous people contributed to the success of Asiacrypt 2024. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members, and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Bimal Kumar Roy, the General Chairs, for
their efforts in organizing the event, to Kevin McCurley and Kay McKelly for their help
with the website and review system, and to Jhih-Wei Shih for the assistance with the use
of the review system. We thank the Asiacrypt 2024 advisory committee members Bart
Preneel, Huaxiong Wang, Bo-Yin Yang, Goichiro Hanaoka, Jian Guo, Ron Steinfeld,
and Michel Abdalla for their valuable suggestions. We are also grateful for the helpful
advice and organizational material provided to us by Crypto 2024 PC co-chairs Leonid
Reyzin and Douglas Stebila, Eurocrypt 2024 PC co-chairs Marc Joye and Gregor Lean-
der, and TCC 2023 chair Hoeteck Wee. We also thank the team at Springer for handling
the publication of these conference proceedings.

December 2024 Kai-Min Chung
Yu Sasaki

https://artifacts.iacr.org/

Organization

General Chair

Bimal Kumar Roy TCG CREST Kolkata, India

Program Committee Chairs

Kai-Min Chung Academia Sinica, Taiwan
Yu Sasaki NTT Social Informatics Laboratories Tokyo,

Japan and National Institute of Standards and
Technology, USA

Area Chairs

Prabhanjan Ananth University of California, Santa Barbara, USA
Siyao Guo NYU Shanghai, China
Goichiro Hanaoka National Institute of Advanced Industrial Science

and Technology, Japan
Tetsu Iwata Nagoya University, Japan
Arpita Patra Indian Institute of Science Bangalore, India
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Akshima NYU Shanghai, China
Bar Alon Ben-Gurion University, Israel
Elena Andreeva TU Wien, Austria
Nuttapong Attrapadung AIST, Japan
Subhadeep Banik University of Lugano, Switzerland
Zhenzhen Bao Tsinghua University, China
James Bartusek University of California, Berkeley, USA
Hanno Becker Amazon Web Services, UK
Sonia Belaïd CryptoExperts, France
Ward Beullens IBM Research, Switzerland
Andrej Bogdanov University of Ottawa, Canada

viii Organization

Pedro Branco Max Planck Institute for Security and Privacy,
Germany

Gaëtan Cassiers UCLouvain, Belgium
Céline Chevalier CRED, Université Paris-Panthéon-Assas, and

DIENS, France
Avik Chakraborti Institute for Advancing Intelligence TCG CREST,

India
Nishanth Chandran Microsoft Research India, India
Jie Chen East China Normal University, China
Yu Long Chen KU Leuven and National Institute of Standards

and Technology, Belgium
Mahdi Cheraghchi University of Michigan, USA
Nai-Hui Chia Rice University, USA
Wonseok Choi Purdue University, USA
Tung Chou Academia Sinica, Taiwan
Arka Rai Choudhuri NTT Research, USA
Sherman S. M. Chow Chinese University of Hong Kong, China
Chitchanok Chuengsatiansup University of Melbourne, Australia
Michele Ciampi University of Edinburgh, UK
Valerio Cini NTT Research, USA
Elizabeth Crites Web3 Foundation, Switzerland
Nico Döttling CISPA Helmholtz Center, Germany
Avijit Dutta Institute for Advancing Intelligence TCG CREST,

India
Daniel Escudero JP Morgan AlgoCRYPT CoE and JP Morgan AI

Research, USA
Thomas Espitau PQShield, France
Jun Furukawa NEC Corporation, Japan
Rosario Gennaro CUNY, USA
Junqing Gong East China Normal University, China
Rishab Goyal University of Wisconsin-Madison, USA
Julia Hesse IBM Research Europe, Switzerland
Akinori Hosoyamada NTT Social Informatics Laboratories, Japan
Michael Hutter PQShield, Austria
Takanori Isobe University of Hyogo, Japan
Joseph Jaeger Georgia Institute of Technology, USA
Matthias J. Kannwischer Chelpis Quantum Corp, Taiwan
Bhavana Kanukurthi Indian Institute of Science, India
Shuichi Katsumata PQShield and AIST, Japan
Jonathan Katz Google and University of Maryland, USA
Mustafa Khairallah Lund University, Sweden
Fuyuki Kitagawa NTT Social Informatics Laboratories, Japan

Organization ix

Karen Klein ETH Zurich, Switzerland
Mukul Kulkarni Technology Innovation Institute,

United Arab Emirates
Po-Chun Kuo WisdomRoot Tech, Taiwan
Jooyoung Lee KAIST, South Korea
Wei-Kai Lin University of Virginia, USA
Feng-Hao Liu Washington State University, USA
Jiahui Liu Massachusetts Institute of Technology, USA
Qipeng Liu UC San Diego, USA
Shengli Liu Shanghai Jiao Tong University, China
Chen-Da Liu-Zhang Lucerne University of Applied Sciences and Arts

and Web3 Foundation, Switzerland
Yun Lu University of Victoria, Canada
Ji Luo University of Washington, USA
Silvia Mella Radboud University, Netherlands
Peihan Miao Brown University, USA
Daniele Micciancio UCSD, USA
Yusuke Naito Mitsubishi Electric Corporation, Japan
Khoa Nguyen University of Wollongong, Australia
Ruben Niederhagen Academia Sinica, Taiwan and University of

Southern Denmark, Denmark
Maciej Obremski National University of Singapore, Singapore
Miyako Ohkubo NICT, Japan
Eran Omri Ariel University, Israel
Jiaxin Pan University of Kassel, Germany
Anat Paskin-Cherniavsky Ariel University, Israel
Goutam Paul Indian Statistical Institute, India
Chris Peikert University of Michigan, USA
Christophe Petit University of Birmingham and Université libre de

Bruxelles, Belgium
Rachel Player Royal Holloway University of London, UK
Thomas Prest PQShield, France
Shahram Rasoolzadeh Ruhr University Bochum, Germany
Alexander Russell University of Connecticut, USA
Santanu Sarkar IIT Madras, India
Sven Schäge Eindhoven University of Technology, Netherlands
Gregor Seiler IBM Research Europe, Switzerland
Sruthi Sekar Indian Institute of Technology, India
Yaobin Shen Xiamen University, China
Danping Shi Institute of Information Engineering, Chinese

Academy of Sciences, China
Yifan Song Tsinghua University, China

x Organization

Katerina Sotiraki Yale University, USA
Akshayaram Srinivasan University of Toronto, Canada
Marc Stöttinger Hochschule RheinMain, Germany
Akira Takahashi J.P. Morgan AI Research and AlgoCRYPT CoE,

USA
Qiang Tang University of Sydney, Australia
Aishwarya Thiruvengadam IIT Madras, India
Emmanuel Thomé Inria Nancy, France
Junichi Tomida NTT Social Informatics Laboratories, Japan
Monika Trimoska Eindhoven University of Technology, Netherlands
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Qingju Wang Telecom Paris, Institut Polytechnique de Paris,

France
David Wu UT Austin, USA
Keita Xagawa Technology Innovation Institute,

United Arab Emirates
Chaoping Xing Shanghai Jiaotong University, China
Shiyuan Xu University of Hong Kong, China
Anshu Yadav IST, Austria
Shota Yamada AIST, Japan
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Hugo Aaronson
Damiano Abram
Hamza Abusalah
Abtin Afshar
Siddharth Agarwal
Navid Alamati
Miguel Ambrona
Parisa Amiri Eliasi
Ravi Anand
Saikrishna Badrinarayanan
Chen Bai
David Balbás
Brieuc Balon
Gustavo Banegas
Laasya Bangalore

Jiawei Bao
Jyotirmoy Basak
Nirupam Basak
Gabrielle Beck
Hugo Beguinet
Amit Behera
Mihir Bellare
Tamar Ben David
Aner Moshe Ben Efraim
Fabrice Benhamouda
Tyler Besselman
Tim Beyne
Rishabh Bhadauria
Divyanshu Bhardwaj
Shivam Bhasin

Organization xi

Amit Singh Bhati
Loïc Bidoux
Alexander Bienstock
Jan Bobolz
Alexandra Boldyreva
Maxime Bombar
Nicolas Bon
Carl Bootland
Jonathan Bootle
Giacomo Borin
Cecilia Boschini
Jean-Philippe Bossuat
Mariana Botelho da Gama
Christina Boura
Pierre Briaud
Jeffrey Burdges
Fabio Campos
Yibo Cao
Pedro Capitão
Ignacio Cascudo
David Cash
Wouter Castryck
Anirban Chakrabarthi
Debasmita Chakraborty
Suvradip Chakraborty
Kanad Chakravarti
Ayantika Chatterjee
Rohit Chatterjee
Jorge Chavez-Saab
Binyi Chen
Bohang Chen
Long Chen
Mingjie Chen
Shiyao Chen
Xue Chen
Yu-Chi Chen
Chen-Mou Cheng
Jiaqi Cheng
Ashish Choudhury
Miranda Christ
Qiaohan Chu
Eldon Chung
Hao Chung
Léo Colisson
Daniel Collins

Jolijn Cottaar
Murilo Coutinho
Eric Crockett
Bibhas Chandra Das
Nayana Das
Pratish Datta
Alex Davidson
Hannah Davis
Leo de Castro
Luca De Feo
Thomas Decru
Giovanni Deligios
Ning Ding
Fangqi Dong
Minxin Du
Qiuyan Du
Jesko Dujmovic
Moumita Dutta
Pranjal Dutta
Duyen
Marius Eggert
Solane El Hirch
Andre Esser
Hülya Evkan
Sebastian Faller
Yanchen Fan
Niklas Fassbender
Hanwen Feng
Xiutao Feng
Dario Fiore
Scott Fluhrer
Danilo Francati
Shiuan Fu
Georg Fuchsbauer
Shang Gao
Rachit Garg
Gayathri Garimella
Pierrick Gaudry
François Gérard
Paul Gerhart
Riddhi Ghosal
Shibam Ghosh
Ashrujit Ghoshal
Shane Gibbons
Valerie Gilchrist

xii Organization

Xinxin Gong
Lorenzo Grassi
Scott Griffy
Chaowen Guan
Aurore Guillevic
Sam Gunn
Felix Günther
Kanav Gupta
Shreyas Gupta
Kamil Doruk Gur
Jincheol Ha
Hossein Hadipour
Tovohery Hajatiana Randrianarisoa
Shai Halevi
Shuai Han
Tobias Handirk
Yonglin Hao
Zihan Hao
Keisuke Hara
Keitaro Hashimoto
Aditya Hegde
Andreas Hellenbrand
Paul Hermouet
Minki Hhan
Hilder Lima
Taiga Hiroka
Ryo Hiromasa
Viet Tung Hoang
Charlotte Hoffmann
Clément Hoffmann
Man Hou Hong
Wei-Chih Hong
Alexander Hoover
Fumitaka Hoshino
Patrick Hough
Yao-Ching Hsieh
Chengcong Hu
David Hu
Kai Hu
Zihan Hu
Hai Huang
Mi-Ying Huang
Yu-Hsuan Huang
Zhicong Huang
Shih-Han Hung

Yuval Ishai
Ryoma Ito
Amit Jana
Ashwin Jha
Xiaoyu Ji
Yanxue Jia
Mingming Jiang
Lin Jiao
Haoxiang Jin
Zhengzhong Jin
Chris Jones
Eliran Kachlon
Giannis Kaklamanis
Chethan Kamath
Soumya Kanti Saha
Sabyasachi Karati
Harish Karthikeyan
Andes Y. L. Kei
Jean Kieffer
Jiseung Kim
Seongkwang Kim
Sebastian Kolby
Sreehari Kollath
Dimitris Kolonelos
Venkata Koppula
Abhiram Kothapalli
Stanislav Kruglik
Anup Kumar Kundu
Péter Kutas
Norman Lahr
Qiqi Lai
Yi-Fu Lai
Abel Laval
Guirec Lebrun
Byeonghak Lee
Changmin Lee
Hyung Tae Lee
Joohee Lee
Keewoo Lee
Yeongmin Lee
Yongwoo Lee
Andrea Lesavourey
Baiyu Li
Jiangtao Li
Jianqiang Li

Organization xiii

Junru Li
Liran Li
Minzhang Li
Shun Li
Songsong Li
Weihan Li
Wenzhong Li
Yamin Li
Yanan Li
Yu Li
Yun Li
Zeyong Li
Zhe Li
Chuanwei Lin
Fuchun Lin
Yao-Ting Lin
Yunhao Ling
Eik List
Fengrun Liu
Fukang Liu
Hanlin Liu
Hongqing Liu
Rui Liu
Tianren Liu
Xiang Liu
Xiangyu Liu
Zeyu Liu
Paul Lou
George Lu
Zhenghao Lu
Ting-Gian Lua
You Lyu
Jack P. K. Ma
Yiping Ma
Varun Madathil
Lorenzo Magliocco
Avishek Majumder
Nikolaos Makriyannis
Varun Maram
Chloe Martindale
Elisaweta Masserova
Jake Massimo
Loïc Masure
Takahiro Matsuda
Christian Matt

Subhra Mazumdar
Nikolas Melissaris
Michael Meyer
Ankit Kumar Misra
Anuja Modi
Deep Inder Mohan
Charles Momin
Johannes Mono
Hart Montgomery
Ethan Mook
Thorben Moos
Tomoyuki Morimae
Hiraku Morita
Tomoki Moriya
Aditya Morolia
Christian Mouchet
Nicky Mouha
Tamer Mour
Changrui Mu
Arindam Mukherjee
Pratyay Mukherjee
Anne Müller
Alice Murphy
Shyam Murthy
Kohei Nakagawa
Barak Nehoran
Patrick Neumann
Lucien K. L. Ng
Duy Nguyen
Ky Nguyen
Olga Nissenbaum
Anca Nitulescu
Julian Nowakowski
Frederique Oggier
Jean-Baptiste Orfila
Emmanuela Orsini
Tapas Pal
Ying-yu Pan
Roberto Parisella
Aditi Partap
Alain Passelègue
Alice Pellet-Mary
Zachary Pepin
Octavio Perez Kempner
Edoardo Perichetti

xiv Organization

Léo Perrin
Naty Peter
Richard Petri
Rafael del Pino
Federico Pintore
Erik Pohle
Simon Pohmann
Guru Vamsi Policharla
Daniel Pollman
Yuriy Polyakov
Alexander Poremba
Eamonn Postlethwaite
Sihang Pu
Luowen Qian
Tian Qiu
Rajeev Raghunath
Srinivasan Raghuraman
Mostafizar Rahman
Mahesh Rajasree
Somindu Chaya Ramanna
Simon Rastikian
Anik Raychaudhuri
Martin Rehberg
Michael Reichle
Krijn Reijnders
Doreen Riepel
Guilherme Rito
Matthieu Rivain
Bhaskar Roberts
Marc Roeschlin
Michael Rosenberg
Paul Rösler
Arnab Roy
Lawrence Roy
Luigi Russo
Keegan Ryan
Markku-Juhani Saarinen
Éric Sageloli
Dhiman Saha
Sayandeep Saha
Yusuke Sakai
Kosei Sakamoto
Subhabrata Samajder
Simona Samardjiska
Maria Corte-Real Santos

Sina Schaeffler
André Schrottenloher
Jacob Schuldt
Mark Schultz
Mahdi Sedaghat
Jae Hong Seo
Yannick Seurin
Aein Shahmirzadi
Girisha Shankar
Yixin Shen
Rentaro Shiba
Ardeshir Shojaeinasab
Jun Jie Sim
Mark Simkin
Jaspal Singh
Benjamin Smith
Yongha Son
Fang Song
Yongsoo Song
Pratik Soni
Pierre-Jean Spaenlehauer
Matthias Johann Steiner
Lukas Stennes
Roy Stracovsky
Takeshi Sugawara
Adam Suhl
Siwei Sun
Elias Suvanto
Koutarou Suzuki
Erkan Tairi
Atsushi Takayasu
Kaoru Takemure
Abdullah Talayhan
Quan Quan Tan
Gang Tang
Khai Hanh Tang
Tianxin Tang
Yi Tang
Stefano Tessaro
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Jean-Pierre Tillich
Toi Tomita
Aleksei Udovenko
Arunachalaeswaran V.

Organization xv

Aron van Baarsen
Wessel van Woerden
Michiel Verbauwhede
Corentin Verhamme
Quoc-Huy Vu
Benedikt Wagner
Julian Wälde
Hendrik Waldner
Judy Walker
Alexandre Wallet
Han Wang
Haoyang Wang
Jiabo Wang
Jiafan Wang
Liping Wang
Mingyuan Wang
Peng Wang
Weihao Wang
Yunhao Wang
Zhedong Wang
Yohei Watanabe
Chenkai Weng
Andreas Weninger
Stella Wohnig
Harry W. H. Wong
Ivy K. Y. Woo
Tiger Wu
Yu Xia
Zejun Xiang
Yuting Xiao
Ning Xie
Zhiye Xie
Lei Xu
Yanhong Xu
Haiyang Xue
Aayush Yadav
Saikumar Yadugiri

Kyosuke Yamashita
Jiayun Yan
Yingfei Yan
Qianqian Yang
Rupeng Yang
Xinrui Yang
Yibin Yang
Zhaomin Yang
Yizhou Yao
Kevin Yeo
Eylon Yogev
Yusuke Yoshida
Aaram Yun
Gabriel Zaid
Riccardo Zanotto
Shang Zehua
Hadas Zeilberger
Runzhi Zeng
Bin Zhang
Cong Zhang
Liu Zhang
Tianwei Zhang
Tianyu Zhang
Xiangyang Zhang
Yijian Zhang
Yinuo Zhang
Yuxin Zhang
Chang-an Zhao
Tianyu Zhao
Yu Zhou
Yunxiao Zhou
Zhelei Zhou
Zibo Zhou
Chenzhi Zhu
Ziqi Zhu
Cong Zuo

Artifact Chair

Rei Ueno Kyoto University, Japan

xvi Organization

Artifact Evaluation Committee

Julien Béguinot LTCI, Télécom Paris, Institut Polytechnique de
Paris, France

Aron Gohr Independent Researcher
Hosein Hadipour Graz University of Technology, Austria
Akira Ito NTT Social Informatics Laboratories, Japan
Haruto Kimura University of Melbourne, Australia and Waseda

University, Japan
Kotaro Matsuoka Kyoto University, Japan
Florian Mendel Infineon Technologies, Germany
Hiraku Morita Aarhus University, University of Copenhagen,

Denmark
Prasanna Ravi Nanyang Technological University, Singapore
Élise Tasso Tohoku University, Japan

Contents – Part VIII

Cryptanalysis on Public-Key Schemes

Attacking ECDSA with Nonce Leakage by Lattice Sieving: Bridging
the Gap with Fourier Analysis-Based Attacks . 3

Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 35
Alessandro Budroni, Jesús-Javier Chi-Domínguez,
Giuseppe D’Alconzo, Antonio J. Di Scala, and Mukul Kulkarni

Rare Structures in Tensor Graphs: Bermuda Triangles for Cryptosystems
Based on the Tensor Isomorphism Problem . 66

Lars Ran and Simona Samardjiska

Fault Attacks and Side-Channel Analysis

It’s a Kind of Magic: A Novel Conditional GAN Framework for Efficient
Profiling Side-Channel Analysis . 99

Sengim Karayalçın, Marina Krček, Lichao Wu, Stjepan Picek,
and Guilherme Perin

ZKFault: Fault Attack Analysis on Zero-Knowledge Based Post-quantum
Digital Signature Schemes . 132

Puja Mondal, Supriya Adhikary, Suparna Kundu,
and Angshuman Karmakar

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal
Their Inability to Resist DFA . 168

Amit Jana, Anup Kumar Kundu, and Goutam Paul

Cryptanalysis on Various Problems

Hard-Label Cryptanalytic Extraction of Neural Network Models 207
Yi Chen, Xiaoyang Dong, Jian Guo, Yantian Shen, Anyu Wang,
and Xiaoyun Wang

Analysis on Sliced Garbling via Algebraic Approach . 237
Taechan Kim

xviii Contents – Part VIII

Revisiting OKVS-Based OPRF and PSI: Cryptanalysis and Better
Construction . 266

Kyoohyung Han, Seongkwang Kim, Byeonghak Lee, and Yongha Son

Quantum Cryptanalysis

Reducing the Number of Qubits in Quantum Information Set Decoding 299
Clémence Chevignard, Pierre-Alain Fouque, and André Schrottenloher

On the Semidirect Discrete Logarithm Problem in Finite Groups 330
Christopher Battarbee, Giacomo Borin, Julian Brough, Ryann Cartor,
Tobias Hemmert, Nadia Heninger, David Jao, Delaram Kahrobaei,
Laura Maddison, Edoardo Persichetti, Angela Robinson,
Daniel Smith-Tone, and Rainer Steinwandt

Quantum Circuits of AES with a Low-Depth Linear Layer and a New
Structure . 358

Haotian Shi and Xiutao Feng

Quantum Algorithms for Fast Correlation Attacks on LFSR-Based Stream
Ciphers . 396

Akinori Hosoyamada

Author Index . 431

Cryptanalysis on Public-Key Schemes

Attacking ECDSA with Nonce Leakage
by Lattice Sieving: Bridging the Gap
with Fourier Analysis-Based Attacks

Yiming Gao1, Jinghui Wang1, Honggang Hu1,2(B), and Binang He1

1 School of Cyber Science and Technology, University of Science and Technology of
China, Hefei 230027, China

{qw1234567,liqing21,hebinang}@mail.ustc.edu.cn
2 Hefei National Laboratory, Hefei 230088, China

hghu2005@ustc.edu.cn

Abstract. The Hidden Number Problem (HNP) has found exten-
sive applications in side-channel attacks against cryptographic schemes,
such as ECDSA and Diffie-Hellman. There are two primary algorith-
mic approaches to solving the HNP: lattice-based attacks and Fourier
analysis-based attacks. Lattice-based attacks exhibit better efficiency
and require fewer samples when sufficiently long substrings of the nonces
are known. However, they face significant challenges when only a small
fraction of the nonce is leaked, such as 1-bit leakage, and their perfor-
mance degrades in the presence of errors.

In this paper, we address an open question by introducing an algo-
rithmic tradeoff that significantly bridges the gap between these two
approaches. By introducing a parameter x to modify Albrecht and
Heninger’s lattice, the lattice dimension is reduced by approximately
(log2 x)/l, where l represents the number of leaked bits. We present a
series of new methods, including the interval reduction algorithm, sev-
eral predicates, and the pre-screening technique. Furthermore, we extend
our algorithms to solve the HNP with erroneous input. Our attack out-
performs existing state-of-the-art lattice-based attacks against ECDSA.
We obtain several records including 1-bit and less than 1-bit leakage on
a 160-bit curve, while the best previous lattice-based attack for 1-bit
leakage was conducted only on a 112-bit curve.

Keywords: ECDSA · Hidden Number Problem · Lattice Sieving ·
Lattice-based Attacks

1 Introduction

The Hidden Number Problem (HNP) was originally proposed by Boneh and
Venkatesan as a number theoretic problem to investigate the bit security of the
Diffie-Hellman key exchange scheme [12]. Their work was subsequently extended

Yiming Gao and Jinghui Wang are the co-first authors of this work.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 3–34, 2025.
https://doi.org/10.1007/978-981-96-0944-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_1&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_1

4 Y. Gao et al.

by Nguyen and Shparlinski to analyze the security of ECDSA with partial known
nonce leakage [29]. In the scenario that an attacker can obtain some information
about the nonce used in each signature generation of ECDSA, it is possible
to recover the secret key by solving the corresponding HNP instance. Currently,
there are two types of attacks for solving the HNP: Fourier analysis-based attacks
and lattice-based attacks.

The foundational principles of Fourier analysis-based attacks were initially
introduced by Bleichenbacher [10], providing the basis for subsequent research [5,
6,14,35]. These attacks have been considered to be more tractable to break HNP
instances with limited known bits and even with errors. However, they demand
a substantial number of samples and exhibit a high computational overhead
[5,6,11]. The latest advance is obtained by Aranha et al., who successfully broke
192-bit ECDSA with less than 1-bit leakage [6].

In lattice-based attacks, the HNP is transformed into the Bounded Distance
Decoding (BDD) Problem, which is a variant of the Closest Vector Problem
(CVP). Using Kannan’s embedding [23], it can be further transformed into the
Unique Shortest Vector Problem (uSVP). The success of lattice-based attacks
highly depends on whether the target vector corresponding to the secret is suf-
ficiently short in the lattice. It is believed that the lattice-based attacks would
become ineffective when only a small fraction of the nonce is revealed, particu-
larly in the case of 1-bit leakage. Aranha et al. emphasized that exploiting a 1-bit
nonce leakage to attack ECDSA is infeasible due to the underlying structure of
the HNP lattices [5]. Additionally, lattice-based attacks have been considered
to behave very poorly with noisy data, which poses constraints on practical
side-channel attacks.

At EUROCRYPT 2021, Albrecht and Heninger extended the applicability of
lattice-based attacks with their Sieving with Predicate (Sieve-Pred) algorithm
[3] and the state-of-the-art lattice sieving library G6K [2]. The Sieve-Pred algo-
rithm no longer treats sieving algorithms as black boxes for SVP. Instead, it
uses a predicate to check all the vectors in the database output by sieving algo-
rithms. The predicate they used involves scalar multiplication on the elliptic
curve, which is a nonlinear operation and results in significant overhead. The
nonlinear predicate was improved to a linear predicate by Xu et al. [38].

Lattice-based attacks and Fourier analysis-based attacks have their unique
characteristics. Current lattice-based attacks are known for their minimal sam-
ple requirements and efficient processing. However, they are considered to be
infeasible when dealing with challenging HNP instances. In contrast, Fourier
analysis-based attacks can handle more difficult instances such as 1-bit leak-
age on a 192-bit curve [6], but demand a significantly larger sample size and
computational time. This raises open questions [20]: Can lattice-based attacks
be enhanced by utilizing more samples? Is there a smooth tradeoff that can be
characterized between these two types of algorithms?

Attacking ECDSA with Nonce Leakage by Lattice Sieving 5

1.1 Contributions

In this work, we enhance the lattice-based attacks by utilizing more samples,
significantly bridging the gap between lattice-based attacks and Fourier analysis-
based attacks. The main idea of our attack is using more samples to obtain the
specific ones employed in the lattice construction. This allows us to increase
the lattice determinant while keeping the norm of the target vector roughly
unchanged. Consequently, it results in a reduction of lattice dimension while
still satisfying the enabling condition for the attack.

In practice, we successfully address the case of 1-bit leakage on a 160-bit
curve, surpassing the best previous lattice-based attack for 1-bit leakage, which
was only conducted on a 112-bit curve [38]. Moreover, despite the belief that
lattice-based attacks are ineffective for erroneous input [6], we demonstrate the
effectiveness of our new attack in handling erroneous input, and successfully
break the 160-bit ECDSA with less than 1-bit leakage. Our main contributions
are detailed as follows.

Improved Algorithms for Solving the HNP. Firstly, we propose a new
lattice construction that introduces a parameter x to trade off the lattice dimen-
sion. Our modification is based on Albrecht and Heninger’s lattice [3], where the
hidden number α is transformed into k′

0 using the elimination method and the
recentering technique.

In our construction, we employ a decomposition technique in which k′
0 is

decomposed as x ·α0 +α1, with the condition that |α1| ≤ x/2. The target lattice
vector contains the information of α0, which is expected to be included in the
database output by sieving algorithms.

Compared to Albrecht and Heninger’s lattice [3], our construction can offer a
dimension reduction of approximately (log2 x)/l, where l represents the number
of leaked bits. The reduction in lattice dimension leads to a significant efficiency
advantage because sieving algorithms have exponential complexity. As a tradeoff,
our algorithm needs a larger number of samples to select the specific ones used
in the lattice construction. Moreover, we prove the existence of a constant c > 0
which serves as a lower bound for the success probability of our algorithm. This
is a new theoretical finding not reported in the literature.

Secondly, in order to determine the unique hidden number, we propose an
improved linear predicate that makes use of the linear constraints from 2 log2 q
HNP samples. Our predicate demonstrates superior efficiency compared to the
non-linear predicate proposed by Albrecht and Heninger [3], which involves time-
consuming scalar multiplication over elliptic curves. Our predicate also outper-
forms the linear predicate used by Xu et al. [38]. Their predicate requires knowl-
edge of all elements of the candidate vector, whereas ours only requires the last
two elements. Furthermore, we identify an issue with Xu et al.’s predicate that
may cause it to return true for some incorrect candidates. We provide a corrected
version of their predicate for a fair comparison and demonstrate that our app-
roach achieves superior performance while maintaining the desired functionality.

Thirdly, a predicate for the decomposition technique is proposed. We design
an interval reduction algorithm with expected time complexity O(log2 x) to

6 Y. Gao et al.

recover the remaining part α1, instead of an exhaustive search over the range
[−x/2, x/2]. Moreover, we also present a pre-screening technique to pre-select
candidates. This technique can effectively eliminate most incorrect candidates
before checking the predicate.

Modified Algorithms for Handling Errors. We define HNP with erroneous
input to handle practical scenarios in side-channel attacks where errors may
exist in the leaked nonce. We demonstrate the effectiveness of our lattice con-
struction for solving this problem, and provide the estimation for the minimum
lattice dimension. In this case, our construction offers a greater reduction in
lattice dimension of more than log2 x/l. Furthermore, our new algorithms and
techniques for solving the HNP are extended to address the case of erroneous
input.

New Records of Lattice-Based Attacks Against ECDSA. We carry out
experiments on lattice-based attacks against ECDSA with nonce leakage. Our
attack demonstrates a significant efficiency advantage over previous works [3,
34,38]. The most notable achievement is the successful key recovery for the
ECDSA instance with 1-bit leakage on a 160-bit curve, which is considered to
be extremely difficult by previous lattice-based approaches. Moreover, we also
successfully conduct attacks for the case of less than 1-bit leakage on various
elliptic curves, including a 160-bit curve. Our source code is publicly available
on GitHub1.

1.2 Comparison with Related Work

In Table 1, our work is compared with previous records of lattice-based attacks.
Several new records are listed, including 1-bit and less than 1-bit leakage on
a 160-bit curve. To the best of our knowledge, we carry out the first lattice-
based attack against ECDSA with less than 1-bit leakage (the leaked 1-bit of
the nonce is exact with a probability of less than 1). For the case of 4-bit leakage,
we also make significant progress. While the previous record for 4-bit leakage was
achieved on a 384-bit curve [3,34], we extend the attack to a 512-bit curve.

Among lattice-based attacks, the currently best one is the Sieve-Pred algo-
rithm in [3]. The efficiency of the predicate is essential, as it is used to check the
vectors in the database generated by sieving algorithms. Our linear predicate
outperforms both predicates proposed in [3] and [38]. Our attack demonstrates
superior efficiency when targeting various ECDSA instances. For example, we
break the 112-bit ECDSA with 1-bit leakage in 6 min which is approximately 43
times faster than the currently fastest attack in [38].

Our work can also be viewed as a comprehensive extension of the work con-
ducted by Sun et al. [34], who recognized the connection between Fourier-based
attacks and lattice-based attacks, and proposed a general framework to enhance
lattice attacks with more samples. However, they did not consider reducing the

1 https://github.com/JinghuiWW/ecdsa-leakage-attack.

https://github.com/JinghuiWW/ecdsa-leakage-attack

Attacking ECDSA with Nonce Leakage by Lattice Sieving 7

Table 1. Lattice-based attacks against ECDSA with nonce leakage

Nonce leakage

Modulus 4-bit 3-bit 2-bit 1-bit <1-bit

112-bit - - - [38], Ours (faster) Ours

128-bit - - - Ours Ours

160-bit - [29] [3,34] Ours Ours

256-bit [3] [3,34] [38], Ours (faster) - -

384-bit [3,34] [38], Ours (faster) - - -

512-bit Ours - - - -

lattice dimension, nor did they utilize sieving algorithms to handle more chal-
lenging cases, such as 256-bit ECDSA with 2-bit leakage or 1-bit leakage case.

Compared with their work, our algorithm requires significantly fewer sam-
ples and achieves higher success rates. For instance, when targeting 160-bit
ECDSA with 2-bit leakage, their algorithm required approximately 227 samples
and achieved a success rate of 15%, while our algorithm only needs 411 samples
with a success rate of approximately 100%. Moreover, according to their esti-
mation, the time complexity of their algorithm is 2110 BKZ-30 operations for
160-bit ECDSA with 1-bit leakage, which is impractical. However, we break this
instance in only 13.7 h using approximately 225 ECDSA samples.

Our work shares some similarities with Fourier analysis-based attacks. How-
ever, except for very difficult cases, our attack works more efficiently with far
fewer samples. Another advantage of our approach is the capability to recover
the entire secret key all at once, while Fourier analysis-based attacks can only
recover a few bits of the secret key in a single execution.

2 Preliminaries

Let N+ be the set {1, 2, 3, · · · }. The logarithm with base two is denoted as log(·),
and the Euclidean norm is denoted as ‖ · ‖. For any integer z, the unique integer
x satisfying 0 ≤ x < q and x ≡ z mod q is denoted by |z|q. A function f(k)
is called negl(k) if for every positive polynomial function P(k), there exists an
integer NP ¿ 0 such that for all k > NP, |f(k)| < 1/P(k).

2.1 Lattices and Hard Problems

Given a matrix B = (b0, . . . , bd−1)T ⊂ R
d×d with linearly independent rows,

the lattice generated by the basis B is defined as L(B) := {∑d
i xibi : xi ∈ Z}.

We define πi as the projections orthogonal to the span of b0, . . . , bi−1, and the
Gram-Schmidt orthogonalisation as B∗ = (b∗

0, . . . , b
∗
d−1), where b∗

i := πi(bi).
For any 0 ≤ l < r ≤ d, the projected sublattice L[l:r] is defined as the lattice
with basis B[l:r] := (πl(bl), . . . , πl(br−1)).

8 Y. Gao et al.

Let λi(L) be the radius of the smallest ball centred at the origin containing
at least i linearly independent lattice vectors. Then λ1(L) is the Euclidean norm
of the shortest non-zero vector in lattice L.

The Gaussian heuristic predicts the number of lattice points inside a mea-
surable body B ⊂ R

n, and it tells us that the number |L ∩ B| of lattice points
inside B is approximately equal to Vol(B)/Vol(L). Applying it to the Euclidean
d-ball, the prediction of λ1(L) can be obtained.

Definition 1 (Gaussian Heuristic (GH)). We denote by GH(L) the expected
first minimum of a lattice L. For a full rank lattice L ⊂ R

d, it is given by

GH(L) =
Γ

(
1 + d

2

)1/d

√
π

· Vol(L)1/d ≈
√

d

2πe
· Vol(L)1/d.

The final step above is obtained from Stirling’s formula, and we utilize this
asymptotic estimation in our theoretical analysis. In practical attacks and cal-
culations, we directly compute the value of the Gamma function.

Albrecht and Heninger formalized two lattice problems augmented with a
predicate [3], which are defined as follows:

Definition 2 (α-Bounded Distance Decoding with Predicate
(BDDα,f(·))). Given a lattice basis B, a vector t and a parameter α > 0 such
that the Euclidean distance dist(t,B) < α · λ1(L(B)), find the lattice vector
v ∈ L(B) satisfying f(v − t) = 1 that is closest to t.

Definition 3 (unique Shortest Vector Problem with Predicate
(uSVPf(·))). Given a lattice basis B and a predicate f(·), find the shortest non-
zero vector v ∈ L(B) that satisfies f(v) = 1.

BDDα,f(·) can be solved using a uSVPf(·) oracle due to Kannan embedding
technique, by constructing the lattice

C =
[
B 0
t τ

]

,

where τ is the embedding factor. If v is the closest vector to t, then the short
vector (t − v, τ) is contained in the lattice L(C).

2.2 Lattice Algorithms

BKZ. The Block Korkine-Zolotarey (BKZ) algorithm, which can be regarded as
an extended version of the LLL algorithm [26], was first introduced by Schnorr
and Euchner [33]. It uses an oracle that solves the SVP in the lattice with a block
size of β, spanned by B[0,β−1]. The short vector is then recursively inserted into
the lattice basis. A BKZ tour is initiated by calling an SVP-solver on consecutive
blocks B[i,min(i+β,d−1)] for i = 0, . . . , d − 2. The algorithm will proceed with
these tours until there are no further changes observed within a single tour. We
abbreviate BKZ with a block size of β as BKZ-β.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 9

Lattice Sieving. Sieving algorithms are not only asymptotically superior to
enumeration techniques [17,19,23,33], but also showing better practical perfor-
mance in higher lattice dimensions, due to the recent progress in both theory
[8,9,21,24] and practice [2,15,16,18,25].

The first sieving algorithm was proposed by Ajtai et al. [1] in 2001. It starts
with a list of lattice vectors L ⊂ L and searches for shorter sums and differ-
ences of these vectors. The shorter combinations then replace the original longer
vectors in the database. This process iterates until the database contains a sig-
nificant number of short vectors, with the expectation of eventually finding the
shortest vector.

Lattice sieving algorithms can be categorized into provably sieving algorithms
and heuristic sieving algorithms. Heuristic sieving algorithms fall in the practical
regime because of lower time and memory complexities. They are analyzed under
the heuristic that the points in L are independently and uniformly distributed in
a thin spherical shell. Nguyen and Vidick [30] proposed the first practical siev-
ing algorithm, utilizing a database of (4/3)d/2+o(d) = 20.2075d+o(d) vectors and
running in time 20.415d+o(d). The time complexity was subsequently improved to
20.292d+o(d) through nearest neighbor search techniques [8]. Various sieving algo-
rithms have been efficiently implemented in G6K [2] and its GPU-accelerated
version, G6K-GPU [16].

2.3 Hidden Number Problem

In the Hidden Number Problem (HNP) [12], we have an n-bit sized public mod-
ulus q, and there is a secret integer α ∈ Zq, referred to as the hidden number. For
i = 0, 1, . . . ,m − 1, ti are uniformly random integers in Zq, and we are provided
with the corresponding value ai such that |ti ·α−ai|q = ki < q/2l. The problem
is to recover the hidden number α when m samples (ti, ai) are given. We denote
the above problem as HNP(n, l).

2.4 Breaking ECDSA with Nonce Leakage

ECDSA. The global parameters for an ECDSA signature include an elliptic
curve E(Fp) and a generator point G on E(Fp) of a prime order q. The secret
signing key is an integer 0 ≤ sk < q, and the public verifying key is a point [sk]G.
To sign a message hash h, the signer first generates a random integer nonce
0 ≤ k < q, then computes the signature (r, s) = (([k]G)x, |k−1 · (h + sk · r)|q),
where x subscript represents the x coordinate of the point.

ECDSA as a HNP. In a side-channel attack against ECDSA, the adversary
may know l least significant bits of the nonce k. If we write k = kmsb · 2l + klsb,
where 0 ≤ kmsb < q/2l and 0 ≤ klsb < 2l, then we can obtain the following
equation based on s = |k−1 · (h + r · sk)|q:

2−l(klsb − s−1 · h) + kmsb = 2−l · s−1 · r · sk mod q.

10 Y. Gao et al.

This can be regarded as a HNP instance with (ti, ai) = (|2−l ·s−1 ·r|q, |2−l ·(klsb−
s−1 · h)|q) and hidden number α = sk. In the case where the most significant
bits of the nonce are leaked, the method of transformation into a HNP instance
remains similar.

For convenience, we abbreviate ECDSA(n, l) as an n-bit ECDSA instance
with l-bit leakage.

2.5 Solving the HNP with Lattices

To solve the HNP, in 1996, Boneh and Venkatesan [12] constructed the (m + 1)-
dimensional lattice generated by the rows of the following matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q 0 · · · 0 0
0 q · · · 0 0
...

...
...

...
0 0 · · · q 0
t0 t1 · · · tm−1 1/2l

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

There exists a lattice vector v = (t0 · α mod q, . . . , tm−1 · α mod q, α/2l). This
lattice vector is close to the target vector t = (a0, . . . , am−1, 0) since the distance
‖v − t‖ can be bounded by

√
m + 1 · q/2l. If the distance is sufficiently small

compared with other lattice vectors, the lattice vector can be found by solving the
BDD problem using the nearest plane algorithm [7], or Kannan’s embedding [23].
With Kannan’s embedding, we construct the (m + 2)-dimensional lattice basis

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
t0 t1 · · · tm−1 1/2l 0
a0 a1 · · · am−1 0 τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where τ is the embedding number, which can be set to the upper bound of ki,
i.e., τ = q/2l. The target lattice vector becomes v = ±(k0, . . . , km−1, α/2l,−τ)
with a bounded norm of

√
m + 2 · q/2l.

Recentering Technique. In the definition of HNP, 0 ≤ ki < q/2l, for i =
0, 1, . . . ,m − 1. Since the lattice can work for any sign of ki, we can make a
variable substitution k′

i = ki − w where w = q/2l+1. The target vector becomes
(k′

0, k
′
1, . . . , k

′
m−1, α/2l,−τ) and has a much shorter length. This technique can

bring a significant improvement in practice and is widely used in the lattice
attacks on HNP [3,13,28,29,38].

Elimination Method. Given a set of HNP equations ai+ki = tiα mod q, where
i = 0, 1, · · · ,m − 1, we can eliminate the variable α by substituting α = |(a0 +

Attacking ECDSA with Nonce Leakage by Lattice Sieving 11

k0)t−1
0 |q. This yields a new set of HNP equations. Incorporating the recentering

technique, we have

ai + w − (a0 + w)t−1
0 ti + k′

i = t−1
0 tik

′
0 mod q,

where i = 1, . . . ,m − 1. This produces a transformed HNP instance (t′i, a
′
i) =

(t−1
0 ti, ai + w − (a0 + w)t−1

0 ti) with the transformed hidden number k′
0. Then

the new lattice is generated by:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
t′1 t′2 · · · t′m−1 1 0
a′
1 a′

2 · · · a′
m−1 0 τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

referred to as the Albrecht and Heninger’s lattice [3]. The lattice dimen-
sion, denoted as d, is reduced to m + 1. The target lattice vector becomes
v = ±(k′

1, . . . , k
′
m−1, k

′
0,−τ), with a bounded norm of

√
mw2 + τ2. To find

the target vector using a black box SVP solver, we expect the target vector
to be the shortest vector, i.e., ‖v‖ ≤ √

mw2 + τ2 ≤ GH(L). Combining this
with d = m + 1, we can estimate the minimal lattice dimension. Moreover,
instead of using the upper bound of ‖v‖, Albrecht and Heninger considered
the expected squared norm [3], i.e., E[‖v‖2] = mw2/3 + m/6 + w2. Then the
minimal lattice dimension can be estimated as the minimal integer d satisfying
E

[‖v‖2] ≤ GH2(L).

Sieving with Predicate. The sieving with predicate (Sieve-Pred) algorithm
checks over the database generated by sieving algorithms using the predicate
[3]. It does not treat the sieving algorithm as a black box SVP solver. This idea
is inspired by Micciancio et al. [27], which suggests that the sieving algorithm
not only outputs the shortest vector, but also provides all vectors with norm less
than

√
4/3 GH(L), under specific heuristic assumptions. Algorithm 1 is expected

to find the target vector under Assumption 1 stated below.

Assumption 1 ([15]) When a 2-sieve algorithm terminates, it outputs a
database L containing all vectors with norm ≤ √

4/3 GH(L).

Theorem 1 ([3]). Let L ⊂ R
d be a lattice containing a vector v such that

‖v‖ ≤ √
4/3 GH(L). Under Assumption 1, Algorithm 1 is expected to find the

minimal v satisfying f(v) = 1 in 20.292d+o(d) steps and (4/3)d/2+o(d) calls to the
predicate f(·).

12 Y. Gao et al.

Algorithm 1: Sieving with Predicate
Input: Lattice L(B), predicate f(·)
Output: v such that ‖v‖ ≤ √

4/3 GH(L) and f(v) = 1or ⊥
1 r ←⊥ ;
2 Run the sieving algorithm on L(B) and output list L;
3 for v ∈ L do
4 if f(v) = 1 and (r =⊥ or ‖v‖ < ‖r‖) then
5 r ← v;
6 return r;

Thus, using the Sieve-Pred algorithm, the minimal lattice dimension can be
estimated as the minimal integer d satisfying E

[‖v‖2] ≤ 4GH2(L)/3.

3 Improved Algorithms

In this section, we propose several new algorithms for solving the HNP. We
decompose the hidden number k′

0 as x · α0 + α1, and introduce a new lattice
construction that uses x to trade off the lattice dimension. Through theoretical
analysis, we demonstrate that our lattice can offer a reduction of approximately
(log x)/l compared to the lattice presented by Albrecht and Heninger [3]. While
the target vector contains information about α0, the lack of information about
α1 makes it impossible to directly compute the hidden number α. This makes
previous predicates ineffective [3,38]. Due to the idea of Sieve-Pred algorithm [3],
we need to search within the exponentially large database output by the sieving
algorithms. Therefore, an efficient process that excludes incorrect candidates is
essential. To address this issue, we propose a prescreening technique, an inter-
val reduction algorithm, and a linear predicate. Moreover, we show that under
Assumption 1, there exists a constant c > 0 such that the success probability of
our algorithm is at least c.

3.1 New Lattice Construction Based on Decomposition Technique

The main idea behind our attack is using more HNP samples to obtain equations
with small t′i. Having many samples with small t′i allows us to increase the lattice
determinant, while keeping the norm of the target vector roughly unchanged.
This enables us to reduce the lattice dimension, while still satisfying the enabling
condition E[‖v‖2] ≤ 4/3GH2(L) for the attack.

Lattice Construction. Following Albrecht and Heninger’s lattice [3], we con-
struct the lattice generated by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
x · t′1 x · t′2 · · · x · t′m−1 y 0
a′
1 a′

2 · · · a′
m−1 0 τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Attacking ECDSA with Nonce Leakage by Lattice Sieving 13

where x, y > 0, and τ are undetermined coefficients. This modification increases
Albrecht and Heninger’s original lattice volume by a factor of y.

In [34], Sun et al. decomposed the hidden number α as α = 2c · α0 + α1,
where 0 ≤ α1 < 2c. We propose a more generalized form of decomposition to the
new hidden number: k′

0 = x · α0 + α1, where |α1| ≤ x/2. Here, x is an arbitrary
positive integer and |α1| is 1-bit smaller. Then, for i = 1, . . . , m − 1, we have
x · t′i · α0 − a′

i ≡ k′
i − α1 · t′i mod q. The target vector in the lattice becomes

v = ±(k′
1 − α1 · t′1, . . . , k

′
m−1 − α1 · t′m−1, y · α0,−τ).

To keep the norm of the target vector approximately the same as in Albrecht
and Heninger’s lattice [3], we need to make the ratio r = E

[
(k′

i − α1t
′
i)

2
]
/E

[
(k′

i)
2
]

close to 1. Now, we show how to achieve this. The following analysis is based on the
assumption that α1 is independent of k′

i and a′
i.

Recall that k′
i and t′i are uniformly distributed in [−w,w) and [−q/2, q/2),

respectively. By setting the upper bound of |t′i| to be B, t′i becomes uniformly dis-
tributed in [−B,B). Moreover, to make α1 close to a uniform distribution over
[−x/2, x/2), the condition x � w should be satisfied. Thus, we can set a theoreti-
cal upper bound w/210 = q/(2l+11) for x. Under these conditions, we have:

r =
E

[
(k′

i − α1t
′
i)

2
]

E [(k′
i)2]

=
E

[
(k′

i)
2
] − 2E [α1]E [k′

it
′
i] + E

[
α2
1

]
E

[
t′2i

]

E [(k′
i)2]

= 1 + E
[
α2
1

] E
[
t′2i

]

E [(k′
i)2]

.

Note that if an integer variable k is uniformly distributed over [−w,w), then
E

[
k2

]
= w2/3 + 1/6. Thus, we have

r = 1 +
(

x2

12
+

1
6

)(
2B2 + 1
2w2 + 1

)

≤ 1 +
(

x2

12
+

1
6

)(
B2

w2
+

1
2w2 + 1

)

≤ 1 + 2−20 +
(

x2

12
+

1
6

)
B2

w2
.

It can be seen that as B decreases, r approaches 1. However, the expected number
of required samples increases by a factor of q/(2B). To balance keeping r close
to 1 and minimizing the number of required samples, we set B = w/(23x) =
q/(2l+4x). With this setting, we only need 2l+3x times the original number of
samples, and r is approximately 1+(x2B2+2B2)/(12w2) = 1+1/768+1/(384x2),
which is close to 1.

Next, we focus on the selection of parameters to optimize the performance
of our attack. Given that |k′

0| is bounded by w, we know that |α0| ≤ w/x. Then
we have

E
[‖v‖2] = (m − 1)

w2

3
+ y2 w2

3x2
+ τ2.

Our goal is to minimize the ratio E
[‖v‖2] /GH2(L), where

14 Y. Gao et al.

GH2(L) =
(m + 1)

2πe
· q

2(m−1)
m+1 · y

2
m+1 · τ

2
m+1 .

Given x, according to the AM-GM inequality, we have

E
[‖v‖2] =

w2

3
+ · · · +

w2

3︸ ︷︷ ︸
m−1

+y2 w2

3x2
+ τ2

≥ (m + 1)

((
w2

3

)m−1

· y2 w2

3x2
· τ2

)1/(m+1)

= (m + 1)
(

w2

3

)m/(m+1)

· x− 2
m+1 · y

2
m+1 · τ

2
m+1 .

Thus, E
[‖v‖2] /GH2(L) attains its minimum value when y = x and τ = w/

√
3.

Reduction of Lattice Dimension. The new lattice construction can lead to a
reduction in the lattice dimension, which is described in Theorem 2. This signifi-
cantly improves the efficiency of lattice-based attacks, as the time complexity of
sieving algorithms increases exponentially with an increase in the lattice dimen-
sion d.

Theorem 2. For any positive integer x and the number of leaked bits l, the
reduction of lattice dimension between our lattice and Albrecht and Heninger’s
lattice is given by

2 log x

2l + 3 − log(πe)
≈ log x

l
.

Proof. According to Assumption 1, the lattice dimension is the minimal integer
d satisfying E

[‖v‖2] ≤ 4/3 · GH2(L). In Albrecht and Heninger’s lattice [3], let
τ = w/

√
3, then we have

E
[‖v‖2] = m

(
w2

3
+

1
6

)

+ τ2 ≈ d · w2

3
,

GH2(L) =
d

2πe
· q

2(d−2)
d ·

(
w2

3

) 1
d

.

Substituting w = q/2l+1, and taking the logarithm, we have

d ≥ 2l + 2 + 2 log q + log 3
2l + 3 − log(πe)

.

In our lattice, E[‖v‖2] remains approximately the same, but GH2(L) increases
by a factor of x2/d. Thus, the new lattice dimension d′ needs to satisfy

d′ ≥ 2l + 2 + 2 log q + log 3 − 2 log x

2l + 3 − log(πe)
.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 15

The reduction of lattice dimension is given by

2 log x

2l + 3 − log(πe)
≈ log x

l
.

��
Figure 1 illustrates the reduction of lattice dimension as x increases. Four lines

are plotted in Fig. 1, representing HNP(160, 1), HNP(192, 1), HNP(224, 1), and
HNP(384, 2), respectively. Solving these instances is believed to be impractical
by previous lattice-based approaches [3,5,6,34,38]. However, our experimental
results in Sect. 5 demonstrate the feasibility of solving HNP(160, 1) by using a
large x. More computational resources and samples are required for solving more
difficult instances such as HNP(192, 1).

0 5 10 15 20 25 30 35 40

120

140

160

180

200

220

240

la
tt

ic
e

d
im

en
si

o
n

log x

HNP(160,1)

HNP(192,1)

HNP(224,1)

HNP(384,2)

Fig. 1. Lattice dimension and x.

Success Probability. Under Assumption 1, the sieving algorithm outputs all
vectors satisfying ‖v‖2 ≤ 4GH2(L)/3. Consequently, the probability that the
sieving algorithm can output the target vector is represented as Pr(‖v‖2 ≤
E

[‖v‖2]), which is the success probability of our algorithm.

Theorem 3. Let v be the target vector of our lattice described in Sect. 3.1. For
all d ≥ 3, there exists a constant c > 0 such that Pr(‖v‖2 ≤ E

[‖v‖2]) ≥ c.

Proof. Recall the vector representation

v = (k′
1 − α1t

′
1, . . . , k

′
m−1 − α1t

′
m−1, xα0,−w/

√
3)

= (v0, vd−3, vd−2, vd−1).

16 Y. Gao et al.

For k′
i, t′i, α0, and α1, they are all uniformly distributed: k′

i is over [−w,w), t′i
is over [−w/(8x), w/(8x)), α0 is over [−w/x,w/x), and α1 is over [−x/2, x/2).
It follows that v0, . . . , vd−3 are independent and identically distributed.

Let Pd = Pr
(

1
d−2

∑d−3
i=0 v2

i ≤ E
[
v2
0

])
. Then we have

Pr
(‖v‖2 ≤ E

[‖v‖2]) = Pr

(
d−3∑

i=0

v2
i + x2α2

0 ≤ (d − 2)E
[
v2
0

]
+

w2

3

)

≥ Pr

(
d−3∑

i=0

v2
i ≤ (d − 2)E

[
v2
0

]
)

· Pr
(

x2α2
0 ≤ w2

3

)

=
√

3
3

Pr

(
1

d − 2

d−3∑

i=0

v2
i ≤ E

[
v2
0

]
)

=
√

3
3

Pd.

Since Var[v2
0] < +∞, by the Central Limit Theorem, it holds that

lim
d→+∞

Pr

(
1

d − 2

d−3∑

i=0

v2
i ≤ E

[
v2
0

]
)

=
1
2
.

Hence, there exists a positive constant c1 > 0 such that Pd ≥ c1 for any d ≥ 3.
Let c = c1/

√
3. Finally, we get

Pr
(‖v‖2 ≤ E

[‖v‖2]) ≥
√

3
3

Pd ≥ c.

��

3.2 Improved Linear Predicate

In Albrecht and Heninger’s approach, they employ non-linear constraints as a
predicate to determine the unique hidden number [3,4]. Their predicate initially
checks whether the absolute value of the last element of the candidate vector is
τ . Subsequently, it determines the target vector by checking whether r is equal to
([k]G)x, where G is the generator point on the curve, r is a specific signature, and
k is the corresponding nonce that can be computed from the candidate vector.
The predicate involves time-consuming scalar multiplication on the curve.

In this section, we propose an improved linear predicate that utilizes lin-
ear constraints from 2 log q HNP samples and only involves two vector inner
products, providing a significant efficiency advantage. Moreover, we present a
modified version of the Sieve-Pred algorithm to integrate our predicate, and
achieve higher efficiency.

Linear Predicate. Our linear predicate is described in Algorithm 2. It oper-
ates on a 2-dimensional vector v = (v0, v1), representing the last two elements
of a candidate vector in the database. This predicate determines whether the
candidate vector satisfies a set of linear conditions. If these conditions are met,
the predicate reveals the hidden number; otherwise, it returns ⊥. The algorithm
follows these steps:

Attacking ECDSA with Nonce Leakage by Lattice Sieving 17

(1) Check if 0 < |v0| ≤ w and whether |v1| equals ±τ . If this condition is met,
proceed to the next step; otherwise, return ⊥.

(2) Calculate the candidate α′ from v and the HNP sample (t0, a0).
(3) For N HNP samples (ti, ai), check whether |ti · α′ − ai|q < q/2l for i =

0, . . . , N − 1. If this condition holds, return the candidate α′ as the correct
hidden number; otherwise, return ⊥.

Note that the HNP samples used in step (3) are distinct from those used in our
lattice construction.

Algorithm 2: Improved Linear Predicate
Input: A 2-dimensional vector v = (v0, v1), modulus q, number of nonce

leakage l, embedding number τ , N = 2 log q HNP samples (ti, ai)
Output: The hidden number α or ⊥

1 if v0 = 0 or |v0| > q/2l+1 or |v1| �= τ then
2 return ⊥;

3 k0 ← − sign(v1) · v0 + q/2l+1 ;

4 α′ ← t−1
0 · (a0 + k0) mod q ;

5 for i = 0 to N − 1 do

6 if |ti · α′ − ai|q ≥ q/2l then
7 return ⊥;

8 return α′;

Theoretical Analysis of Linear Predicate. According to the definition of
HNP, the correct candidate α′ should satisfy all the constraints from these HNP
samples. However, for an incorrect candidate, there still exists a small chance
of meeting all the constraints. Consider the case where Algorithm 2 receives
candidate values for the hidden number α′ from the range [0, q − 1], rather than
computing alpha from the vectors obtained by the sieving algorithm. In this case,
α′ is uniformly distributed over [0, q − 1]. When ti and ai are fixed, |tiα′ − ai|q
is also uniformly distributed over [0, q − 1]. Therefore, for i = 0, 1, . . . , N − 1,
we have

Pr
(|ti · α′ − ai|q < q/2l

)
= 2−l.

Let N = 2 log q. Then an incorrect candidate α′ satisfies all the constraints with
probability 2−2l log q = q−2l. Since there are q − 1 incorrect candidate α′, the
probability that the algorithm can find the candidate in the interval [0, q − 1] is
given by

(1 − q−2l)q−1 ≥ 1 − (q − 1)q−2l ≥ 1 − q − 1
q2

= 1 − negl(log q).

Here, we prove that the probability of the algorithm correctly identifying all q
inputs {0, ..., q −1} is very close to 1. Consequently, it can also correctly identify
whether the hidden number candidates obtained from the lattice are correct.

18 Y. Gao et al.

The expected number of verifying operations for each candidate can be cal-
culated as follows. As mentioned earlier, the samples used in lattice construction
and linear predicate are distinct from each other. This allows us to assume
that the values of |tiα − ai|q are uniformly distributed over the range [0, q − 1].
Consider a scenario with M candidates, under this assumption, the expected
number of candidates meeting the first constraint is M/2l, as only a fraction
of 1/2l candidates will satisfy the condition. Similarly, the expected number
of candidates meeting the second constraint is M/22l, and so on. Therefore,
the total expected number of verifying operations needed for M candidates is
M +M/2l +M/22l + · · · = M/(1−2−l). Consequently, only 1/(1−2−l) verifying
operations on average are needed for each candidate, and the parameter 2 log q
does not affect the efficiency of our predicate.

Comparison with the Predicate in [38]. In [38], Xu et al. introduce a linear
predicate that requires a d-dimensional vector as input. In the sieving implemen-
tation G6K [2], vectors in the output database are represented as coordinates
under the lattice basis. To obtain all positions of the candidate vector, one needs
to perform d vector inner products, i.e., multiply the d-dimensional coordinate
vector by the d × d lattice basis matrix. While our predicate only involves two
vector inner products, which provides a notable efficiency advantage in practice.

In addition, our predicate uses linear constraints from new HNP samples,
rather than those used in the lattice construction2. The reason is that the vector
v in the sieving database is inherently shorter. If HNP samples (ti, ai) from the
lattice construction are used, the probability Pr(|ti ·α′−ai| < q/2l+1) (equivalent
to Pr(|vi| < q/2l+1)) will be higher. Consequently, more linear constraints need
to be verified to identify a false candidate.

Furthermore, we would like to point out an issue with the predicate in [38].
Their predicate may return true for some incorrect candidates, which is not as
expected. The underlying reason can be explained as follows: in Albrecht and
Heninger’s lattice, for any θ ∈ N

+, consider the following lattice vector:

vθ = (|θt′1 − a′
1|q, . . . , |θt′d−2 − a′

d−2|q, θ,−τ)

The predicate in [38] first checks whether vd−1 is equal to ±τ , and then computes
the candidate α as t−1

0 (θ + q/2l+1 + a0). Then it continues to check whether
ai + vi−1 + q/2l+1 is equal to tiα (Lines 6 and 13 in Algorithm 3 [38]). However,
we always have ai + vi−1 + q/2l+1 = tiα mod q. Specifically, we compute:

ai + vi−1 + q/2l+1 = ai + q/2l+1 + θt′i − a′
i

Substituting a′
i = ai + q/2l+1 − (a0 + q/2l+1)t−1

0 ti and t′i = t−1
0 ti mod q into the

above equation, we get:

ai + vi−1 + q/2l+1 = tit
−1
0 (θ + q/2l+1 + a0) = tiα mod q

2 In fact, the samples used in the lattice construction, the linear predicate, the interval
reduction algorithm, and the prescreening technique are all distinct from each other.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 19

This indicates that the predicate in [38] will return true for any θ and vector vθ.
To enhance performance, the conditions in Lines 6 and 13 of Algorithm 3 [38]
could be modified to |vi−1|q > q/2l+1.

Modified Sieving with Predicate. As we have made modifications to both the
input and output of the predicate, a modified version of the Sieve-Pred algorithm
is proposed to ensure compatibility with the new predicate. The algorithm is
outlined in Algorithm 3. It no longer takes the entire lattice vector as input but
only the last two elements. Moreover, the algorithm immediately outputs the
solution when our linear predicate returns true, instead of searching the entire
database.

Algorithm 3: Modified Sieving with Predicate
Input: Lattice L(B) with dimension d, predicate f(·)
Output: The hidden number α or ⊥

1 Run the sieving algorithm on L(B) and output list L;
2 for v ∈ L do
3 α ← f(vd−2, vd−1);
4 if α �=⊥ then
5 return α;
6 return ⊥;

3.3 Predicate for Decomposition Technique

In Sect. 3.1, the transformed hidden number k′
0 is decomposed as α0x + α1

where |α1| ≤ x/2, and the target vector is v = ±(k′
1 − α1t

′
1, . . . , k

′
m−1 −

α1t
′
m−1, xα0,−τ). This vector contains information about α0, which is a part

of k′
0. However, due to the absence of information about α1, it is impossible to

directly compute the entire k′
0. Consequently, previous predicates are ineffective

in this scenario [3,38].
The straightforward approach to recover k′

0 is to perform an exhaustive search
over all possible values of α1, which has time complexity O(x). For each candidate
value of α0, we need to check the predicate for x candidate values of the hidden
number. An exhaustive search will result in a substantial time overhead and
becomes impractical when x is large. To address this issue, we introduce an
interval reduction algorithm that reduces the complexity from O(x) to O(log2 x).
Based on this algorithm, a predicate for the decomposition technique is also
proposed.

There are two necessary notations. Assume that R is the union of a set of
intervals. Let |R| be the number of intervals in R, and ||R|| be the number of
integers within the intervals in R. For example, if R = {[1, 4]}, then |R| = 1
which means that there is one interval in R, and ||R|| = 4 which means that
there are four integers within the interval [1, 4].

Interval Reduction Algorithm. The interval reduction algorithm takes an
interval of length M and log M transformed HNP samples as input, and produces

20 Y. Gao et al.

a set of smaller intervals as output. We denote the input interval as [low,high],
where M = high− low+1. Let R be the set of intervals output by this algorithm.
The interval reduction algorithm guarantee that if the hidden number is in the
input interval [low,high], then the hidden number must be in one interval of R.
This algorithm is described in Algorithm 4, and it contains two steps as follows.

Algorithm 4: Interval Reduction Algorithm
Input: interval [low, high] that may contain the hidden number k′

0, modulus q,
parameter l, N = log M transformed samples (t′

i, a
′
i) satisfying

t′
i = O(q/M)

Output: set R of intervals that may contain k′
0

1 R ← {[low, high]};
2 for i = 0 to N − 1 do
3 Generate a new interval set Rnew based on i-th sample (t′

i, a
′
i);

4 R ← IntervalSetIntersection(R, Rnew);

5 return R;

Firstly, we generate the intervals based on log M transformed samples
(t′i, a

′
i). These intervals are computed using the HNP equations and the interval

[low,high]. It holds that

t′i · low ≤ t′ik
′
0 = a′

i + k′
i + nq ≤ t′i · high,

for i = 1, . . . , log M . Since −w ≤ k′
i ≤ w − 1, we get a set S that contains all

possible values of n. For a specific n1 in S, we have

t′ik
′
0 = a′

i + k′
i + n1q ∈ [a′

i + n1q − w, a′
i + n1q + w − 1].

Therefore,
t′ik

′
0 ∈

⋃

n∈S
[a′

i + nq − w, a′
i + nq + w − 1].

This process yields a set of intervals that are sorted in ascending order, and one
of these intervals may contain k′

0. To limit the number of intervals in this set,
we require that t′i = O(q/M). For the rationale of this requirement, the reader
is referred to the proof of Theorem 4.

Secondly, we intersect all the sets of intervals generated from the log M sam-
ples. For this operation, we present an interval set intersection algorithm in
Algorithm 5. It takes two sets of intervals that are in ascending order as input
and outputs their intersection. The time complexity of Algorithm 5 is O(m+n),
where m and n are the numbers of intervals in two sets respectively.

Predicate for Decomposition Technique. Our predicate for the decom-
position technique is described in Algorithm 6. Firstly, this algorithm verifies

Attacking ECDSA with Nonce Leakage by Lattice Sieving 21

whether |v0| < q/2l+1 and whether |v1| equals ±τ . Secondly, it computes the inter-
val [low,high] that may contain k′

0. Thirdly, the interval reduction algorithm is
employed to generate a set R. Finally, an exhaustive search is carried out to check
the linear predicate for each integer in the intervals of R. The expected time com-
plexity of this algorithm is O(log2 x), as shown in Theorem 4.

Algorithm 5: Interval Set Intersection Algorithm
Input: Two sets of intervals in ascending order: A, B
Output: Intersection of A and B

1 i, j ← 0;
2 R ← {} ;
3 while i < |A| and j < |B| do
4 Let [a0, a1] and [b0, b1] be the i-th and j-th intervals in A and B,

respectively;
5 if a1 < b0 then
6 i ← i + 1;
7 Continue;

8 if b1 < a0 then
9 j ← j + 1;

10 Continue;

11 if a1 ≥ b1 then
12 j ← j + 1;
13 Add the interval [max(a0, b0), b1] to R;
14 Continue;

15 i ← i + 1;
16 Add the interval [max(a0, b0), a1] to R;

17 return R;

Theorem 4. The expected time complexity of Algorithm 6 is O(log2 x).

Proof. There are two parts in Algorithm 6. The first part is the interval reduction
algorithm, and the second part is an exhaustive search.

(1) Let us study the time complexity of the first part. We need to bound
|Rnew|, where Rnew is given in Algorithm 4. For any transformed sample (t′i, a

′
i),

we have both nq + a′
i + w − 1 ≥ t′i · low and nq + a′

i − w ≤ t′i · high. Hence, the
number of possible values of n is not bigger than

t′i · (high − low) + 2w − 1
q

+ 1 =
t′i · x − t′i + 2w − 1

q
+ 1.

Since t′i = O(q/x), there exists a constant C such that |Rnew| ≤ C.
For i = 0, 1, . . . , N − 1, let Ri be the set returned by the interval set

intersection algorithm in Algorithm 4 just after i-th sample. Then we have

22 Y. Gao et al.

Algorithm 6: Predicate for Decomposition Technique
Input: A 2-dimensional vector v = (v0, v1), modulus q, number of nonce

leakage l, embedding number τ , predicate f(·)
Output: hidden number α or ⊥

1 if v0 = 0 or |v0| > q/2l+1 or |v1| �= τ then
2 return ⊥;
3 low ← − sign(v1) · v0 − x/2 , high ← − sign(v1) · v0 + x/2;
4 R ← IntervalReduction([low, high]);
5 for [a, b] ∈ R do
6 for h = a to b do
7 α ← f(h, −τ);
8 if α �=⊥ then
9 return α;

10 return ⊥ ;

|Ri| ≤ (i + 1)C. Thus, for any 0 ≤ i ≤ N − 1, the time complexity of i-th
step in Algorithm 4 is at most O((i + 2)C). It follows that the time complexity
of the first part is O(N2) = O(log2 x).

(2) For the time complexity of the second part, let R−1 = [low,high]. Then
‖R−1‖ = x. For an incorrect hidden number candidate, the probability that this
candidate satisfies the constraint given by each HNP sample is only 1/2l. Thus,
for 0 ≤ i ≤ N − 1, we have

E(‖Ri‖)
E(‖Ri−1‖)

=
1
2l

.

Finally, we get

E(‖RN−1‖) = E(‖R−1‖) ·
(

1
2l

)N

≤ x

2N
= 1.

Therefore, the expected time complexity of the second step is O(1).
By (1) and (2), the expected time complexity of Algorithm 6 is O(log2 x).

��
Pre-screening Technique. Before running the interval reduction algorithm in
Algorithm 6, a pre-screening technique can be used to eliminate the majority of
incorrect candidates. This technique involves only a few linear operations and
can significantly enhance the efficiency of Algorithm 6.

The pre-screening technique makes use of a small number of transformed
HNP samples (t′i, a

′
i), where |t′i| ≤ q/(2l+3x). For an incorrect candidate α′

0, it
will be rejected if the following condition is satisfied:

∣
∣
∣|x · t′i · α′

0 − a′
i +

q

2
|q − q

2

∣
∣
∣ > w +

q

2l+4
.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 23

Let us explain the reason. For any correct candidate α0, we have x · t′iα0 − a′
i ≡

k′
i − α1t

′
i mod q. Therefore, we get

|k′
i − α1t

′
i| ≤ |k′

i| + |α1| · |t′i| ≤ w +
x

2
· q

2l+3x
= w +

q

2l+4
.

Note that this technique does not increase the sampling cost, as we can use
the samples that satisfy q/(2l+4x) ≤ |t′i| ≤ q/(2l+3x) for pre-screening. These
samples are already available during the pre-selection of the samples used to
construct the lattice in Sect. 3.1.

To illustrate the efficiency improvements brought by the interval reduc-
tion algorithm and pre-screening technique, we conduct an experiment on
HNP(256, 2) with x = 215. We record the time taken to search the database
using different methods on a single thread. The experimental data demonstrates
that, compared with the exhaustive search, the interval reduction algorithm pro-
vides a 2590-fold speedup. Furthermore, when combined with the pre-screening
technique, we achieve a 3895-fold speedup.

4 Hidden Number Problem with Erroneous Input

In practical side-channel attacks, errors often appear in the data. This means
that attackers may obtain incorrect nonces, resulting in erroneous HNP sam-
ples. Lattice-based attacks are believed to perform poorly when dealing with
erroneous input [6,31]. A common strategy to tackle this issue is to run the
HNP solver on subsets of the samples until a correct solution is found [22]. How-
ever, this method does not fundamentally improve the lattice’s ability to handle
errors. Consequently, some works assume that the input is error-free [22,34,38].
In [3], Albrecht and Heninger discussed the solution for handling errors, but did
not provide a detailed analysis. With the increase of error rate, the dimension
of their lattice would increase rapidly. The restricted efficiency of their non-
linear predicate would result in a high cost for searching the sieving database,
thereby constraining the ability to handle erroreous HNP instances. On the other
hand, Fourier analysis-based attacks demonstrated stronger robustness to errors
[5,6,14], highlighting a gap between these two approaches.

In this section, we define HNP with erroneous input based on the ECDSA
nonce leakage model. The effectiveness of our new lattice construction in solving
this problem is demonstrated through theoretical analysis. An estimation for
the minimum lattice dimension is also provided. Furthermore, we extend our
algorithms in Sect. 3, and significantly enhance the lattice’s ability to handle
errors. This narrows the gap between lattice-based attacks and Fourier analysis-
based attacks.

4.1 Theoretical Analysis

Definition 4 (Hidden Number Problem with Erroneous Input). Given
a modulus q, an error rate 0 < p < 1, and both the hidden number α and the

24 Y. Gao et al.

coefficients ti being random numbers in Zq, the elements ai satisfy the condition
that with probability 1 − p, |tiα − ai|q < q/2l, while with probability p, |tiα − ai|q
is a random number in Zq. The problem is to recover the hidden number α when
m samples (ti, ai) are given.

Let us show the rationality of this definition. In the ECDSA signature, let
k = 2lkmsb + klsb, where 0 ≤ kmsb < q/2l, and 0 ≤ klsb < 2l. Then we have

2−l(klsb − s−1 · h) + kmsb ≡ 2−ls−1r · sk mod q.

Assume that we have probability 1 − p to obtain the correct value of klsb, and
probability p to obtain a random integer k′

lsb in [0, 2l − 1].
Let α = sk, ai = |2−l(klsb − s−1 · h(m))|q, ki = kmsb, and ti = |2−ls−1r|q. If

we obtain a random integer k′
lsb, then ai = |2−l(k′

lsb − s−1 · h)|q, and we have

|tiα − ai|q = |kmsb + 2−l(klsb − k′
lsb)|q = |2−l(k − k′

lsb)|q.

Since k is randomly chosen from Zq and q is a prime number, |2−l(k − k′
lsb)|q is

also a random number in Zq. Thus, we obtain a HNP instance with erroneous
input.

New Minimum Lattice Dimension. In this section, the lattice constructed
by us is the same as that in Sect. 3.1:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
x · t′1 x · t′2 · · · x · t′m−1 x 0
a′
1 a′

2 · · · a′
m−1 0 τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The target vector is v = ±(k′
1 − α1t

′
1, . . . , k

′
m−1 − α1t

′
m−1, xα0, τ). From the

definition above, for i = 0, . . . , m − 1, ki is randomly distributed in [0, q) with
probability p. Thus, xα0 ≡ k′

0 − α1 ≡ k0 − w − α1 and k′
i − α1t

′
i ≡ ki − w − α1t

′
i

also have probability p of being randomly distributed in [−q/2, q/2). So we have

E
[‖v‖2] = (d − 1)(1 − p)

w2

3
+ (d − 1)

pq2

12
+ τ2

= (d − 1)
w2

3
(
1 + p(22l − 1)

)
+ τ2.

Similar to the analysis in Sect. 3.1, when τ2 = w2(1 + p(22l − 1))/3, the
ratio E

[‖v‖2] /GH2(L) obtains its minimum. Substituting this into E
[‖v‖2] ≤

4GH2(L)/3, we get

d ≥ 2l + 2 + 2 log q + log 3 − 2 log x − log
(
1 + p · (22l − 1)

)

2l + 3 − log(πe) − log (1 + p · (22l − 1))
.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 25

The reduction of dimension is 2 log x/(2l+3−log(πe)−log(1+p·(22l−1))), which
is more than log x/l. This discovery reveals that our new lattice construction
achieves a greater reduction (compared to Albrecht and Heninger’s lattice [3])
in lattice dimension in the presence of erroneous samples compared to error-free
samples.

From a different perspective, the parameter x can be viewed as a balance to
the error rate p. Given the lattice dimension d, p amplifies the target vector’s
squared magnitude by 1 + p(22l − 1), while x amplifies GH2(L) by x2/d. To
maintain this ratio, we can set 1 + p(22l − 1) = x2/d, which leads to x = (1 +
p(22l −1))d/2. Thus, for a higher error rate, we can increase x to keep the lattice
dimension unchanged.

4.2 Modified Algorithms

Linear Predicate for Erroneous Input. For the hidden number candidate
α′, we compute |tiα′ −ai|q for each HNP sample (ti, ai). If this value falls within
the range [0, q/2l), we say α′ passes the test; otherwise, it fails. For error-free
samples, if the candidate fails a single test, it can be regarded as incorrect.
However, if there are errors in the samples, this judgment is not necessarily true.
Table 2 lists the passing probabilities for error-free and erroneous samples. We
can see that regardless of whether the candidate is correct or not, there exists
a possibility that it fails a test. We denote the probability of passing a single
sample as p1 when α′ = α, and as p2 when α′ �= α. Then we get p1 = 1−p+p·2−l,
p2 = 2−l, and p1 > p2.

To extend the linear predicate in Sect. 3.2 to handle erroneous input, we count
the number of samples that pass the test. Specifically, we collect N = 2 log q
samples and count the number of samples that α′ passes, denoted as M . If M
exceeds N(p1 + p2)/2, we conclude that α′ is the correct hidden number α.
Otherwise, we discard it. This procedure is detailed in Algorithm 7.

Table 2. Passing probability for error-free and erroneous samples

Error-free sample Erroneous sample

α′ = α 1 2−l

α′ �= α 2−l 2−l

Theorem 5. Algorithm 7 has an overwhelming success probability 1 −
negl(log q).

Proof. Let P1 be the probability that Algorithm 7 rejects a correct hidden num-
ber, and P2 be the probability that Algorithm 7 accepts an incorrect candidate.

26 Y. Gao et al.

Algorithm 7: Predicate for erroneous input
Input: A 2-dimensional vector v = (v0, v1), modulus q, number of nonce

leakage l, embedding number τ , N = 2 log q erroneous samples (ti, ai)
Output: The hidden number α or ⊥

1 if v0 = 0 or v0 > q/2l+1 or |v1| �= τ then
2 return 0;

3 k0 ← − sign(v1)v0 + q/2l+1 ;

4 α′ ← t−1
0 (a0 + k0) mod q ;

5 M ← 0;
6 for i = 0 to N − 1 do

7 if |tiα′ − ai|q < q/2l then
8 M ← M + 1;

9 if M > N(1 − p + (1 + p)2−l)/2 then
10 return α′;
11 else
12 return ⊥;

We prove both P1 and P2 are negligible. Define

Xi =
{

1, if α′ passes the i -th sample;
0, if α′ fails the i -th sample.

When α′ = α, Xi follows the Bernoulli distribution with probability p1, and
when α′ �= α, Xi follows the Bernoulli distribution with probability p2. Let
SN =

∑N
i=1 Xi.

For the case of P1, let μ1 be the expected value of SN . Then μ1 = p1N . Let
δ1 = (p1 − p2)/(2p1) ≥ 1/(8p1). By the Chernoff inequality, we have

P1 = Pr
(

SN ≤ N(p1 + p2)
2

)

< e−μ1
δ21
2 ≤ e

− p1N

128p2
1 ≤ e− log q

64 .

For the case of P2, let μ2 be the expected value of SN . Then μ2 = p2N . Let
δ2 = (p1 − p2)/(2p2) = (1 − p)(2l − 1)/2 ≥ 2l−3. By the Chernoff inequality,
we have

P2 = Pr
(

SN >
N(p1 + p2)

2

)

< e−μ2
δ22
2 ≤ e−p2N 22l−6

2 ≤ e−2l−6 log q ≤ e− log q
32 .

��

Pre-screening Technique for Erroneous Input. The idea above can also
be applied to the pre-screening technique. To achieve efficient pre-screening,
we use log q samples that satisfy |t′i| < q/(2l+3x). For each sample (t′i, a

′
i), we

compute
∣
∣
∣|xt′iα0 − a′

i + q/2|q − q/2
∣
∣
∣. A sample (t′i, a

′
i) is called non-compliant if

∣
∣
∣|xt′iα0 − a′

i + q/2|q − q/2
∣
∣
∣ > w + q/2l+4.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 27

During the pre-screening, we cannot make any decision based only on a single
non-compliant sample. Our strategy is to collect a set of samples, and make the
decision when the number of non-compliant samples reaches a certain threshold.
Different from Algorithm 7, the goal of pre-screening is to retain the correct
hidden numbers, rather than to eliminate all incorrect candidates. Since the
number of erroneous samples is at most 3p log q with overwhelming probability,
we discard the hidden number candidate if more than 3p log q samples are non-
compliant.

Sub-sampling Technique. In Sect. 3.3, we introduce an interval reduction
algorithm for lattices constructed from the decomposition technique. This algo-
rithm can efficiently perform an exhaustive search over an interval. However, it
requires error-free samples. Otherwise, the algorithm may exclude the correct
candidate. To overcome this limitation, we propose a sub-sampling technique.
The specific steps are as follows.

(1) Select 3 log x/2 samples to form a pool.
(2) Draw log x samples from this pool, and apply Algorithm 6 to the candidate

α′
0, but replace the linear predicate in Algorithm 6 with the predicate for

erroneous input in Algorithm 7. Return upon success.
(3) Repeat the second step for γ times. If the hidden number is not found, the

candidate is rejected.

Let P1 be the probability that this algorithm rejects a correct hidden number
candidate, and P2 be the probability that this algorithm accepts an incorrect
hidden number candidate. For any correct hidden number α, it has probability
p1 = 1−p+p ·2−l to pass a single sample. Hence, the second step has probability
plog x
1 to return α. Therefore, P1 = (1−plog x

1)γ . For any incorrect hidden number
α, if α is returned, α must be returned by Algorithm 7. By Theorem 5, we have
P2 = negl(log q).

In practice, for given p, x and l, we can adjust γ to minimize P1. For example,
for the case of p = 0.02, x = 225, l = 1, let γ = 10, then we get P1 < 3 × 10−7.

5 Key Recovery of ECDSA with Nonce Leakage

In this section, experimental results are provided to demonstrate the perfor-
mance of our algorithms. Assume that the least significant bits of the nonce
used for each signature are leaked. Our goal is to recover the secret signing key
by solving the corresponding HNP instance.

Our implementation integrates the progressive sieving technique [15,25],
which starts at a low sieving dimension and increases the sieving dimension
by 1 with each iteration. The process of searching the database in Algorithm 3
is parallelized for improving the efficiency. Moreover, before applying Algorithm
3 to the lattice basis constructed from HNP samples, we preprocess the basis
with BKZ-20, which can randomize the lattice basis and increase the success

28 Y. Gao et al.

rate. In [3], Albrecht et al. used BKZ-(d-20) in their preprocessing step. How-
ever, the experimental results show that our preprocessing step is much more
efficient and achieves a success rate close to [3].

To introduce the strategy of our attack on instances of varying difficulty,
we categorize ECDSA instances into three classes. Specifically, this classification
relies on the minimum lattice dimension d estimated via Albrecht and Heninger’s
lattice. These three classes are denoted as Easy (d ≤ 100), Medium (100 < d ≤
140), and Hard (d > 140). In practical applications, we may adjust the parameter
x. This allows us to obtain an optimal balance between time consumption and
the number of available samples.

5.1 Compared with Other Lattice-Based Attacks

Solving Easy Instances. Table 3a lists our attack results for several easy
instances. These experiments are conducted using a single thread on an Intel
Xeon Gold 6154 CPU with the G6K library [2]. For each instance, the aver-
age CPU-seconds and the success rate (s/r) are calculated from 100 experi-
ments. Figure 2 illustrates the efficiency comparison between our algorithm and
recent works [3,34,38]. It is evident that our algorithm exhibits a significant
efficiency advantage. For example, when dealing with ECDSA(384, 4), Albrecht
and Heninger [3] successfully conducted an attack in 49200 s, and Xu et al. [38]
improved the time to 11153 s, whereas we only require 5583 s. When targeting
ECDSA(192, 2), our attack also demonstrates a 31-fold speedup compared to
the attack performed by Albrecht and Heninger [3].

When x = 1, the key difference between our work and other works [3,38] lies
in the predicate used in the attack. We substitute our predicate with those in [3]
and [38] separately, and record the time of searching the database on the same
machine. We denote the time taken by our predicate as t1, and the time taken
by the predicates in [3] and [38] as t2 and t3, respectively. The speed-up ratio
brought by our predicate is shown in Fig. 3.

The success rate of our attack can be further improved by increasing the
lattice dimension. Taking ECDSA(160, 2) as an example, Fig. 4 illustrates how
the success rate notably increases as the lattice dimension grows. We conduct
experiments on 500 randomly generated instances. When the lattice dimension
reaches 92, the success rate approaches 100%. This observation can be attributed
to the fact that the majority of the ‖v‖/GH ratios are below

√
4/3, which

enables us to find the target vectors through sieving algorithms with high success
rates. The experimental results also indicate that our algorithm can still handle
instances with ‖v‖/GH ratios greater than

√
4/3 with a lower success rate,

rather than failing 100%.

Solving Medium Instances. Our attack results for medium instances are pre-
sented in Table 3b. These experiments are conducted on an Intel Xeon Platinum
8480+ CPU and two GeForce RTX 4090 GPUs. We employ G6K-GPU [16] to
achieve high-performance sieving algorithms. Our attacks demonstrate high effi-
ciency. Taking ECDSA(256,2) as an example, when x is set to 1, the attack is

Attacking ECDSA with Nonce Leakage by Lattice Sieving 29

Table 3. Performance of our lattice-based attacks

Curve Leakage d x CPU-seconds s/r Previous records

secp160r1 2
82 1 206s 52%

259s in [38]

77 210 71s 58%

secp192r1 2
99 1 10360s 60% 87500s in [3]

94 210 2829s 69%

secp256r1

4
66 1 7s 65% 15s in [38]

64 210 5s 79%

3
87 1 634s 53% 924s in [38]

84 210 359s 57%

secp384r1 4
98 1 8154s 62% 11153s in [38]

96 210 5583s 56%

(a) Easy instances

Curve Leakage d x Wall time Mem GiB Previous records

secp112r1 1 116 1 6min 35 260min in [38]

secp256r1 2
129 1 95min 219 466min in [38]

124 210 31min 114

secp384r1 3
130 1 128min 252 156min in [38]

125 215 39min 132

(b) Medium instances

Fig. 2. Comparison of CPU-seconds with previous works.

30 Y. Gao et al.

Fig. 3. Searching the sieving database using different predicates.

Table 4. New records of lattice-based attacks against ECDSA

Curve Leakage d x Samples Wall time Mem GiB

brainpoolp512r1 4 130 1 210 96min 254

(a) 4-bit leakage

Curve Leakage d x Samples Wall time Mem GiB

secp128r1 1
131 1 28 72min 294

118 215 226 8min 53

secp160r1 1
144 214 225 824min 1939

138 225 236 279min 850

(b) 1-bit leakage

Curve Error rate d x Samples Wall time Mem GiB

secp128r1 0.1 140 220 231 370min 1090

secp160r1 0.02 144 214 225 1009 min 1960

(c) Less than 1-bit leakage

completed in 95 min by constructing a 129-dimensional lattice. The time can be
significantly reduced by using a larger x. In our experiment, we set x = 210 and
complete the attack in just 31 min. On the other hand, the attack in [38] required
466 min with four GeForce RTX 3090 GPUs.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 31

Fig. 4. Breaking ECDSA(160, 2) via lattices with different dimensions.

5.2 New Records of Lattice-Based Attacks Against ECDSA

We achieve several new records of lattice-based attacks against ECDSA. These
attacks are conducted using an Intel Xeon Platinum 8480+ CPU and four
GeForce RTX 4090 GPUs. Specific details about time and memory consump-
tion can be found in Table 4.

4-Bit Leakage. The previous record for 4-bit leakage is only achieved on a 384-
bit curve. As depicted in Table 4a, our algorithm is able to break ECDSA(512, 4)
by a 130-dimensional lattice, which takes 96 min and consumes 254 GiB of mem-
ory.

1-Bit Leakage. The first implementation of Fourier-based attack against
ECDSA with 1-bit leakage was proposed by Aranha et al. at ASIACRYPT 2014
[5]. They achieved a full key recovery on a 160-bit elliptic curve using 233 ECDSA
signatures. However, breaking ECDSA with 1-bit leakage using lattice algorithms
has been considered to be very difficult. In 2023, Xu et al. reported a success-
ful key recovery for 1-bit leakage on a 112-bit curve [38]. Nonetheless, breaking
ECDSA(160, 1) was regarded as exceptionally challenging by previous lattice
approaches [3,5,6,34,38]. Xu et al. required a lattice dimension of approximately
165, which would make the time and space complexities of sieving algorithms

32 Y. Gao et al.

unacceptable [38]. Besides, Sun et al. estimated the time complexity of their
guessing bits algorithm is 2110 BKZ-30 operations [34].

We present the first implementation of lattice attacks against ECDSA with
1-bit leakage on both 160-bit and 128-bit curves. The experimental results are
presented in Table 4b. When targeting ECDSA(160, 1), it is essential to reduce
the sieving dimension to a manageable size for accepted time and memory use.
We implement the attack with the parameter x set to 225 and 214, correspond-
ing to total sample sizes of 236 and 225, respectively. When x is set to 225, we
construct a 138-dimensional lattice to perform the attack, which takes approxi-
mately 279 min and consumes 850 GiB of memory.

Less than 1-Bit Leakage. Before this work, only Fourier analysis-based attacks
[6] could break ECDSA with less than 1-bit nonce leakage. We provide the
first lattice-based attack results in Table 4c. Our attacks successfully handle an
ECDSA instance with an error rate of 0.1 on a 128-bit curve and an ECDSA
instance with an error rate of 0.02 on a 160-bit curve.

Acknowledgements. We would like to thank the anonymous reviewers of ASI-
ACRYPT 2024, EUROCRYPT 2024 and CRYPTO 2024 for their insightful sugges-
tions. We also thank Fan Huang, Xiaolin Duan, Yaqi Wang, and Changhong Xu for
their valuable support to this work. This work was supported by National Natural Sci-
ence Foundation of China (Grant No. 62472397) and Innovation Program for Quantum
Science and Technology (Grant No. 2021ZD0302902).

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: 33rd ACM STOC. pp. 601–610. (2001). https://doi.org/10.
1145/380752.380857

2. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717-746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

3. Albrecht, M.R., Heninger, N.: On bounded distance decoding with predicate:
Breaking the “lattice barrier” for the hidden number problem. In: Canteaut,
A., Standaert, FX. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 528-558.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 19

4. Albrecht, M.R., Heninger, N.: Bounded distance decoding with predicate source-
code (2020). https://github.com/malb/bdd-predicate

5. Aranha, D.F., Fouque, PA., Gérard, B., Kammerer, JG., Tibouchi, M., Zapalowicz,
JC.: GLV/GLS decomposition, power analysis, and attacks on ECDSA signatures
with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 262-281. Springer, Berlin, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45611-8 14

6. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak:
Breaking ECDSA with less than one bit of nonce leakage. In: Ligatti, J., Ou,
X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 225-242. ACM Press (2020).
https://doi.org/10.1145/3372297.3417268

https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-77870-5_19
https://github.com/malb/bdd-predicate
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1145/3372297.3417268

Attacking ECDSA with Nonce Leakage by Lattice Sieving 33

7. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica 6, 1-13 (1986). https://doi.org/10.1007/BF02579403

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
SODA, pp. 10-24. ACM-SIAM (2016).https://doi.org/10.1137/1.9781611974331.
ch2

9. Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive,
Report 2015/522 (2015). http://eprint.iacr.org/2015/522

10. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.
Presentation at IEEE P1363 Working Group Meeting (2000)

11. Bleichenbacher, D.: Experiments with DSA. Rump session at CRYPTO (2005).
https://www.iacr.org/conferences/crypto2005/r/3.pdf

12. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
96. LNCS, vol. 1109, pp. 129-142. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68697-5 11

13. Breitner, J., Heninger, N.: Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC 2019.
LNCS, vol. 11598, pp. 3-20. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-030-32101-7 1

14. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In: Bertoni, G., Coron, J.S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435-452.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 25

15. Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125-
145. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-78381-9 5

16. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs, with
tensor cores. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12697, pp. 249-279. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77886-6 9

17. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Mathematics of Computation 44(170),
463-471 (1985)

18. Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mariano,
A., Yang, B.-Y.: Tuning GaussSieve for speed. In: LATINCRYPT 2014. LCNS,
vol. 8895, pp. 288-305. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
16295-9 16

19. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257-278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

20. Heninger, N.: Using Lattices for Cryptanalysis. (2020). https://simons.berkeley.
edu/-talks/using-lattices-cryptanalysis

21. Herold, G., Kirshanova, E., Laarhoven, T. : Speed-ups and time-memory trade-
offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS,
vol 10769, pp.407-436. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5 14

22. Jancar, J., Sedlacek, V., Svenda, P., Sys, M.: Minerva: The curse of ECDSA nonces.
IACR TCHES 2020(4), 281-308 (2020). https://doi.org/10.13154/tches.v2020.i4.
281-308

https://doi.org/10.1007/BF02579403
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
http://eprint.iacr.org/2015/522
https://www.iacr.org/conferences/crypto2005/r/3.pdf
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-642-40349-1_25
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-642-13190-5_13
https://simons.berkeley.edu/-talks/using-lattices-cryptanalysis
https://simons.berkeley.edu/-talks/using-lattices-cryptanalysis
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308

34 Y. Gao et al.

23. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415-440 (1987). https://doi.org/10.1287/moor.12.3.415

24. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3-22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 1

25. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292-311. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-79063-3 14

26. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 366-389 (1982). https://infoscience.epfl.
ch/record/164484/files/nscan4.PDF

27. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Charika, M. (ed.) 21st SODA. pp. 1468-1480. ACM-SIAM
(2010). https://doi.org/10.1137/1.9781611973075.119

28. Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N.: TPM-FAIL: TPM meets
timing and lattice attacks. In: Capkun, S., Roesner, F. (eds.): USENIX Security
2020. pp. 2057-2073. (2020). https://www.usenix.org/system/files/sec20-moghimi-
tpm.pdf

29. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with
partially known nonces. Journal of Cryptology 15(3), 151-176 (2002). https://doi.
org/10.1007/s00145-002-0021-3

30. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. of Mathematical Cryptology 2(2), 181-207 (2008). https://doi.org/10.
1515/JMC.2008.009

31. Ryan, K.: Return of the hidden number problem. IACR TCHES 2019(1), 146-168
(2018). https://tches.iacr.org/index.php/TCHES/article/view/7337

32. Schnorr, C.P. : Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145-156. Springer,
Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

33. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181-199 (1994). https://doi.
org/10.1007/BF01581144

34. Sun, C., Espitau, T., Tibouchi, M., Abe, M.: Guessing bits: Improved lattice
attacks on (EC)DSA with nonce leakage. IACR TCHES 2022(1), 391-413 (2022).
https://tches.iacr.org/index.php/TCHES/article/view/9302

35. Takahashi, A., Tibouchi, M., Abe, M.: New Bleichenbacher records: Fault attacks
on qDSA signatures. IACR TCHES 2018(3), 331-371 (2018). https://tches.iacr.
org/index.php/TCHES/article/view/7278

36. The G6K development team: G6K (2020). https://github.com/fplll/g6k
37. The G6k-GPU-Tensor development team: G6k-GPU-Tensor (2021). https://

github.com/WvanWoerden/G6K-GPU-Tensor
38. Xu, L., Dai, Z., Wu, B., Lin, D.: Improved attacks on (EC)DSA with nonce leakage

by lattice sieving with predicate. IACR TCHES 2023(2), 568-586 (2023). https://
doi.org/10.46586/tches.v2023.i2.568-586

https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-319-79063-3_14
https://infoscience.epfl.ch/record/164484/files/nscan4.PDF
https://infoscience.epfl.ch/record/164484/files/nscan4.PDF
https://doi.org/10.1137/1.9781611973075.119
https://www.usenix.org/system/files/sec20-moghimi-tpm.pdf
https://www.usenix.org/system/files/sec20-moghimi-tpm.pdf
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://tches.iacr.org/index.php/TCHES/article/view/7337
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://tches.iacr.org/index.php/TCHES/article/view/9302
https://tches.iacr.org/index.php/TCHES/article/view/7278
https://tches.iacr.org/index.php/TCHES/article/view/7278
https://github.com/fplll/g6k
https://github.com/WvanWoerden/G6K-GPU-Tensor
https://github.com/WvanWoerden/G6K-GPU-Tensor
https://doi.org/10.46586/tches.v2023.i2.568-586
https://doi.org/10.46586/tches.v2023.i2.568-586

Don’t Use it Twice! Solving Relaxed
Linear Equivalence Problems

Alessandro Budroni1(B), Jesús-Javier Chi-Domı́nguez1, Giuseppe D’Alconzo2,
Antonio J. Di Scala2, and Mukul Kulkarni1

1 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
{alessandro.budroni,jesus.dominguez,mukul.kulkarni}@tii.ae

2 Department of Mathematical Sciences, Polytechnic University of Turin, Turin, Italy
{giuseppe.dalconzo,antonio.discala}@polito.it

Abstract. The Linear Code Equivalence (LCE) Problem has received
increased attention in recent years due to its applicability in construct-
ing efficient digital signatures. Notably, the LESS signature scheme based
on LCE is under consideration for the NIST post-quantum standardiza-
tion process, along with the MEDS signature scheme that relies on an
extension of LCE to the rank metric, namely the Matrix Code Equiv-
alence (MCE) Problem. Building upon these developments, a family of
signatures with additional properties, including linkable ring, group, and
threshold signatures, has been proposed. These novel constructions intro-
duce relaxed versions of LCE (and MCE), wherein multiple samples share
the same secret equivalence. Despite their significance, these variations
have often lacked a thorough security analysis, being assumed to be as
challenging as their original counterparts. Addressing this gap, our work
delves into the sample complexity of LCE and MCE—precisely, the suf-
ficient number of samples required for efficient recovery of the shared
secret equivalence. Our findings reveal, for instance, that one should not
use the same secret twice in the LCE setting since this enables a polyno-
mial time (and memory) algorithm to retrieve the secret. Consequently,
our results unveil the insecurity of two advanced signatures based on
variants of the LCE Problem.

Keywords: Algebraic Attack · Code Equivalence · Group Actions ·
Cryptanalysis · Post-quantum Cryptography

1 Introduction

Following the ongoing NIST post-quantum standardization process for additional
digital signature schemes [28], there has been an increased interest in construct-
ing new quantum-resistant digital signatures. Moving beyond the proposals at
the prior NIST post-quantum standardization process [27], the research commu-
nity explored a broader spectrum of computational problems, conjectured to be
hard, for building efficient signature schemes. A family of such hard problems

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 35–65, 2025.
https://doi.org/10.1007/978-981-96-0944-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_2&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_2

36 A. Budroni et al.

is represented by those computational problems consisting of finding an equiva-
lence or isomorphism between two algebraic/geometrical structures. For exam-
ple, among the candidates for the NIST post-quantum standardization process,
the digital signature Hawk [12] relies on the hardness of the Lattice Isomorphism
Problem (LIP), LESS [2] on the Linear Code Equivalence Problem (LCE), MEDS
[15] on the Matrix Code Equivalence Problem (MCE), and SQIsign [14] on the
problem of finding isogenies between supersingular elliptic curves.

All these hard problems can be modeled as group actions. This common
framework has been utilized by cryptographers in two significant ways. First,
protocols defined for a specific hard problem have often been adapted into anal-
ogous protocols using another hard problem, leveraging the similar structure
and properties of the underlying group actions. For example, the Calamari ring
signature [10] relying on isogenies has been translated to code equivalence [4].
Second, some protocols have been defined in a general manner for group actions
and subsequently instantiated with specific problems [7,22,25]. This approach
not only broadens the applicability of these cryptographic protocols but also
provides a unified theoretical foundation for their security and efficiency.

While group actions used in cryptography are generally assumed to guarantee
one-wayness, specific group actions might or might not satisfy certain additional
properties such as weak-unpredictability and weak-pseudorandomness. This sub-
ject has already been studied for LCE and MCE by D’Alconzo and Di Scala [19]
and for LIP by Benčina et al. [8]. Consequently, instantiating protocols with a
specific group action without ensuring that stronger cryptographic properties
are satisfied may result in insecure protocols. In addition, to achieve specific
functionalities such as threshold signature or linkability on ring signatures, some
relaxed versions of these hard problems have been proposed. These variants are
often conjectured to exhibit a level of difficulty comparable to their original coun-
terparts but without formal proof or comprehensive cryptanalytic investigation.

In this work, we significantly improve the sample complexity estimated by
D’Alconzo and Di Scala for LCE and MCE, i.e., the sufficient number of samples
sharing the same secret required for breaking weak-unpredictability. Further-
more, we give an algorithm to solve two variants of LCE, namely the Inverse
Code Equivalence Problem (ILCE) and the Code Equivalence Problem with two
samples (2-LCE),1 in polynomial time, that were introduced to construct linkable
ring signatures [4] and threshold signatures [7], respectively. As a consequence,
the schemes that rely on the hardness of ILCE and 2-LCE are not secure. How-
ever, we wish to highlight that our result does not affect the one-wayness of
LCE/MCE.

We summarize in Table 1 the applications of LCE and MCE group actions
that are still considered secure, and the ones that have been discovered not
secure by this work and [19] since they require stronger properties such as
weak-unpredictability and weak-pseudorandomness. For the case of constructing

1 The authors in [7] gave a more general problem definition in terms of group actions,
namely 2-Group Action Inverse Problem (2-GAIP). Here, we refer by 2-LCE to the
2-GAIP from [7] instantiated with LCE.

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 37

linkable ring signatures using the inverse problem of MCE, our work reveals that,
algebraically, this problem is significantly weaker than classic MCE. Thus, we
believe that further investigation in this case is necessary.

Table 1. Overview of the secure and insecure known instantiations of primitives con-
structed from LCE and MCE group actions. The symbols ✗ and ✓ denote that the
corresponding primitive is insecure or remains secure. The symbol ✓(?) denotes that
no specific attacks are known, but we suggest further investigation. The third column
in the LCE setting concerns the cryptographic scenario when the code length doubles
the code dimension.

ID scheme/ Commitment Linkable ring Pseudo Updatable

signature signature random encryption

from [4,10,16] function from from [25]

[1]

LCE ✓ ✓ ✗ ✗ ✗

MCE ✓ ✓ ✓(?) ✗ ✗

1.1 Overview of the Contribution

Informally, we say that two linear codes C1 and C2 of length n and dimension k
over a finite field Fq are equivalent if there exists a monomial matrix Q ∈ F

n×n
q

such that C2 = C1Q. Given two generators G1,G2 ∈ F
k×n
q of two equivalent

codes, the Linear Code Equivalence Problem (LCE) is the problem of finding an
invertible matrix S and a monomial matrix Q such that G2 = SG1Q. When Q
is a permutation matrix, the problem is called Permutation Code Equivalence
Problem (PCE).

On the Hardness of LCE Given t Samples

Our first contribution is investigating the impact of providing more than one LCE
sample sharing the same secret matrix Q to the adversary. We explore how this
explicitly affects the hardness of recovering Q. In particular, we derive a concrete
bound on the number of necessary samples that allow an efficient recovery of
the secret. Additionally, similar results are also obtained for MCE. We present
our result in the following lemma:

Lemma (Informal). For (n, k)-linear codes over a finite field Fq, the secret

monomial matrix Q can be recovered from
⌊

n2

k(n−k)

⌋
+ 1 samples of LCE sharing

the same Q in polynomial time, with non-negligible probability.

38 A. Budroni et al.

The above result improves upon the work by D’Alconzo and Di Scala [19],
who provided a bound of n · k samples applicable solely to code generators
that are not in systematic form. In contrast, our result removes this limitation,
extending the applicability to codes represented in systematic form as well. The
key ingredient of our result relies on constructing a linear system from each
sample, where only the entries of Q are the variables (and not those of S).
Specifically, we use the relation G1QH�

2 = 0, where H2 is a parity-check matrix
of G2, to construct the following homogeneous linear system:

(G1 ⊗ H2) · vec(Q) = 0, (1)

where vec(Q) is the column vector whose entries are the entries of Q row-by-row.
This linear system is underdetermined, meaning that there are fewer equations
than variables. However, by combining the systems from different samples, we
obtain with high probability a determined linear system whose solution can be
found via Gaussian elimination, leading to the recovery of Q.

Solving 2-LCE and ILCE for (2k, k)-Linear Codes

Our second contribution is to introduce a polynomial-time algorithm for solving
2-LCE, i.e., the problem of retrieving Q from only 2 LCE samples, specifically
for k = n/2. Thanks to the fact that ILCE can be seen as a 2-LCE instance via
a simple transformation, we are able to solve this problem in polynomial time
as well. Our algorithm is inspired by Saeed’s work [33] and, in addition to the
results mentioned in the lemma above, it exploits the structure of the secret
monomial matrix to recover it.

Our method consists of first constructing a linear system as in Eq. (1) with
the two available LCE samples

[
G1 ⊗ H2

G′
1 ⊗ H ′

2

]
· vec(Q) = 0. (2)

Then, we guess which entries of the secret matrix Q are non-zero. Thanks to
the structure of Q, for each guess on a non-zero variable, we can simultaneously
guess additional 2n − 2 entries on the same row and column to be zero. When
evaluating the variables corresponding to our guess in the system in Eq. (2), we
obtain a new smaller non-homogeneous system of the form Ax = b. We prove
that the matrix of coefficients A is not full-rank, allowing us to distinguish
correct guesses from the wrong ones, with high probability, using the Rouché-
Capelli Theorem: to determine whether the obtained systems accept solutions or
not, we check whether rank (A) = rank (A|b). We show that for wrong guesses
rank (A) �= rank (A|b) with probability 1 − 1

q , which allows us to distinguish
them efficiently from correct guesses.

Our algorithm consists of iterating this test on all possible n2 guesses on
the entries of Q and setting the variables that did not pass the Rouché-Capelli
test to zero. Our heuristic analysis shows that, for q > 2 and n ≥ 4, we are
able to discard enough variables so that the remaining ones can be retrieved via

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 39

Gaussian elimination, hence revealing the secret Q. The time complexity of our
algorithm is indeed polynomial and consists of making two rank computations
for each of the n2 guesses, resulting in O(n2+2ω), for ω ∈ [2, 3].

We validate our theoretical results through extensive experiments and simu-
lations performed by means of a SageMath [38] proof-of-concept implementation.
All scripts are available in [13].

1.2 Related Work

Permutation Code Equivalence. The cryptanalysis of equivalence problems
on linear codes started with Leon’s algorithm [24], which presented a way to
compute the permutation between two equivalent codes using the information
provided by codewords of minimal weight, but it is unpractical for cryptographic
instances. Later, Petrank and Roth [31] showed that PCE is unlikely to be NP-
complete. In his seminal work [36], Sendrier introduced the Support Splitting
Algorithm, which can recover the secret permutation underlying PCE in time
Õ(qh), where q is the cardinality of the field and h is the dimension of the hull
of the code, namely the intersection between the code and its dual. In addition,
two more attacks on PCE with trivial hulls have been proposed [3,33]. All these
results imply that PCE is not hard when the hull is small, and this happens with
high probability when the code is randomly chosen ([35] showed that in this
case, the hull dimension is a small constant). Hence, PCE must be instantiated
with self-dual or weakly-dual codes to be suitable in cryptography.

Linear Code Equivalence and Matrix Code Equivalence. In [37] Sendrier
and Simos showed that LCE can be reduced to PCE using the closure of the code.
This implied that one should be able to solve LCE using the above techniques,
but, for q ≥ 5, the closure of a code is always weakly-self dual, and the Support
Splitting Algorithm becomes unfeasible. Contrary to PCE, random instances of
LCE remain intractable, and hence, they can be used in the design of cryptosys-
tems. After the publication of LESS [11], the effort for cryptanalyzing PCE and
LCE increased [5,9], which led to a refinement of the conjectured practical com-
plexity of solving these problems. Recently, [17] showed that the LCE (as well as
PCE) is equivalent to its variant which is based on canonical form of the under-
lying codes. In some parameter regimes, they provided the best known attacks
on LCE. In summary, the known techniques are practical for particular classes
of codes, while finding the permutation or the linear map leading to the equiva-
lence seems to be still intractable for carefully generated instances. In the case
of matrix codes, the equivalence problem was first studied from a cryptographic
point of view in [32] and it is further cryptanalyzed in the work that introduces
MEDS [16], presenting an adaptation of Leon’s algorithm in the setting of matrix
codes and an algebraic modelling.

40 A. Budroni et al.

Organization. We give in Sect. 2 the necessary notation and preliminaries. In
Sect. 3 we give results on the sample complexity of LCE and MCE. In Sect. 4 we
describe a new algorithm that solves both ILCE and 2-LCE in polynomial time,
and we give the result of our experiments related to it in Sect. 5. Finally, we
discuss the cryptographic implications of our work in Sect. 6.

2 Preliminaries

2.1 Notation

In this paper, we denote with N, Z and R the sets of natural, integer and real
numbers respectively. For a number n ∈ N we use [n] for the set {1, 2, . . . , n}. We
denote matrices with upper-case bold letters (e.g. A) and vectors with lower-case
bold letters (e.g. a). We treat vectors as columns unless otherwise specified. Let
Fq denote a finite field of order q. The tensor product (A ⊗ B) ∈ F

mr×ns
q of two

matrices A ∈ F
m×n
q and B ∈ F

r×s
q is defined as the Kronecker product of A

and B.
We use GLn(Fq) for the set of invertible n × n matrices with elements in Fq,

Permn(Fq) for the set of permutation matrices of dimension n, and Monon(Fq)
for the set of n × n monomial matrices, i.e., that can be written as M = DP ,
where D ∈ F

n×n
q is full-rank diagonal, and P ∈ Permn(Fq). We also use In to

denote n × n identity matrix over Fq.
For any matrix M ∈ F

m×n
q , we write vec(M) to denote the column vector

of mn coefficients consisting of the concatenation of the rows of M .
We assume that computing multiplication and inverse of matrices can be

performed using O(nω) field operations for some ω ∈ [2, 3].2 Consequently, we
assume that solving a linear system Ax = b with A ∈ F

n×n
q and b ∈ F

n
q

takes time O(nω) field operations, and that calculating the rank (and kernel) of
A ∈ F

n×n
q costs O(nω) field operations.3

The following propositions will be used in Sect. 4.

Proposition 1. Let A,B,C,D ∈ F
(k)×(2k−1)
q be matrices, for k ≥ 2. Then the

rank of the matrix, M ∈ F
(2k2)×(2k−1)2

q , defined as

M =
[
A ⊗ B
C ⊗ D

]

is strictly smaller than 2k2.

Proof. Given the dimension of the matrices, there exist α,β,γ, δ ∈ F
k
q non-zero

vectors such that

[
α γ

] [A
C

]
= 0, and

[
β δ

] [B
D

]
= 0.

2 For example, in the case of the well-known Strassen’s algorithm which is considered
as the best algorithm for matrix multiplications for large n, one can set ω = log2(7).

3 If the matrix A ∈ F
r×s
q is rectangular, we set n = max{r, s} in the complexity.

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 41

Then, the vector
v = (α ⊗ β,−γ ⊗ δ)

is such that v · M = 0. Indeed

(α ⊗ β,−γ ⊗ δ)
[
A ⊗ B
C ⊗ D

]
= (α · A) ⊗ (β · B) − (γ · C) ⊗ (δ · D) =

(γ · C) ⊗ (δ · D) − (γ · C) ⊗ (δ · D) = 0

Hence, the left kernel of M ∈ F
2k2×(2k−1)2

q is not null and it follows that
rank (M) < 2k2. ��

2.2 Linear Codes and Equivalence Problems

An (n, k)-linear code C over Fq is a k-dimensional vector subspace of Fn
q . We say

that C has length n and dimension k. The rate of the code is the ratio r:= k
n .

Unless differently specified, along this paper we consider r ∈ (0, 1
2].

A matrix G ∈ F
k×n
q is called a generator matrix of C if its rows form a basis

of C, that is C = {uT G,u ∈ F
k
q}. We say that G is in systematic form if G =

(Ik M) for some M ∈ F
k×(n−k)
q . A code that admits a generator in systematic

form is called systematic code, and such generator can be obtained in polynomial-
time by computing the reduced row-echelon form of a given generator. We denote
this operation with SF(·). Moreover, the generator in systematic form gives a
standard basis for the k-dimensional vector subspace of Fn

q corresponding to the
code. For a generator matrix G, we denote (G)−i the generator matrix of the
code punctured at position i, i.e., the code obtained by removing the i-th column
from G.

A full-rank matrix H ∈ F
(n−k)×n
q is called parity check matrix of C if and

only if ∀ c ∈ C it holds that Hc = 0. Note that if SF(G) = (Ik M), for a
matrix M ∈ F

k×(n−k)
q , then the matrix (−M� In−k) is a parity-check for C.

The parity-check matrix generates the dual code of C, denoted with C⊥. The
hull of a code C is defined as the intersection of C with its dual. A code C is
said weakly self-dual if C ⊂ C⊥ and self-dual if C = C⊥. In both these cases, the
dimension of the hull is equal to the dimension of the code.

Due to the extended variety of namings to the Linear Code Equivalence
Problem (see Table 2), and for consistency between notations in different articles,
we use the acronyms from [37] and [16].

Let G,G′ be the generator matrices of two (n, k)-linear codes C, C′. We say
that C and C′ are equivalent if there exist S ∈ GLk(Fq) and Q ∈ Monon(Fq) such
that G′ = SGQ.

Definition 1 (Linear Code Equivalence (LCE) Problem). Let G,G′ ∈
F

k×n
q be the generator matrices of two (n, k)-linear codes C, C′, respectively. The

Code Equivalence Problem is to find matrices S ∈ GLk(Fq) and Q ∈ Monon(Fq)
(if they exist) such that G′ = SGQ.

42 A. Budroni et al.

Table 2. Notation naming for the Linear, Permutation, and Matrix Code Equivalence
Problems through the state-of-the-art.

Permutation Code Linear Code Matrix Code

Equivalence Problem Equivalence Problem Equivalence Problem

[23,29,37] PCE LCE —

[34] PEP — —

[2,17,30] PEP LEP —

[7] PEP LEP MCE

[16,32] — — MCE

Sometimes, in the literature, LCE is stated as in Definition 1 but with the
assurance that such matrices S and Q establishing the equivalence between
the two codes exist. Indeed, cryptographic schemes inherently guarantee the
equivalence by construction. Consequently, this work explicitly addresses and
incorporates this scenario.

If instead of being a monomial, the secret matrix Q is a permutation matrix,
then the problem is known as Permutation Code Equivalence (PCE) Prob-
lem.

A (m×r, k) matrix code is a subspace D of dimension k of the space of m×r
matrices. The following problem was introduced in [16,32]. Two matrix codes
D,D′ are equivalent if there exists two matrices A ∈ GLm(Fq) and B ∈ GLr(Fq)
such that D′ = ADB. In fact, [16, Lemma 1] proved that the MCE problem can
be redefined in terms of the tensor product AT ⊗ B as described below.

Definition 2 (Matrix Code Equivalence (MCE) Problem). Let G,G′ ∈
F

k×mr
q be generators of two (m×r, k)-matrix codes D,D′ respectively. The Matrix

Code Equivalence problem is to find (if they exist) S ∈ GLk(Fq), A ∈ GLm(Fq)
and B ∈ GLr(Fq) such that G′ = SG(A� ⊗ B).

Inverse Linear Code Equivalence Problem: In the context of linkable ring signa-
tures, the following problem was initially introduced in [4].

Definition 3 (Inverse Linear Code Equivalence (ILCE) Problem). Let
G,G′,G′′ ∈ F

k×n
q be the generator matrices of three (n, k)-linear codes C, C′

and C′′ respectively. The Inverse Linear Code Equivalence Problem is to find
(if they exist) S ∈ GLk(Fq) and Q ∈ Monon(Fq) such that G′ = SGQ and
G′′ = S−1GQ−1.

Similarly, we define the Inverse Permutation Code Equivalence (IPCE)
Problem variant for when the secret monomial is a permutation matrix. There
is also an Inverse Matrix Code Equivalence Problem variant, named IMCE and
introduced in [16], that essentially replaces Q ∈ Monor(Fq) with Q ∈ GLmr(Fq).

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 43

Definition 4 (Inverse Matrix Code Equivalence (IMCE) Problem). Let
G,G′,G′′ ∈ F

k×mr
q be generators of three (m × r, k)-matrix codes D,D′ and D′′

respectively. The Inverse Matrix Code Equivalence problem is to find (if they
exist) S ∈ GLk(Fq), A ∈ GLm(Fq) and B ∈ GLr(Fq) such that G′ = SGQ and
G′′ = S−1GQ−1 with Q = (A� ⊗ B) ∈ GLmr(Fq).

Remark 1. In practice, one often works with generator matrices in systematic
forms [2,15]. Hence, when G,G′ are in systematic form, we say that C, C′ are
equivalent if there exists Q ∈ Monon(Fq) such that G′ = SF(GQ). The problems
LCE, PCE, MCE, and the corresponding inverse variants can all be equivalently
restated with the generators in systematic form without changing the hardness
of the problems. Unless differently stated, we consider these problems in their
systematic form version to ease the analysis presented in this paper.

2.3 Code Equivalence Problems with Multiple Samples

In order to study the stronger cryptographic properties of the equivalence prob-
lems, we introduce some new definitions allowing an interaction with stronger
adversaries. We give in Definition 5 a relaxed version of LCE where the adversary
has access to multiple LCE samples for the same secret monomial Q.

Definition 5 (t-LCE). Let n, k, q be positive integers such that k < n and q is
prime. Let Q ∈ Monon(Fq) be a secret monomial matrix. We denote by Ln,k,q,Q

the probability distribution on F
k×n
q ×F

k×n
q obtained by sampling M ∈ F

k×(n−k)
q

uniformly at random, setting G = (Ik M) ∈ F
k×n
q , and returning

(G,G′ = SF(GQ)).

Given t independent samples from Ln,k,q,Q , the t-samples LCE problem, denoted
as t-LCE, is to find Q.

Informally, the distribution Ln,k,q,Q samples a generator matrix G (in sys-
tematic form) of a random (n, k)-linear code over Fq and outputs the pair
(G,G′), where G′ is the generator matrix (in systematic form) of another equiv-
alent linear code, and the equivalence is established via a secret monomial matrix
Q. When the parameters n, k, q are clear by the context, we simplify the notation
and drop the indices from the shortening of the problem, i.e., we simply write
t-LCE. Also, notice that 1-LCE corresponds to LCE, so in this case only write
LCE. The t-samples version problem for ILCE is as follows.

Definition 6 (t-ILCE). Let n, k, q be positive integers such that k < n and q is
prime. Let Q ∈ Monon(Fq) be a secret monomial matrix. We denote by L̂n,k,q,Q

the probability distribution on F
k×n
q × F

k×n
q × F

k×n
q obtained by sampling M ∈

F
k×(n−k)
q uniformly at random, setting G = (Ik M) ∈ F

k×n
q , and returning

(G,G′ = SF(GQ),G′′ = SF(GQ−1)).

Given t independent samples from L̂n,k,q,Q , the t-samples ILCE problem, denoted
as t-ILCE, is to find Q.

44 A. Budroni et al.

Similarly, we call t-PCE (resp. t-IPCE) the problem of retrieving the secret
matrix P ∈ Permn(Fq) given t samples of PCE (resp. IPCE). We also refer to
t-MCE (resp. t-IMCE) the problem of retrieving the secret matrices A ∈ GLm(Fq)
and B ∈ GLr(Fq), from t samples of MCE (resp. MCE).

2.4 Code Equivalences Modeled as Group Actions

A group action is a mapping of the form � : G × X → X, where G is a
group and X is a set, such that for any g1, g2 ∈ G and any x ∈ X, we have
g1 � (g2 � x) = (g1g2) � x. Cryptographic group actions are endowed with cer-
tain hardness properties, such as one-wayness, weak-unpredictability and weak-
pseudorandomness [1].

The Linear Code Equivalence problem (Definition 1) has been modeled as a
group action in [19] with the base set being F

k×n
q and the group being GLk(Fq)×

Monon(Fq). In this work, we follow the approach similar to [7] that makes use
of the systematic form. Recall that with SF() we denote the computation of
reduced row-echelon form. Define the following equivalence relation

A �SF B ⇐⇒ SF(A) = SF(B), A,B ∈ F
k×n
q .

Consider the base set as X = F
k×n
q / �SF and the group as G = Monon(Fq).

Then the group action � is defined as

� : G × X → X, (Q,G) �→ Q � G:=SF(GQ).

Similarly, PCE and MCE are modeled as group actions following the same
framework. Consequently, it follows that LCE, PCE, and MCE are instances of
the so-called Vectorization Problem [18].

2-LCE, 2-PCE, and 2-MCE are special cases of the 2-GAIP defined in [7,
Problem 3]. Additionally, Definition 7 describes a useful property required for
building secure threshold signatures as analyzed in [7].

Definition 7 (2-weakly pseudorandom group action [7, Def. 3]). A group action
� : G × X → X is 2-weakly pseudorandom if there is no probabilistic polynomial
time algorithm that given (x, g �x) can distinguish with non-negligible probability
between (x′, y′) and (x′, g � x′) with. x′, y′ ∈ X sampled uniformly at random
from X.

3 Solving Code Equivalence with Multiple Instances

Recently, D’Alconzo and Di Scala [19] showed that, using representation theory,
for certain group actions (G,X, �) it is possible to recover the secret g ∈ G from
a polynomial number of samples of the form (xi, g � xi) for random xi ∈ X. In
the case of the group action defined in Sect. 2.4, this can be viewed as variants of
the problems t-LCE, t-PCE, and t-MCE that do not use the systematic form SF.
They show that these variants can be solved efficiently (with high probability)

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 45

when t ∈ poly(n). In the case of t-LCE they showed that t ≥ nk samples are
sufficient to recover the secret matrices S and Q (with high probability).

In this section, we improve the state-of-the-art by (a) showing that a signifi-
cantly lower number of samples is sufficient to recover the secret matrix for the
corresponding computational problem, and (b) unlike [19] our results cover even
the cases when the codes are represented in the systematic form. In the rest of
the paper we focus on the representation with codes in the systematic form since
it leads to simpler analysis, however, we emphasize that our results extend to
the general case as well since we can always compute the reduced row echelon
form of the generator matrices.

In what follows, we focus our analysis on t-LCE. The main difference between
t-LCE and t-MCE problems in the context of our techniques is that the secret
matrix Q is a monomial matrix in the case of t-LCE, whereas for t-MCE problem
the secret matrix is a tensor product

(
A� ⊗ B

)
. Since we do not exploit the

monomial structure of Q in the following analysis of t-LCE presented in this
section, our results extend in a straightforward manner to the more general
case of t-MCE. Moreover, we also do not restrict the underlying linear codes to
possess any specific properties or structure e.g. self-dual codes or low dimension
of hull. Our strategy, analogous to [19], consists of using the available samples to
construct a linear system whose unknowns are the entries of the secret matrix.
If the rank of the resulting linear system is large enough, then one is able to
retrieve the secret simply via Gaussian elimination in polynomial time.

Proposition 2. Given two generator matrices G = (Ik M) ∈ F
k×n
q and G′ =

SF(GQ) = (Ik M ′) ∈ F
k×n
q of two equivalent codes for some Q ∈ GLn(Fq), we

have that
[
(Ik M) ⊗ (−M ′� In−k)

]
vec(Q) = 0. (3)

Proof. This is a straightforward application of [33, Definition 1.1.3, Corollary
3.2.13, and Corollary 3.2.20] without assuming the matrix Q to be a permutation,
where G = (Ik M) and the parity-check matrix of the code generated by G′ =
(Ik M ′) is given by (−M ′� In−k). Note that for any code generated by matrix
G′, by definition we know that G′H ′� = 0. We can therefore, obtain Eq. (3)
by substituting GQ for G′ and writing the resulting equation in tensor product
notation. ��

Notice that Proposition 2 gives k(n− k) linear equations in the n2 variables
vec(Q) determining the entries of Q.4 Such a linear system has the following
particular structure. Let us denote the (i, j)-th entry of M by Mi,j , then the
homogeneous linear system of equations derived from Eq. (3) can be written as:
A · vec(Q) = 0 where A is equal to

4 In case of LCE we restrict Q to be in Monon(Fq), while for MCE we assume that
n = mr and Q = A� ⊗ B for some A ∈ GLm(Fq) and B ∈ GLr(Fq).

46 A. Budroni et al.

⎡
⎢⎢⎢⎢⎢⎣

−M ′� Ic 0 0 · · · 0 −M1,1M
′� M1,1Ic · · · −M1,cM

′� M1,cIc

0 0 −M ′� Ic

. . .
... −M2,1M

′� M2,1Ic · · · −M2,cM
′� M2,cIc

...
. . .

. . .
. . .

. . . 0
...

... · · ·
...

...

0 · · · 0 0 −M ′� Ic −Mk,1M
′� Mk,1Ic · · · −Mk,cM

′� Mk,cIc

⎤
⎥⎥⎥⎥⎥⎦

with c = (n − k). In particular, the matrix A has full (row) rank due to the
presence of k identity blocks In−k.

Proposition 3. Given t > 0 samples from Ln,k,q,Q

(Gi = (I|Mi), G′
i = SF(GiQ) = (I|M ′

i)) , i = 1, . . . , t,

for a fixed secret Q ∈ Monon(Fq), define the following matrix

A =

⎡
⎢⎢⎣

(Ik M1) ⊗ (−M ′
1
�

In−k)
(Ik M2) ⊗ (−M ′

2
�

In−k)
. . .

(Ik Mt) ⊗ (−M ′
t
�

In−k)

⎤
⎥⎥⎦ . (4)

Then rank (A) < n2.

Proof. Given that every LCE sample brings k(n − k) rows to the matrix A,
there are in total tk(n − k) rows and n2 columns. If t <

⌊
n2

k(n−k)

⌋
+ 1, then the

number of rows is smaller than n2 and the rank cannot reach n2. Otherwise,
there are always more rows than columns, hence the rank of A can be at most
n2. However, by construction we have that A · vec(Q) = 0, hence there exists at
least one linear combination of the columns of A that gives the zero vector. It
follows that A cannot be full-rank, and so rank (A) < n2. ��

Studying the probability that the rank of A in Eq. (4) is maximal is not an
easy task. The right kernel of A contains solutions of the form vec(X) such that
G′

i = SF(GiX), for i = 1, . . . t, where X is not necessarily monomial. In other
words, such a kernel can be written as follows

⋂
i=1,...,t

{vec(X) : G′
i = SF(GiX)} .

For t > 2, the inclusion/exclusion principle does not hold in general, and one
cannot use it to estimate the dimension of such intersection of vector spaces.
Nevertheless, we experimentally studied the probability that the matrix A has
maximal rank (i.e. n2 − 1). Based on our experiments, which are reported in
Sect. 3.2, we consider the following assumption.

Assumption 1. For a given code rate r, there exist positive integers n0, q0 such
that, for n > n0, q > q0, and t ≥

⌊
1

r(1−r)

⌋
+ 1 =

⌊
n2

k(n−k)

⌋
+ 1, the matrix A

constructed from t random samples from Ln,k,q,Q as in Eq. (4) has rank equal to
n2 − 1 with non-negligible probability in n and q.

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 47

We stress that Assumption 1 is meant to cover all cryptographically inter-
esting cases. Indeed, experimentally, we observed that such an assumption does
not hold true either for codes of very short length and small field or for very
small rate r, which are not of cryptographic interest. For example, for r = 1

2 ,
Assumption 1 seems to hold for n0 = 8 and q0 = 3. Under the hypothesis of
Assumption 1, we give the sample complexity of LCE in Lemma 1.

Lemma 1. For t ≥
⌊

n2

k(n−k)

⌋
+ 1 and under Assumption 1, t-LCE is solvable

with non-negligible probability in time O(n2ω).

Proof. Construct the matrix A from t LCE samples sharing the same secret Q as
in Proposition 3. Following Assumption 1, the right kernel of A has dimension
equal to 1. The generator of such kernel, which can be found via Gaussian
elimination, must be (a multiple of) vec(Q) by construction, and so, a solution
for each of the t LCE instances. ��

Notice that Lemma 1 also applies to PCE as this can be seen as a special
case of LCE. We assume an analogue of Assumption 1 for the case of MCE by
setting n := mr in the following corollary.

Corollary 1. For t ≥
⌊

m2r2

k(mr−k)

⌋
+ 1, t-MCE is solvable with non-negligible

probability in time O((mr)2ω).

In the parameter setting used LESS [2], i.e. k = n/2, Lemma 1 says that
a constant number of t = 5 samples are enough, for any n, to recover the
secret monomial. Similarly, for the parameter setting used in MEDS [15], i.e.
k = r = m, Corollary 1 says that t =

⌈
k2

k−1

⌉
≈ k samples are enough to recover

the secret matrix. We stress that this has no implication on the security of such
protocols because, in both protocols setting, only one sample is provided.

We verified experimentally in SageMath the correctness of Lemma 1 and
Corollary 1, and the scripts are available at [13].

3.1 Implications to ILCE and IMCE

Consider the following ILCE instance
(
G, G′ = SF(GQ), G′′ = SF(GQ−1)

)
.

By multiplying Q to the right in the equation at the right-most entry, one gets

(G, G′ = SF(GQ), G = SF(G′′Q)) ,

that is almost a 2-LCE sample. Indeed, these two resulting LCE samples do not
come both from Ln,k,q,Q , but are instead related to each other by the matrix
G appearing twice, even if on different positions. Nevertheless, we argue below

48 A. Budroni et al.

that, for the sake of our analysis, t-ILCE with the above transformation behaves
as 2t-LCE.

Given t > 0 random ILCE samples

(Gi = (Ik|Mi), G′
i = (Ik|M ′

i), G′′
i = (Ik|M ′′

i)) , for i = 1, . . . , t,

consider the matrix

A′ =

⎡
⎢⎢⎢⎢⎣

(Ik M1) ⊗ (−M ′
1
�

In−k)
(Ik M ′′

1) ⊗ (−M1
� In−k)

. . .

(Ik Mt) ⊗ (−M ′
t
�

In−k)
(Ik M ′′

t) ⊗ (−Mt
� In−k)

⎤
⎥⎥⎥⎥⎦

. (5)

By construction, we have that A′ · vec(Q) = 0. Hence, for analogous argu-
ments as in the proof of Proposition 3, the matrix A′ has rank always smaller
than n2. Looking at matrix A′, even if each matrix Mi appears in two row-blocks,
they are in different columns and they do not seem to bring any evident linear
dependence. In addition, we observed experimentally that, for t =

⌊
n2

2k(n−k)

⌋
+1,

the probability of rank (A′) �= n2 − 1 is analogous to the case of 2t-LCE (the
results of our experiments are reported in Sect. 3.2). On the basis of the above
considerations, we consider Assumption 2 in order to give the sample complexity
of ILCE in Lemma 2.

Assumption 2. For a given code rate r, there exist positive integers n0, q0 such
that, for n > n0, q > q0, and t ≥

⌊
1

2r(1−r)

⌋
+ 1 =

⌊
n2

2k(n−k)

⌋
+ 1, the matrix A′

constructed from t random samples from L̂n,k,q,Q as in Eq. (5) has rank equal to
n2 − 1 with non-negligible probability in n and q.

Lemma 2. Under Assumption 2, for t ≥
⌊

n2

2k(n−k)

⌋
+ 1, t-ILCE is solvable with

non-negligible probability in time O(n2ω).

Proof. Analogous to the proof of Lemma 1. ��
Similarly to what is done for MCE, under an analogous assumption to

Assumption 2 but for IMCE, we have the following corollary.

Corollary 2. For t ≥
⌊

m2r2

2k(mr−k)

⌋
+ 1, t-IMCE is solvable with non-negligible

probability in time O((mr)2ω).

Similarly, as above, we verified experimentally in SageMath the correctness
of Lemma 2 and Corollary 2.

3.2 Experimental Validation of Assumptions

In this section, we report the results from our experiments for testing whether
Assumption 1 and Assumption 2 hold in practice.

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 49

Experiments on Assumption 1. Our experiment consists of testing, for a range of
n, q and code rate r = 1

2 , 1
4 , 1

8 , 1
16 , how many matrices constructed as in Eq. (4)

have rank equal to n2 − 1. For each rate, we choose t = � 1
r(1−r)� + 1 and run

10000 trials and report in Fig. 1 the fraction of how many trials presented the
desired maximal rank. One can see that the measured probability of this event
to happen quickly goes to 1 when either or both q and n increase. In addition,
one can notice that when the code rate r is close to either 0 or 1, the probability
of reaching the maximal rank is lower. Tests for rate r > 1

2 gave symmetrical
results as for r < 1

2 . In overall, our experimental results support Assumption 1.

Fig. 1. The plots report the measured success rate P over 10000 trials that a matrix A

from Eq. (4), constructed from t = � n2

k(n−k)
�+1 random LCE samples with parameters

n, k and q, has rank equal to n2 − 1. Each plots shows the results for different values
of n, q and a code rate r equal to 1

2
, 1
4
, 1
8

and 1
16

.

50 A. Budroni et al.

Experiments on Assumption 2. Under analogous setting of the above experiment,
we test whether the matrix A′ from Eq. (5) has the desired rank n2 − 1, for
t = � 1

2r(1−r)� + 1. The results reported in Fig. 2 support Assumption 2.

Fig. 2. The plots report the measured success rate P over 10000 trials that a matrix A

from Eq. (4), constructed from t = � n2

2k(n−k)
�+1 random ILCE samples with parameters

n, k and q, has rank equal to n2 − 1. Each plots shows the results for different values
of n, q and a code rate r equal 1

2
, 1
4
, 1
8

and 1
16

.

3.3 Solving LCEhen rank (A) is not maximal

In practice, one can solve t-LCE also when the right rank of the constructed
matrix A from Eq. (4) is not strictly maximal (i.e. rank (A) = n2−1) as assumed
in Assumption 1. Indeed, we show here that if the right kernel of A has dimension

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 51

between 2 and n, then the monomial solution (or a multiple of it) must be an
element of a specific set of generators with high probability, and this set can be
computed in polynomial time.

Let us assume that the right kernel of A has dimension n and let g1, . . . , gn ∈
F

n2

q be its generators (smaller rank cases are analogous). With high probability,
there exists a basis transformation that makes g1, . . . , gn a standard basis, that
is, where

g1 = &(
n︷ ︸︸ ︷

1, 0, . . . , 0, ∗, . . . , ∗)
g2 = &(0, 1, . . . , 0, ∗, . . . , ∗)

& · · ·
gn = &(0, . . . , 0, 1, ∗, . . . , ∗).

Let us assume that vec(Q) �= αgi, for any α ∈ F
∗
q and i = 1, . . . , n. Then it means

that vec(Q) must be a linear combination of g1, . . . , gn. However, because of the
monomial structure of Q, vec(Q) has only one non-zero entry in its first n entries.
It follows that vec(Q) cannot be a combination of two or more gi as this would
generate more than one non-zero entry in these first n positions. Hence, vec(Q)
must be one of the elements of the standard basis of the kernel or a multiple of
it.

Thanks to this observation, we were able in practice to solve the cases in
which n2 − n ≤ rank (A) ≤ n2 − 1, and, in particular, for k = n

2 , we could find
the secret monomial with only 4 random LCE samples, which decreases by 1 the
sample complexity given by Lemma 1.

4 Further Improvements by Exploiting the Monomial
Matrix Structure

In this section, we exploit the structure of the secret matrix in LCE and ILCE to
further reduce the number of samples necessary to retrieve the secret monomial.
Specifically, we show how to solve, in polynomial time, 2-LCE and ILCE for code
rate 1

2 . The approach presented below builds upon the algorithm by Saeed for
PCE [33, Sec. 3.7]. As in Sect. 3, we consider the generators of the codes in
systematic form to ease our analysis.

4.1 Solving 2-LCE for k = n/2 in polynomial-time

In this section, we introduce a new algorithm that solves 2-LCE in polynomial
time for codes of rate 1

2 . Consider a secret matrix Q ∈ Monon(Fq) and the
following two LCE instances:

(
G1 = (Ik M),&G′

1 = SF(G1Q) = (Ik M ′)
)
,

(
G2 = (Ik N),&G′

2 = SF(G2Q) = (Ik N ′)
)
.

(6)

52 A. Budroni et al.

for k = n/2. We apply Proposition 2 to each instance and write the following
homogeneous linear system

S :

A︷ ︸︸ ︷[
(Ik M) ⊗ (−M ′� In−k)
(Ik N) ⊗ (−N ′� In−k)

]
vec(Q) =

[
0
0

]
. (7)

The following proposition gives a sufficient and necessary condition for A to
be full-rank.

Proposition 4. Consider two LCE instances as in Eq. (6), for k = n
2 . Then the

matrix A defined in Eq. (7) is such that rank (A) < 2k(n − k) if and only if
rank (M − N) < k.

Before giving the proof for Proposition 4, we need to prove the following propo-
sition.

Proposition 5. Under the same setting of Proposition 4, we have that

rank (M ′ − N ′) < k ⇐⇒ rank (M − N) < k.

Proof. First, we prove that rank (M ′ − N ′) < k ⇒ rank (M − N) < k. One
has that

G′
1 − G′

2 = (Ik M ′) − (Ik N ′) = X(Ik M)Q − Y (Ik N)Q

for some invertible X,Y ∈ F
k×k
q . Then

(0|M ′ − N ′)Q−1 = (X(Ik M) − Y (Ik N)) = (X|Y)
[

Ik M
−Ik −N

]
.

For any matrix Z let kerL(Z) be its left kernel. Let w� ∈ kerL(M ′ − N ′), then

0 = w� · (0|M ′ − N ′)Q−1 = w� · (X|Y)
[

Ik M
−Ik −N

]
.

It follows that w′� = w� · (X|Y) ∈ kerL

([
Ik M

−Ik −N

])
Notice that w′ ∈ F

n
q

must be of the form w′ = (v,v), with v �= 0 ∈ F
k
q and v� ∈ kerL (M − N).

Hence we have that rank (M − N) < k. The other implication rank (M − N) <
k ⇒ rank (M ′ − N ′) < k follows by using analogous arguments as above. ��

We can now give the proof of Proposition 4.

Proof (Proposition 4). First, we prove that rank (M − N) < k ⇒ rank (A) <

2k(n−k). Notice that since A has n2 columns and 2k(n−k) = n2

2 rows, rank (A)
can be at most equal to 2k(n−k). Let v� �= 0 ∈ kerL(M −N), then there exists
w� �= 0 ∈ kerL(M ′ − N ′) from Proposition 5. Then we have that

(v�| − v�)
[
(Ik M)
(Ik N)

]
= 0 and (w�| − w�)

[
(−M ′� In−k)
(−N ′� In−k)

]
= 0.

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 53

It follows that

(v� ⊗ w�| − v� ⊗ w�)

[
(Ik M) ⊗ (−M ′� In−k)
(Ik N) ⊗ (−N ′� In−k)

]
= 0.

Hence, (v� ⊗ w�| − v� ⊗ w�) �= 0 ∈ kerL(A) and so rank (A) < 2k(n − k).
We prove now that rank (A) < 2k(n − k) ⇒ rank (M − N) < k. Let s� =

(s1
�, s2

�) �= 0 ∈ kerL(A). If we restrict the multiplication s�A = 0 to the first
2k columns of A, we get the following equation

(s�
1 |s�

2)

⎡
⎢⎢⎣

−M ′� In−k

0 0
−N ′� In−k

0 0

⎤
⎥⎥⎦ = 0.

Let s̄1, s̄2 ∈ F
k
q be the vectors of the first k entries of s1 and s2 respectively.

Then we have that

(s̄�
1 |s̄�

2)
[−M ′� In−k

−N ′� In−k

]
= 0.

It follows that s̄�
1 +s̄�

2 = 0, therefore −s̄�
1 = s̄�

2 and that s̄�
1 ∈ kerL(M ′�−N ′�)

and, for k = n
2 , rank (M ′ − N ′) < k. From Proposition 5 we conclude that

rank (M − N) < k. ��

Description of the Algorithm. The main idea of our algorithm is to infer
information about the secret monomial matrix Q by guessing the position of the
non-zero entry in each row and checking whether the resulting reduced system
admits solutions. More specifically, we iteratively guess the entries of Q to be
non-zero. Each guess consists of evaluating the variable corresponding to the
(i, j)-th entry of Q to be equal to 1. Thanks to the monomial structure of Q,
this results in guessing a total of 2n − 1 variables simultaneously, since all the
remaining variables in the i-th row and in the j-th column must be equal to 0.
Then, we either retain or discard the guess depending on whether the reduced
linear system obtained from such a guess admits any solution(s) or not.

We now explain why such a guess on the correct non-zero position of Q is
still useful even if Q(i, j) �= 1. Recall that Q = PD, where P is a permutation
matrix in Permn(Fq) and D is a diagonal matrix in GLn(Fq). Let di ∈ F

∗
q be

the i-th diagonal entry of D. Then Ri = d−1
i Q satisfies G′

1 = SF(G1Ri) and
G′

2 = SF(G2Ri) for each i ∈ {1, . . . , n}. In other words, this guess restricts the
set of possible solutions to include a specific multiple Ri of Q that has 1 in
its i-th non-zero entry (due to scaling by di) which also serves as a solution to
the given 2-LCE instance. Therefore, such an evaluation on the non-zero entry
remains valid.

54 A. Budroni et al.

We give here a characterization of the linear system obtained by guessing a
single position. Setting Q(i, j) = 1 and Q(i, μ),Q(η, j) = 0, for μ ∈ {1 . . . n}\{j}
and η ∈ {1 . . . n} \ {i}, results in removing the corresponding 2n − 1 columns of
A from the linear system S in Eq. (7). This operation produces the linear system

Si,j : Aij · vec(Q′) = bij (8)

in dimension 2k(n − k) × (n − 1)2, where

Aij =

[
(Ik M)−i ⊗ (−M ′� In−k)−j

(Ik N)−i ⊗ (−N ′� In−k)−j

]
,

−bij =

[
(Ik M)i ⊗ (−M ′� In−k)j

(Ik N)i ⊗ (−N ′� In−k)j

]
,

and Q′ is the (n−1)×(n−1) matrix obtained by removing the i-th row and j-th
column from Q. In other words, we obtain a new non-homogeneous linear system
given by the tensor product of G punctured at position i and H ′ (parity check
matrix of G′) punctured at position j. Notice that the vector of the constant
terms bij corresponds to the (n(i − 1) + j)-th column of the original matrix A,
i.e., the one corresponding to the variable Q(i, j) that is guessed to be non-zero.

On each guess, we use the following test to accept or reject a guess.

Test 1. For the guess on the (i, j)-th entry of Q to be non-zero, construct a
reduced system Sij from S (as in Eq. (8)) with (n − 1)2 variables by setting
Q(i, j) = 1 and Q(i, μ),Q(η, j) = 0, for μ ∈ {1 . . . n}\{j} and η ∈ {1 . . . n}\{i}.
Accept the guess if the system Sij accepts at least one solution, reject otherwise.

We use Rouché-Capelli Theorem to check whether Sij accepts solutions
or not. Indeed, the system Sij accepts solutions if and only if rank (Aij) =
rank (Aij |bij). When a guess is rejected, this means that no solution in S exists
with Q(i, j) �= 0. Hence, the variable corresponding to Q(i, j) in S is set to
zero. If enough variables are set to zero after the guessing procedure, i.e. the
system becomes (over)determined, and we can retrieve the remaining ones using
Gaussian elimination. The whole strategy is outlined in Algorithm 1.

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 55

Algorithm 1. Solving 2-LCE
Input: A 2-LCE instance as in Eq. (6)
Output: A monomial matrix R, solution to Eq. (6) or ⊥
1: Construct the linear system S given by Eq. (7)
2: Set g = [g1, . . . , gn] such that gi is an empty list
3: for i := 1 to n do � loop over rows
4: for j := 1 to n do � loop over columns
5: if Test 1 passes then
6: Append j to the list gi
7: end if
8: end for
9: end for

10: Construct the linear system Sred obtained by substituting Q(i, j) = 0 in S for each
i := 1, . . . , n and j �∈ gi

11: if Sred is underdetermined then
12: Return ⊥
13: end if
14: Compute a solution matrix R of the linear system Sred

15: Return R

Notice that, when Algorithm 1 succeeds, it returns an equivalent solution (a
scalar multiple of) to the original secret matrix Q.

Heuristic Analysis of Algorithm 1. First of all, notice that Test 1 always
accepts a correct guess since, in this case, Sij accepts solutions by construction.
On the other hand, Test 1 may or may not accept a wrong guess. Thus, we begin
our analysis by estimating the probability that Test 1 accepts a wrong guess.

Proposition 4 gives the condition for which the matrix of coefficients A in
Eq. (7) is full rank. In particular, given that M ,N are sampled uniformly at
random, we know that

Pr

(
rank (A) =

n2

2

)
= Pr (rank (M − N) = k) = 1 − 1

q
. (9)

On the other hand, Proposition 1 applied to the matrix of coefficients Aij

of the reduced system Sij (Eq. (8)) tells us that rank (Aij) = n2

2 − d, for some
d > 0. Using Rouché-Capelli Theorem to check whether Sij admits solutions or
not, implies that the guess (i, j) passes Test 1 if and only if rank (Aij |bij) =
rank (Aij) = n2

2 − d.
Let X be the left kernel of Aij . The dimension of X is n2

2 − rank (Aij) = d,

and let BX ∈ F
d×n2

2
q be its generator matrix. Similarly, Let Y be the left kernel

of bij of dimension n2

2 − rank (bij) = n2

2 − 1 and let BY ∈ F
(n2

2 −1)×n2
2

q be its
generator matrix. Then, we have that

rank (Aij |bij) = rank (Aij) ⇐⇒ X ⊂ Y ⇐⇒ rank (BY) = rank
([

BY

BX

])
.

56 A. Budroni et al.

Heuristically, we model BX and BY as random matrices, and the probability
that all rows of BX are linearly dependant from the rows of BY is approximately
equal to 1

qd . Therefore, the expected probability that a wrong guess passes Test
1 is 1

qd .
Let us now estimate the expected number of variables that will pass Test 1,

i.e., the number of variables of the system Sred in Algorithm 1. Here, we consider
the most probable scenario of d = 1 (that is also the worst case scenario, since
for d > 1 Test 1 accepts wrong guesses with lower probability). In total, there
are n correct guesses (one for each row) that will always pass Test 1, and the
remaining n2 − n incorrect guesses will pass with probability 1

q . The expected
number of survival variables is

N = n + (n2 − n)
1
q
. (10)

We have that the resulting system is (over)determined when N ≤ n2

2 , and this
is true when

q ≥ 2(n − 1)
n − 2

. (11)

Notice that, for q > 2 and n ≥ 4, Eq. (11) is always satisfied. Hence, when
the parameters satisfy Eq. (11), the condition that determines the success of
Algorithm 1 is that rank (A) = n2

2 , which happens with probability 1 − 1
q (see

Eq. (9)).

Complexity. The computational cost of checking rank (Aij |bij) = rank (Aij) is
O(n2ω), for ω ∈ [2, 3]. This computation must be repeated for n2 guesses, giving
a computational complexity of

O(n2+2ω)

field operations. The memory complexity is of O(n4) field elements.
In order to check the correctness of Algorithm 1 and of the proposed analysis,

we perform extensive experiments in SageMath up to code length n = 128 as
discussed in Sect. 5.1.

4.2 Solving ILCE for k = n/2 in polynomial-time

Consider an ILCE instance

(G = (Ik|M), G′ = (Ik|M ′), G′′ = (Ik|M ′′)) .

Following the same reasoning as in Sect. 3.1, we obtain a system which is almost
same as the one obtained from a 2-LCE instance. For Algorithm 1 to work, we
need first to check that the following matrix

A′ =
[
(Ik M) ⊗ (−M ′� In−k)
(Ik M ′′) ⊗ (−M� In−k)

]
. (12)

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 57

is full rank. According to Proposition 4, A′ is full-rank if and only if
kerL (M − M ′′) is trivial. Heuristically, given that M is random and modelling
M ′′ as also random, A′ is full rank with probability 1 − 1

q . Then, guessing vari-
ables of the system A′ · vec(Q) = 0 produces a system analogous to Eq. (8),
where Proposition 1 naturally applies to A′. Consequently, the requirements for
Algorithm 1 are met, allowing us to solve ILCE in polynomial time.

Our experiments, reported in Sect. 5.2, show that Algorithm 1 solves 2-LCE
and ILCE with analogous success probability.

4.3 Solving 2-PCE and IPCE for self-dual codes

Since PCE is a special case of LCE, the above results also apply to IPCE and
2-PCE for random codes. However, in this case, it is already known that PCE
can be solved in polynomial time using the Support Splitting Algorithm [36].
Unfortunately, for the case of self-dual codes, this approach has exponential
time complexity.

We argue that the hull of the code does not play a role in our algorithm.
First, notice that when building the system in Eq. (7), the code and its dual
are never used simultaneously (instead, we use the dual of an equivalent code).
Specifically, given two PCE instances

(G1,G
′
1) (G2,G

′
2),

with secret permutation matrix P , we construct the system (notice that in this
case, G′

i is the dual of itself)
[
G1 ⊗ G′

1

G2 ⊗ G′
2

]
vec(P) =

[
0
0

]
. (13)

Second, the key factor that makes the Rouché-Capelli test work is that the matrix
of coefficients after puncturing Aij must not be full-rank, and this is true via
Proposition 1 regardless of the dimension of the hull. Finally, our experiments,
reported in Sect. 5.3, show that our algorithm solves both IPCE and 2-PCE for
self-dual code instances similarly to the case of random code instances (with
trivial hull).

4.4 Comparisons with Saeed’s Algorithm [33]

In [33, Section 3.7], Saeed proposed an algorithm to solve PCE for random code
instances. Let the following

(
G1 = (Ik M),G2 = SF(G1P) = (Ik M ′)

)
,

be a PCE instance, where P ∈ Permn(Fq). From this only sample, they construct
the following linear system

58 A. Budroni et al.

⎡
⎢⎢⎣

(Ik M) ⊗ (−M ′� In−k)
(−M� In−k) ⊗ (Ik M ′)

In ⊗ 1�
n

1�
n ⊗ In

⎤
⎥⎥⎦ vec(P) =

⎡
⎢⎢⎣
0
0
1n

1n

⎤
⎥⎥⎦ , (14)

where 1n is the column vector of length n and 1 in each entry. Notice that
the first equations block is analogous to the one of Eq. (7). The second block is
obtained thanks to the following observation: since P −1 = P �, we have that
G1 = SF(G2P

−1) = SF(G2P
�) also holds. However, these new equations are,

in general, linearly independent from the above only when the hull of the code is
trivial. The last two equation blocks simply condition the sum of the elements of
P in the same row and column to equal 1, which is true for every permutation
matrix.

Starting from the system in Eq. (14), Saeed’s algorithm works similarly to
ours. However, our algorithm proposes a more efficient method for recovering
the final secret (Line 14 of Algorithm 1). Specifically, our heuristic analysis
shows that the number of survival variables is smaller than or equal to the
number of equations, allowing an efficient recovery of the secret via Gaussian
elimination. In contrast, the author of [33] does not present such an analysis,
and they also do not specify how to recover the final solution. They, in fact,
speculate that retrieving the solution may be computationally expensive as this
step may require an exhaustive search on a large set.5

5 Experiments

We support the findings presented in this manuscript with extensive experi-
ments and simulations performed by means of a SageMath [38] proof-of-concept
implementation available at [13]. Regarding Sect. 3, we provide the scripts to
test the correctness of Lemmas 1 and 2 and Corollarys 1 and 2. For Sect. 4, we
report in this section the results of extensive experiments performed on solving
2-LCE/ILCE with random codes, and 2-PCE/IPCE with self-dual codes.

5.1 Solving 2-LCE

We perform extensive experiments to corroborate the weaker security provided
by 2-LCE and ILCE when compared to LCE. We take into consideration the
following observation on the parameter set from [2]:

– 128 bits: n = 252 and q = 127 satisfies q ≈ n/2,
– 192 bits: n = 400 and q = 127 satisfies q ≈ n/3,
– 256 bits: n = 548 and q = 127 satisfies q ≈ n/4.

5 In [33, page 62], the author says “This might have high complexity depending on the
size of the solution set.” We interpret this as requiring an exhaustive search.

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 59

To the best of our knowledge, the concrete security of 2-LCE was not analyzed
before this work, and therefore we test our results on 2-LCE using the parameters
providing different security levels for LCE. Thus, we focus on the following param-
eter set: n ∈ [32, 40, 48, 64, 72, 80, 96, 128], k = n/2, and q ∈ [n/2, n/3, n/4, 127].
Essentially, we tackle cases that are believed to provide security equivalent to
20−70 bits in the case of LCE; such a complexity estimation is based on the
analysis presented in [2]. Table 3 presents our experiments’ time and memory
measurements on a 2.45 GHz AMD EPYC 7763 64-core Processor machine with
1T of RAM running Ubuntu 22.04.2 LTS.

From some preliminary experiments, we observed that the upper bound in
Proposition 1 is reached with overwhelming probability, i.e., rank (Aij) = n2

2 −1.
Hence, we optimize the algorithm and avoid one rank computation per guess
by substituting the Rouché-Capelli test with the test of checking whether
rank (Aij |bij) = n2

2 − 1 or not.
Our implementation employs parallelization per row; more precisely, it runs n

processors in parallel, and the jth processor has the task of computing the rank of
Si,j . Consequently, that parallelization approach gives a factor of n times faster,
but the memory increases by the same factor (i.e., it is n times bigger). We use
the multiprocessing Python package for the parallelization and the tracemalloc
Python module to measure the memory usage. In addition, for each parameter set
considered, Table 3 reports a comparison of the expected number of variables in
Sred against the average obtained in our experiments. This comparison illustrates
that our experimental findings align with the analysis presented in Sect. 4.

5.2 Solving ILCE

We report the results of the experiments that we performed to support our claims
in Sect. 4.2, i.e., Algorithm 1 solves ILCE analogously to 2-LCE. For different
values of n and q, we report in Table 4 the measured success rate over 100 trials of
both problems. One can see that 2-LCE and ILCE get solved with approximately
the same success probability and that this corresponds to the success condition
probability of Algorithm 1 (Eq. (9)).

5.3 Solving Self Dual 2-PCE and IPCE Instances

In this section, we report the results of our experiments to support our claim
in Sect. 4.3, that is, Algorithm 1 solves 2-PCE and IPCE with self-dual codes
instances analogously to random codes instances.

We consider the set of self-dual codes generators provided in [20,21], for
n ∈ {16, 24, 28, 36, 40, 44}, k = n/2, and q = 7. Given that, for each n only
one generator G is given, we compute different 2-PCE instances at every test
iteration as follows. First, we compute the generator of an equivalent code G1 of
G through a random permutation T , and then we compute a PCE instance as
(G1,G2 = SF(G1P)), where P is the random secret permutation to discover.

60 A. Budroni et al.

Table 3. The data corresponds to the average of solving 20 random 2-LCE instances.
The fourth and the fifth columns present the expected number of variables in Sred

according to Eq. (10) and the average of the observed values, respectively. The last
column presents the number of successfully solved random 2-LCE instances (i.e., the
success ratio obtained from the experiments).

n q Estimated Expected Measured Memory Runtime Ratio

LCE bit vars in vars in (GB)

security Sred Sred

32

7 20 178 178 1.03 20s 18/20

11 22 125 124 1.02 19s 14/20

17 23 92 93 1.03 19s 19/20

127 29 40 40 1.05 19s 20/20

40

11 25 185 183 2.57 48s 20/20

13 25 163 165 2.56 47s 20/20

19 27 124 121 2.56 47s 19/20

127 33 53 54 2.57 47s 19/20

48

13 28 225 231 5.34 01m 41s 19/20

17 29 183 173 5.35 01m 44s 18/20

23 31 148 146 5.34 01m 44s 19/20

127 37 66 69 5.36 01m 43s 20/20

64

17 35 305 288 16.96 07m 08s 17/20

23 37 242 240 16.96 07m 00s 17/20

31 38 196 191 16.96 07m 06s 20/20

127 44 96 97 16.97 07m 02s 20/20

72

19 39 345 343 27.19 13m 27s 20/20

23 40 297 291 27.19 13m 58s 17/20

37 42 212 212 27.20 12m 50s 18/20

127 47 113 113 27.21 13m 08s 20/20

80

19 41 416 417 41.48 21m 40s 18/20

29 44 301 302 41.50 21m 48s 20/20

41 46 236 228 41.49 18m 37s 18/20

127 51 130 132 41.50 18m 09s 20/20

96

23 48 496 499 86.10 01h 04m 20/20

31 51 393 392 86.10 01h 04m 19/20

47 54 292 284 86.10 01h 04m 20/20

127 58 169 169 86.09 01h 08m 20/20

128

31 63 656 639 272.06 06h 02m 20/20

43 66 509 519 272.07 06h 02m 19/20

61 69 397 397 272.06 05h 51m 19/20

127 73 257 252 272.10 04h 39m 20/20

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 61

Table 4. The data corresponds to the number of solved instances divided by the total
number of experiments (which is 100). The last column reports the expected success
probability from our analysis, that is, the system in Eq. (7) is full-rank. In all the
experiments, we have k = n/2.

q n

16 24 32 40 1 − 1
q

7
2-LCE 0.81 0.84 0.81 0.86

0.86
ILCE 0.87 0.82 0.86 0.85

11
2-LCE 0.92 0.87 0.93 0.87

0.91
ILCE 0.91 0.93 0.89 0.90

17
2-LCE 0.95 0.95 0.93 0.92

0.94
ILCE 0.96 0.94 0.96 0.96

31
2-LCE 0.96 0.99 0.96 0.95

0.97
ILCE 0.94 0.96 0.98 0.98

Table 5 reports the success rate over 100 trials, for the available values of n.
One can note that our algorithm succeeds with probability approximately equal
to 1 − 1

q ≈ 0.86, matching the probability of our success condition, that is, the
coefficient matrix in Eq. (13) is full-rank (see Eq. (9)).

Table 5. The data corresponds to the number of solved self-dual instances divided by
the total number of experiments (which is 100). In all the experiments, we have q = 7
and k = n/2.

n 16 24 28 36 40 44

2-PCE 0.85 0.86 0.88 0.91 0.87 0.89

IPCE 0.85 0.83 0.88 0.84 0.90 0.86

6 Cryptographic Implications

To better illustrate the impact of the results from Sect. 4, we start by giving a
comparison between the estimated complexities of LCE according to [2], and the
complexity for 2-LCE and ILCE according to Sect. 4. We follow the parameter
sets from [2], ensuring 128, 192, and 256 security bits for LCE under the current
most efficient algorithms for solving it. On the other hand, the estimations from
Sect. 4 imply a security of 2-LCE and ILCE of around 60–70 security bits for the
same parameter sets (see Table 6).

On the Impact on ILCE-Based Linkable Signatures: In [4], the authors stated that
if the ILCE problem were proved to be safe, all the necessary linkable properties

62 A. Budroni et al.

Table 6. The column corresponding to LCE is according to the security analysis
from [2]. The column corresponding to 2-LCE & ILCE concerns the complexity of Algo-
rithm 1 (detailed in Sect. 4) with ω = log2(7). The presented numbers are given in
logarithm base two.

n k q LCE 2-LCE & ILCE

252 126 127 128 61

400 200 127 192 66

548 274 127 256 70

would be satisfied, thus building a secure linkable ring signature scheme. Never-
theless, as a direct consequence of Sect. 4.2, we have that any linkable signature
relying on the hardness of the ILCE problem is insecure when the conditions
from Sect. 4 are satisfied.

On the Impact on 2-LCE-Based Threshold Signatures: The authors of [7] intro-
duced the 2-LCE problem in the group action framework [7, Problem 3] and
emphasized constructions for 2-weakly pseudorandom scenarios. Specifically,
they proposed a threshold signature whose distributed key generation algorithm
is based on the conjectured 2-weakly pseudorandom group actions built on top
of the LCE and MCE problems. Nevertheless, as another consequence of Sect. 4,
we show that Definition 7 when instantiated with group action based on LCE
does not achieve the pseudorandomness property as we can use Algorithm 1 to
recover the secret, which breaks the unpredictability as well as the pseudoran-
domness of the group action. Therefore, the threshold signature instantiations
with LESS from [7, Sec. 5.3] become insecure when k = n/2.6

Other Implications: D’Alconzo and Di Scala have demonstrated that the LCE
and MCE group actions do not guarantee weak unpredictability and weak pseu-
dorandomness properties [19]. However, their findings do not apply when the
instances are given in systematic form. Our work addresses this gap by provid-
ing a more general framework that includes the systematic form case. In light
of this, Table 1 summarizes the primitives that, with instantiations from the
literature, can and cannot be constructed using these group actions.

What About the Implications to 2-MCE? Given that the secret matrices of 2-MCE
instances do not have the monomial structure, the algorithms from Sect. 4 do
not apply to solving 2-MCE instances. In particular, it is unclear how to perform
a similar guessing on the entries of the secret matrices.

Acknowledgments. Giuseppe D’Alconzo and Antonio J. Di Scala are members of
GNSAGA of INdAM and of CrypTO, the group of Cryptography and Number Theory
of the Politecnico di Torino.

6 The authors published an updated version of their protocol that does not rely on
2-LCE as a preprint after our attack was made public [6].

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 63

The work of Antonio J. Di Scala was partially supported by the QUBIP project
(https://www.qubip.eu), funded by the European Union under the Horizon Europe
framework programme [grant agreement no. 101119746].

This work was partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the European Union
- NextGenerationEU.

We would also like to thank Andrea Natale and Ricardo Pontaza for their insights
and discussions, which helped us improve the analysis of our techniques. Finally, we
thank the anonymous reviewers of a previous version of this manuscript who provided
us with helpful comments and recommendations.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai and Wang [26], pp. 411–439. https://doi.org/
10.1007/978-3-030-64834-3 14

2. Baldi, M., Beckwith, A.B.L., Biasse, J.F., Esser, A., Gaj, K., Mohajerani, K.,
Pelosi, G., Persichetti, E., Saarinen, M.J.O., Santini, P., Wallace, R.: LESS (version
1.1). Tech. rep., National Institute of Standards and Technology (2023), https://
www.less-project.com/

3. Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation Code Equivalence is Not
Harder Than Graph Isomorphism When Hulls Are Trivial. In: 2019 IEEE Interna-
tional Symposium on Information Theory (ISIT). pp. 2464–2468 (2019).https://
doi.org/10.1109/ISIT.2019.8849855

4. Barenghi, A., Biasse, J., Ngo, T., Persichetti, E., Santini, P.: Advanced signature
functionalities from the code equivalence problem. International Journal of Com-
puter Mathematics: Computer Systems Theory 7(2), 112–128 (2022). https://doi.
org/10.1080/23799927.2022.2048206

5. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational hard-
ness of the code equivalence problem in cryptography. Advances in Mathematics
of Communications 17(1), 23–55 (2023). https://doi.org/10.3934/amc.2022064

6. Battagliola, M., Borin, G., Meneghetti, A., Persichetti, E.: Cutting the GRASS:
Threshold GRoup Action Signature Schemes. Cryptology ePrint Archive, Paper
2023/859 (2023), https://eprint.iacr.org/2023/859

7. Battagliola, M., Borin, G., Meneghetti, A., Persichetti, E.: Cutting the grass:
Threshold group action signature schemes. In: Oswald, E. (ed.) Topics in Cryp-
tology – CT-RSA 2024. pp. 460–489. Springer Nature Switzerland, Cham (2024),
https://doi.org/10.1007/978-3-031-58868-6 18

8. Benčina, B., Budroni, A., Chi-Domı́nguez, J.J., Kulkarni, M.: Properties of Lat-
tice Isomorphism as a Cryptographic Group Action. In: International Conference
on Post-Quantum Cryptography. pp. 170–201. Springer (2024),https://doi.org/10.
1007/978-3-031-62743-9 6

9. Beullens, W.: Not enough LESS: An improved algorithm for solving code equiv-
alence problems over Fq. In: International Conference on Selected Areas in Cryp-
tography. pp. 387–403. Springer (2020),https://doi.org/10.1007/978-3-030-81652-
0 15

10. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai and Wang [26], pp.
464–492.https://doi.org/10.1007/978-3-030-64834-3 16

https://www.qubip.eu
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://www.less-project.com/
https://www.less-project.com/
https://doi.org/10.1109/ISIT.2019.8849855
https://doi.org/10.1109/ISIT.2019.8849855
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.3934/amc.2022064
https://eprint.iacr.org/2023/859
https://doi.org/10.1007/978-3-031-58868-6_18
https://doi.org/10.1007/978-3-031-62743-9_6
https://doi.org/10.1007/978-3-031-62743-9_6
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-64834-3_16

64 A. Budroni et al.

11. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: Code-based
signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT
20. LNCS, vol. 12174, pp. 45–65. Springer, Heidelberg (Jul 2020).https://doi.org/
10.1007/978-3-030-51938-4 3

12. Bos, J.W., Bronchain, O., Ducas, L., Fehr, S., Huang, Y.H., Pornin, T., Postleth-
waite, E.W., Prest, T., Pulles, L.N., van Woerden, W.: Hawk version 1.0
(june 1, 2023). Tech. rep., National Institute of Standards and Technology
(2023), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-
1/spec-files/hawk-spec-web.pdf

13. Budroni, A., Chi-Domı́nguez, J.J., D’Alconzo, G., Di Scala, A.J., Kulkarni, M.:
relaxed-lce-algorithms, available at https://github.com/JJChiDguez/relaxed-
lce-algorithms.git

14. Chavez-Saab, J., Santos, M.C.R., Feo, L.D., Eriksen, J.K., Hess, B., Kohel, D.,
Leroux, A., Longa, P., Meyer, M., Panny, L., Patranabis, S., Petit, C., Henŕıquez,
F.R., Schaeffler, S., Wesolowski, B.: Sqisign version 1.0 (june 1, 2023). Tech. rep.,
National Institute of Standards and Technology (2023), https://csrc.nist.gov/csrc/
media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf

15. Chou, T., Niederhagen, R., Persichetti, E., Ran, L., Hajatiana, T., Reijnders, K.,
Samardjiska, S., Trimoska, M.: MEDS (version 1.1). Tech. rep., National Institute
of Standards and Technology (2023), https://www.meds-pqc.org/

16. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your MEDS: digital signatures from matrix
code equivalence. In: Mrabet, N.E., Feo, L.D., Duquesne, S. (eds.) Progress in Cryp-
tology - AFRICACRYPT 2023 - 14th International Conference on Cryptology in
Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 14064, pp. 28–52. Springer (2023).https://doi.org/10.1007/978-3-031-
37679-5 2

17. Chou, T., Persichetti, E., Santini, P.: On Linear Equivalence, Canonical Forms, and
Digital Signatures. Cryptology ePrint Archive, Paper 2023/1533 (2023), https://
eprint.iacr.org/2023/1533

18. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

19. D’Alconzo, G., Di Scala, A.J.: Representations of group actions and their appli-
cations in cryptography. Finite Fields and Their Applications 99, 102476 (2024).
https://doi.org/10.1016/j.ffa.2024.102476

20. Gaborit, P., Otmani, A.: TABLES OF SELF-DUAL CODES, available at https://www.
unilim.fr/pages perso/philippe.gaborit/SD/

21. Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite
Fields and Their Applications 9(3), 372–394 (2003). https://doi.org/10.1016/
S1071-5797(03)00011-X

22. Joux, A.: MPC in the head for isomorphisms and group actions. Cryptology ePrint
Archive, Paper 2023/664 (2023), https://eprint.iacr.org/2023/664

23. Kazmi, R.A.: Cryptography from post-quantum assumptions. Cryptology ePrint
Archive, Report 2015/376 (2015), https://eprint.iacr.org/2015/376

24. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans-
actions on Information Theory 28(3), 496–511 (1982). https://doi.org/10.1109/
TIT.1982.1056498

25. Leroux, A., Roméas, M.: Updatable encryption from group actions. In: Interna-
tional Conference on Post-Quantum Cryptography. pp. 20–53. Springer (2024),
https://doi.org/10.1007/978-3-031-62746-0 2

https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/hawk-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/hawk-spec-web.pdf
https://github.com/JJChiDguez/relaxed-lce-algorithms.git
https://github.com/JJChiDguez/relaxed-lce-algorithms.git
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://www.meds-pqc.org/
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://eprint.iacr.org/2023/1533
https://eprint.iacr.org/2023/1533
https://eprint.iacr.org/2006/291
https://doi.org/10.1016/j.ffa.2024.102476
https://www.unilim.fr/pages_perso/philippe.gaborit/SD/
https://www.unilim.fr/pages_perso/philippe.gaborit/SD/
https://doi.org/10.1016/S1071-5797(03)00011-X
https://doi.org/10.1016/S1071-5797(03)00011-X
https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2015/376
https://doi.org/10.1109/TIT.1982.1056498
https://doi.org/10.1109/TIT.1982.1056498
https://doi.org/10.1007/978-3-031-62746-0_2

Don’t Use it Twice! Solving Relaxed Linear Equivalence Problems 65

26. Moriai, S., Wang, H. (eds.): ASIACRYPT 2020, Part II, LNCS, vol. 12492.
Springer, Heidelberg (Dec (2020)

27. National Institute of Standards and Technology: Post-Quantum Cryptogra-
phy Standardization. https://csrc.nist.gov/projects/post-quantum-cryptography
(2017)

28. National Institute of Standards and Technology: Post-quantum cryptography: Dig-
ital signature schemes. Round 1 Additional Signatures (2023), https://csrc.nist.
gov/Projects/pqc-dig-sig/round-1-additional-signatures

29. Persichetti, E., Randrianariso, T.H., Santini, P.: An attack on a non-interactive
key exchange from code equivalence. Tatra Mountains Mathematical Publications
82(2), 53–64 (2023). https://doi.org/10.2478/tmmp-2022-0018

30. Persichetti, E., Santini, P.: A New Formulation of the Linear Equivalence Problem
and Shorter LESS Signatures. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryp-
tology – ASIACRYPT 2023. pp. 351–378. Springer Nature Singapore, Singapore
(2023), https://doi.org/10.1007/978-981-99-8739-9 12

31. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Transactions on
Information Theory 43(5), 1602–1604 (1997). https://doi.org/10.1109/18.623157

32. Reijnders, K., Samardjiska, S., Trimoska, M.: Hardness Estimates of the Code
Equivalence Problem in the Rank Metric. Designs, Codes and Cryptography pp.
1–30 (01 2024). https://doi.org/10.1007/s10623-023-01338-x

33. Saeed, M.A.: Algebraic Approach for Code Equivalence. Ph.D. thesis, Nor-
mandie Université, University of Khartoum, (2017), Available at https://theses.
hal.science/tel-01678829v2

34. Santini, P., Baldi, M., Chiaraluce, F.: Computational hardness of the permuted
kernel and subcode equivalence problems. IEEE Transactions on Information The-
ory 70(3), 2254–2270 (2024). https://doi.org/10.1109/TIT.2023.3323068

35. Sendrier, N.: On the dimension of the hull. SIAM Journal on Discrete Mathematics
10(2), 282–293 (1997). https://doi.org/10.1137/S0895480195294027

36. Sendrier, N.: Finding the permutation between equivalent linear codes: the support
splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203
(2000). https://doi.org/10.1109/18.850662

37. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its applica-
tion to code-based cryptography. In: Gaborit, P. (ed.) Post-Quantum Cryptography
- 5th International Workshop, PQCrypto 2013. pp. 203–216. Springer Heidelberg
(June 2013), https://doi.org/10.1007/978-3-642-38616-9 14

38. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.8) (2023), https://www.sagemath.org

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.2478/tmmp-2022-0018
https://doi.org/10.1007/978-981-99-8739-9_12
https://doi.org/10.1109/18.623157
https://doi.org/10.1007/s10623-023-01338-x
https://theses.hal.science/tel-01678829v2
https://theses.hal.science/tel-01678829v2
https://doi.org/10.1109/TIT.2023.3323068
https://doi.org/10.1137/S0895480195294027
https://doi.org/10.1109/18.850662
https://doi.org/10.1007/978-3-642-38616-9_14
https://www.sagemath.org

Rare Structures in Tensor Graphs

Bermuda Triangles for Cryptosystems Based on the
Tensor Isomorphism Problem

Lars Ran(B) and Simona Samardjiska

Radboud University, Nijmegen, The Netherlands
{lran,simonas}@cs.ru.nl

Abstract. Recently, there has been a lot of interest in improving the
understanding of the practical hardness of the 3-Tensor Isomorphism (3-
TI) problem, which, given two 3-tensors, asks for an isometry between
the two. The current state-of-the-art for solving this problem is the alge-
braic algorithm of Ran et al. ’23 and the graph-theoretic algorithm of
Narayanan et al. ’24 that have both slightly reduced the security of
the signature schemes MEDS and ALTEQ, based on variants of the 3-
TI problem (Matrix Code Equivalence (MCE) and Alternating Trilinear
Form Equivalence (ATFE) respectively).

In this paper, we propose a new combined technique for solving the 3-
TI problem. Our algorithm, as typically done in graph-based algorithms,
looks for an invariant in the graphs of the isomorphic tensors that can
be used to recover the secret isometry. However, contrary to usual com-
binatorial approaches, our approach is purely algebraic. We model the
invariant as a system of non-linear equations and solve it. Using this
modelling we are able to find very rare invariant objects in the graphs
of the tensors—cycles of length 3 (triangles)—that exist with probabil-
ity approximately 1/q. For solving the system of non-linear equations
we use Gröbner-basis techniques adapted to tri-graded polynomial rings.
We analyze the algorithm theoretically, and we provide lower and upper
bounds on its complexity. We further provide experimental support for
our complexity claims. Finally, we describe two dedicated versions of our
algorithm tailored to the specifics of the MCE and the ATFE problems.

The implications of our algorithm are improved cryptanalysis of both
MEDS and ALTEQ for the cases when a triangle exists, i.e. in approxi-
mately 1/q of the cases. While for MEDS, we only marginally reduce the
security compared to previous work, for ALTEQ our results are much
more significant with at least 60 bits improvement compared to previous
work for all security levels. For Level I parameters, our attack is practi-
cal, and we are able to recover the secret key in only 1501 s. The code is
available for testing and verification of our results.

Keywords: matrix codes · trilinear form · algebraic cryptanalysis

This research has been supported by the Dutch government through the NWO grant
OCNW.M.21.193 (ALPaQCa).

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 66–96, 2025.
https://doi.org/10.1007/978-981-96-0944-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_3&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_3

Rare Structures in Tensor Graphs 67

1 Introduction

In recent years, all main standardization bodies around the world (NIST [31],
ISO [25], IETF [24]) have initiated processes for standardization of post-quantum
cryptography as the most solid solution for securing our digital world against the
quantum computer menace. Post-quantum cryptography is the common name
for cryptography based on hard mathematical problems believed to be hard even
for quantum computers. NIST’s standardization process already produced drafts
for standards—the winners Kyber [39], Dilithium [29], and SPHINCS+ [23] are
well on the way to be standardized under the names of ML-KEM, ML-DSA,
and SLH-DSA. The situation for Falcon [36] is not even close to this phase,
and we have only recently seen some activity towards a draft standard. On
top of this slow progress, NIST reopened the call for digital signatures in search
for alternatives not based on structured lattices that additionally have short
signatures and fast verification [1].

In the additional round that has been running for a year, we see an
abundance of UOV variants, MPC-in-the-head Fiat-Shamir signatures and
a few Fiat-Shamir signatures based on equivalence problems. In particular,
MEDS [12,13] and ALTEQ [8,40] are based on problems equivalent to the 3-
tensor isomorphism problem (TI) and LESS [3] on a problem at most as dif-
ficult as 3-TI [15]. Informally speaking, given two 3-tensors, the 3-TI problem
asks for the isomorphism, i.e. isometry, between them. The shape of the isome-
try depends on the specific types of tensors in question. In the case of MEDS,
these are general 3-tensors, and the isometry is given as a triple of the general
linear group. The objects in MEDS can also be seen as matrix codes and the
corresponding problem as Matrix Code Equivalence (MCE), which is actually the
definition used in the original description of MEDS. In the case of ALTEQ, the
objects can be seen as alternating trilinear forms (they can also be represented
as matrix codes of skew-symmetric matrices with additional structure) and the
isometry can be described using a single element of the general linear group.
In this form, the problem is known as Alternating Trilinear Form Equivalence
(ATFE).

Both of these schemes follow the well-known construction of GMW [20] first
defined for graph isomorphism. Interestingly, already in ’96, it was instanti-
ated by Patarin [33] for isomorphism of polynomials (Cubic-IP) whose version
for homogeneous polynomials QMLE is also polynomial time equivalent to 3-
TI, and thus also to MCE and ATFE [38]. Initially, the scheme did not get
too much attention because of signature size inefficiency, but this changed due
to an array of optimization techniques [3,6,7,16] that were developed before the
additional round submission deadline and resulted in the proposals of MEDS and
ALTEQ. The question of practical hardness of these problems became interest-
ing again, and the understanding of it significantly advanced as a result of these
two submissions.

Related Work. The first works analyzing problems from the TI class, con-
sidered the Isomorphism of polynomials. As one of the problems intrinsically

68 L. Ran and S. Samardjiska

related to the security of ad-hoc multivariate schemes, it was analyzed in sev-
eral works including [10,19,34]. An important observation from [19] is that the
inhomogeneous version of the problem can be solved heuristically in polynomial
time. Another one is that knowing a single (point, image) of the isomorphism is
enough to solve the homogeneous version of the problem. Indeed, this pair can
be used to transform the instance of the problem to an inhomogeneous one that
can then be solved efficiently. Bouillaguet et al. [10] gave a nice graph-theoretic
interpretation of this observation as a matching point between the graphs of
the two sets of polynomials which was utilized in a collision based algorithm.

The algorithm of [10] remained the best known for the TI class for a long
time (note that the term ‘TI class’ was coined only recently in [21]). With the
involvement of MEDS and ALTEQ in the NIST standardization process a signifi-
cant advancement in the understanding of the asymptotic and practical hardness
of the related underlying problems was made. We have witnessed basically the
development of two types of algorithms—graph-based and purely algebraic. We
say ‘purely algebraic’ because even the graph-based algorithms can employ an
algebraic step for collecting low-rank points. This is especially beneficial for the
case of large fields where the enumeration of points is expensive.

The graph-based algorithms build upon the earlier mentioned work of Bouil-
laguet et al. [10]. The first improvement was given by Beullens [5] for ATFE
and by Chou et al. [13] for MCE. In both cases, the improvement follows the
Leon’s algorithm for the Hamming metric [4,28]. Currently, the state-of-the-art
in graph-based algorithms is the work of Narayanan, Qiao and Tang [30], which
presents two different algorithms for MCE and ATFE. The algorithm for ATFE
is the one used for choosing the ALTEQ parameters from the specs. The one for
MCE uses graph-walking techniques and notably, breaks the MEDS parameters
submitted to NIST. As a result of this attack, very recently, at the NIST stan-
dardization conference [32], the MEDS team announced new parameters for all
security levels.

The basic algebraic modeling for the MCE problem is somewhat of a folk-
lore modeling known also from QMLE. The first non-trivial model was devel-
oped in [13] where coding theory relations were exploited. Later, in the MEDS
specs [12] the modeling was improved by exploiting that 3-tensors give rise to
3 different matrix codes. The same approach was used in [37] but adapted to
ATFE effectively reducing the security of the ALTEQ parameters. At the time
of writing, the ALTEQ team has not announced new parameters as a reaction
to the attack.

Our Contribution. In this work, we propose a new graph-based algebraic
technique for solving Tensor Isomorphism (TI) problems. In particular, we alge-
braically find a rare invariant in the graph of the two isomorphic tensors and use
it to find the isometry between the tensors. By an invariant, we mean a property
or an object that is a characteristic of the graph of the tensor, and that is not
destroyed by an isometric transformation, i.e. it is an invariant with respect to

Rare Structures in Tensor Graphs 69

isometries. Previous graph-theoretic algorithms use invariants like vertex degree
or long paths to recover the isometry, and they typically consist of two parts:

1. Searching for occurrences of the invariant property within the two graphs
of the two isomorphic tensors and forming two lists L1 and L2 containing
corresponding points.

2. Testing each pair (a, b) ∈ L1×L2 whether b is an image of a for some isometry.
If this is the case, we have found the isometry.

Typically, for this to work, the testing needs to be efficient, often, polynomial
of low degree. Since the graphs of the tensors are large, enumerating the entire
graphs is typically not feasible, so the algorithms rely on invariants that are
abundant and easy to find. Using a birthday argument, it can then be estimated
how big the lists need to be in order to have a high likelihood of finding a collision
in the lists.

The first contribution of our work is that we take a different approach to
finding invariants—namely, an algebraic one. We model the invariant as a sys-
tem of non-linear equations—once we solve the system, we get the invariant.
Using this modelling, we are able to find very rare, (almost) unique objects in
the entire graph that would otherwise take an exponential amount of time to
find by enumeration, which is particularly prohibitive in big fields. In contrast,
an algebraic approach is oblivious to the field size up to the cost of the arithmetic
which scales only logarithmically.

An important step in the approach is determining the right invariant object
to look for. Indeed, we need one that is rare and can be described using a
relatively small number of variables, but at the same time, we can impose enough
restrictions in the form of algebraic relations. We show that with probability
of approximately 1/q, where q is the field size, there exist in the graphs of the
tensors (almost) unique invariant objects. These objects are small cycles of length
3, i.e. triangles. This is reminiscent of Beullens’ attack [5] that exploits the fact
that with probability ≈ 1/q, there exists a unique point of rank 4 in the graph of
an alternating trilinear form in dimension n = 10.

Our second contribution is developing an algorithm for exploiting the exis-
tence of triangles. Our algorithm consists of two parts:

– First, we find the triangles in the graphs of the tensors. Once we have the
algebraic model of the triangles, we solve the system using Gröbner basis
techniques. The system we obtain has a specific structure and in order to solve
it we develop a solving algorithm and a machinery for estimating the costs
by extending known techniques for bigraded polynomial rings to trigraded
polynomial rings. We identify the syzygies characteristic of the modeling and
conjecture the Hilbert series. We are able to precisely estimate the first degree
fall of the system which we take as an indicator of the solving costs or lower
bound of our algorithm. As usual, we take the solving degree as an upper
bound.

– Using the found pair of matching triangles we find the secret isometry. For the
second part of the algorithm, we show that from the pair of triangles we can

70 L. Ran and S. Samardjiska

obtain linear relations in the algebraic modelling of [12,37] which are enough
to heuristically find the isometry in polynomial time. Thus, this second part
is significantly cheaper than the first part.

We have fully implemented the algorithm in MAGMA [9] which is publicly avail-
able at:

https://github.com/LarsMath/tensor-triangles

For the ATFE problem, our code can be used to demonstrate practicality. The
git further contains the MAGMA source code for all experiments which we per-
formed to verify our theoretical claims and confirm our conjectures. All the
numbers in this paper can be reproduced using the code in the git.

Our third contribution is applying our new algorithm to the two digital signa-
ture schemes MEDS and ALTEQ whose security relies on problems equivalent
to 3-TI. For the submitted parameter of MEDS we only marginally improve
upon [30] for keys exhibiting a triangle. Recently, the MEDS team increased the
parameters as a result of the attack from [30], which, due to the small difference,
are also secure from our attack. The results are shown in Table 6 and Table 7.

The impact for ALTEQ is much more dramatic as can be seen from Table 1.
We improve the best previous attack by at least ≈ 60 bits. Even more, we are
able to practically break Level I parameters (provided a triangle exists, which
happens with a probability of ≈ 1/q). The attack takes merely 1501 s. The
implementation of the full attack is also available in the git repository above.

Table 1. The log2 complexity for solving ATFE (with probability 1/q) in field opera-
tions. The parameters are taken from the ALTEQ specifications [8]

[8] [37] This work

n Specs Best previous Upper bound First degree fall practical

Level I 13 143 120 62 51 1501 s

Level III 20 219 165 108 96

Level V 25 276 203 141 128

Organization. The paper is organized as follows. Sect. 2 introduces the nec-
essary preliminaries including an analysis of the tri-graded XL that we will use
in our analysis. In Sect. 3 we recall the state-of-the-art algorithms for solving
the TI problem. Our new algorithm is developed in Sect. 4 in which we also
directly estimate the impact on MCE and MEDS. We apply our approach to
ATFE and ALTEQ in Sect. 5. We conclude with a discussion on potential gener-
alizations and future work in Sect. 6.

https://github.com/LarsMath/tensor-triangles

Rare Structures in Tensor Graphs 71

2 Preliminaries

Let us first establish some notation. We denote by Fq the finite field of q elements.
By GL(V) we denote the general linear group on the vector space V . The space
of n × m matrices over Fq are denoted by Mn,m(Fq). We use bold letters to
denote vectors a, c,x, . . . , and capital bold letters to denote matrices A,B,
The entries of a vector a are denoted by ai and the entries of a matrix A are
denoted by aij . We denote by e1, . . . , en the vectors of the canonical basis of
F

n
q . By P(V) we denote the projective space associated to a vector space V .

To distinguish between vectors from V and elements from P(V), we denote the
latter by v̂. All the vector spaces that we consider are finite-dimensional.

2.1 The Tensor Isomorphism Problem (TI) and Related Problems

Among cryptographic hardness assumptions based on equivalence, quite a few of
them can be stated as a TI problem and especially as a 3-TI problem. For exam-
ple, Matrix Code Equivalence (MCE), Alternating Trilinear Form Equivalence
(ATFE), Quadratic Maps Linear Equivalence (QMLE) and Cubic Isomorphism
of Polynomials (Cubic-IP) are all some form of 3-TI in disguise. In order to define
3-TI, we first need to define tensor isomorphisms.

Definition 1. Given vector spaces U, V , and W over a field Fq, a 3-tensor C
over U, V,W is a trilinear map:

C : U × V × W → Fq.

We denote the space of tensors over U, V,W as (U ⊗ V ⊗ W)∗.

Note that, by tri-linearity, a 3-tensor C is completely determined by its values
on the basis vectors of U, V,W , i.e. by C(eU

i , eV
j , eW

k) where eU
i , 1 ≤ i ≤ dim(U),

eV
j , 1 ≤ j ≤ dim(V), and eW

k , 1 ≤ k ≤ dim(W) are basis vectors of U, V and W
respectively. With this definition, we are ready to define the 3-TI problem.

Problem 1 (3-TI). Let U, V , and W be vector spaces over a field Fq and let
C,D ∈ (U ⊗ V ⊗ W)∗ be two given 3-tensors. The 3-TI problem asks to find, if
any exists, a triplet of matrices A,B,C ∈ GL(U) × GL(V) × GL(W) such that:

C(Au,Bv,Cw) = D(u,v,w) ∀ u ∈ U,v ∈ V,w ∈ W.

Let us compare this to MCE.

Problem 2 (MCE). Let n,m, k ≥ 2. Given matrices C1, . . . , Ck,D1, . . . , Dk ∈
Mn,m(Fq) the MCE problem asks to find, if any exists, a pair of matrices A,B ∈
GL(Fn

q) × GL(Fm
q) such that:

〈A�C1B, . . . ,A�CkB〉 = 〈D1, . . . , Dk〉.

72 L. Ran and S. Samardjiska

Note the similarity between 3-TI and MCE. In fact, these problems are equiva-
lent [22] and C in 3-TI is exactly the change of basis from 〈A�C1B, . . . ,A�CkB〉
to 〈D1, . . . , Dk〉. Other variants of 3-TI can be obtained by limiting the space of
tensors (U ⊗ V ⊗ W)∗. For example, taking U = V = W , we can impose that
the tensors from (V ⊗ V ⊗ V)∗ must be alternating, i.e. we ask:

C(v,v,w) = C(v,w,v) = C(w,v,v) = 0 for all v,w ∈ V.

We denote the space of tensors that satisfy this constraint by (
∧3

V)∗. Now we
can state the ATFE problem similarly as 3-TI:

Problem 3 (ATFE). Let V be a vector space over a field Fq and let φ, ψ ∈ (
∧3

V)∗

be two given alternating 3-tensors. The ATFE problem asks to find, if it exists,
a matrix A ∈ GL(V) such that:

φ(Au,Av,Aw) = ψ(u,v,w) ∀ u,v,w ∈ V.

An immediate consequence of the alternating property is that compared to 3-
TI we now need A = B = C. The other two problems, QMLE and Cubic-IP,
come from considering partly symmetric and fully symmetric 3-tensors.

Remark 1. The two signature schemes MEDS and ALTEQ do not assume any
further structure on the codes (alternating forms) and isometries they use. Hence,
we too, will be interested in unstructured (random) variants of these problems.

2.2 Graphs Associated with Tensors

A strong invariant of a 3-tensor is the graph associated with it. The points of
this graph are given by elements in the disjoint union of the projective vector
spaces. Its edges consist of the pairs of points on which the tensor completely
vanishes. To define this we will use the following shorthand notation. Given
a tensor C : U × V × W → Fq, the statement C(u,v,−) = 0 denotes that
C(u,v,x) = 0 for all x ∈ W . We define C(u,−,w) = 0 and C(−,v,w) = 0
similarly. Note that the statement C(u,v,−) = 0 is independent of scaling of u
and v, so we will use the notation C(û, v̂,−) = 0 as well.

Definition 2. Let C : U × V × W → Fq be a tensor. The graph G(C) = (VC , EC)
is defined as follows:

VC = P(U) � P(V) � P(W)
EC = {(û, v̂) ∈ P(U) × P(V) | C(û, v̂,−) = 0}

∪ {(û, ŵ) ∈ P(U) × P(W) | C(û,−, ŵ) = 0}
∪ {(v̂, ŵ) ∈ P(V) × P(W) | C(−, v̂, ŵ) = 0}

From the definition, we can immediately see that these graphs are tripartite with
vertex partition (P(U),P(V),P(W)). A particularly useful feature about these
associated graphs is that this construction is functorial. In other words, suppose

Rare Structures in Tensor Graphs 73

we have two 3-tensors C : U × V × W → Fq and D : U ′ × V ′ × W ′ → Fq and
a transformation A : U ′ → U , B : V ′ → V , C : W ′ → W between them, such
that:

D = C ◦ (A,B,C)

Then we obtain a map on graphs by applying the matrices A,B, and C on the
vertices. It is then easy to check that this map indeed maps edges to edges. The
map (A,B,C) : G(D) → G(C) is given by:

(A,B,C) : v �→

⎧
⎪⎨

⎪⎩

Av if v ∈ P(V ′)
Bv if v ∈ P(W ′)
Cv if v ∈ P(U ′).

The important takeaway here is that isomorphisms of 3-tensors, elements of
GL(U) × GL(V) × GL(W), induce isomorphisms on the associated graphs.

Graphs Associated with Structured Tensors. When there is a structure
present in the tensor, for example, (anti-)symmetry, then the above construction
has a lot of superfluous points and edges. For example, consider the alternating
trilinear form φ : V × V × V → Fq, and two elements v,v′ ∈ P(V) such that
φ(v,v′,−) = 0. Then by anti-symmetry we also have φ(v,−,v′) = 0, and simi-
larly for any other permutation of v,v′, and −. In other words, without labels,
it is impossible to distinguish whether v lies in the first, second or third term of
P(V)�P(V)�P(V). More precisely, there are 6 graph automorphisms permuting
the terms in the disjoint union. Therefore, instead, we consider the vertex set of
the graph to be Vφ = P(V). For other types of symmetries, we consider similar
quotient graphs.

2.3 Gröbner Basis Algorithms

To obtain solutions to the polynomial systems we encounter below, we will use
Gröbner basis algorithms [2,11,14,18,26,27]. These algorithms come in all kinds
of variants, but they all share the same underlying idea. The goal is to gather
enough algebraic combinations of the initial polynomials such that linear combi-
nations of these reduce the problem to a linear system. Generally, it is hard to say
how many algebraic combinations one needs to do this. However, heuristically,
we can make some approximations based on assumptions about (structured)
random systems.

Macaulay Matrices. Let us consider a polynomial system F = (f1, . . . , fm) ⊂
Fq[x1, . . . , xn] = R. We are interested in the spaces of algebraic combinations of
F up to a certain degree:

I≤d := span
Fq

{u · f | u ∈ R, f ∈ F , deg(uf) ≤ d}.

74 L. Ran and S. Samardjiska

If I≤d contains n linear independent linear elements, we reduced our problem
to a linear system. If it contains the element 1R then we know that our system
does not have a solution.

Algorithmically, to find the solution, we build the Macaulay matrix Md of
degree d. This matrix has its columns labeled by the monomials up to degree d
in R. The rows are given by the products ufi where deg(u) ≤ d − deg(f). The
entry at (ufi,m) is then the coefficient of the monomial m in the product ufi.

Note that this is generally a sparse matrix, as multiplying with a monomial
does not change the amount of terms. Also note that the rowspace of Md is
isomorphic to I≤d. Therefore, to check that I≤d contains linear relations we can
echolonize Md and see if we end up with rows having only linear monomials.

The question now is how high d needs to be for this to happen. To estimate
this we need to assume that we can exactly predict the amount of linear depen-
dencies, called syzygies, among the rows of Md. Even though this assumption
might look strong, in practice, for random systems, the rank of Md neatly fol-
lows a pattern for different n,m, d. Then, we will obtain a solution exactly when
we predict Md to be of corank 1. We will call the degree in which this happens
the solving degree dsolv. To then extract the linear system we need to echelonize
this matrix which has

(
n+dsolv

dsolv

)
columns. Since this matrix is sparse we can use

the Block-Wiedemann algorithm to obtain a complexity of:

ρ ·
(

n + dsolv

dsolv

)2

where ρ is the density of the matrix and is equal to the maximum number of
terms among the polynomials in F .

Degree Falls. Instead of choosing d such that we can completely linearize, some
algorithms, like F4 and MutantXL, take a different strategy. In these cases we
are looking for degree falls which happen when the vector space

Id := span
Fq

{u · f | u ∈ R, f ∈ F , deg(uf) = d}
has elements of degree smaller than d. The degree at which this happens is
called the first fall degree dff . Note that this can only happen in inhomogeneous
systems. Then, we can extend the Macaulay matrix in degree dff by adding
these elements multiplied by linear monomials. In this way, the system might be
solved in lower degree.

The complexity analysis of these algorithms and how they behave after find-
ing degree falls is much more complex. Still, it is not uncommon to take the
complexity of finding degree falls, ρ · (

n+dff −1
dff

)2
, as an estimator for the com-

plexity of solving the system.

Tri-graded XL. Due to the structure of the polynomial systems that we will
consider, a tri-graded polynomial ring is often a better fit. These are rings

R = Fq[x1, . . . , xn, y1, . . . , ym, z1, . . . , zk]

Rare Structures in Tensor Graphs 75

where the grading is determined by the degree in each of the three variables
sets {x1, . . . , xn}, {y1, . . . , ym}, {z1, . . . , zk}. In this ring, we index monomials by
α ∈ Z

n
≥0, β ∈ Z

m
≥0, γ ∈ Z

k
≥0 and we use the following notation:

xαyβzγ =
n∏

i=1

xαi
i

m∏

i=1

yβi

i

k∏

i=1

zγi

i

for a monomial of tri-degree (
∑

i αi,
∑

i βi,
∑

i γi).
A polynomial is tri-homogeneous of tri-degree (dx, dy, dz) if all its terms share

the same tri-degree. As an example, a tri-homogeneous polynomial in degree
(1, 1, 1) is exactly a trilinear form! We sometimes drop the tri prefix and use
homogeneous and degree if it is clear from the context what is meant.

Given two tri-degrees d = (dx, dy, dz) and d′ = (d′
x, d′

y, d′
z), we define the

partial order d � d′ if (dx ≥ dx) ∧ (dy ≥ d′
y) ∧ (dz ≥ d′

z). If, among the degrees
of the monomials of a polynomial f , there is a greatest tri-degree, then we call
this degree the top degree of f .

Just as for singly graded systems, we can define

I�d := span
Fq

{u · f | u ∈ R, f ∈ F , deg(uf) � d}

and corresponding Macaulay matrices. Then, instead of a single lowest degree for
which this is linearizable, we may have multiple “lowest” tri-degrees. Let us call
a tri-degree admissible if I�d contains n + m + k linear relations or the element
1. Let us denote by Dsolv the set of all admissible tri-degrees for F . Then the
complexity of linearizing can be given by:

ρ · min
d∈Dsolv

((
n + dx

dx

)(
m + dy

dy

)(
k + dz

dz

))2

.

Just as before we can define the first fall degree. However, since, again, there
might be multiple tri-degrees for which this is the case, we write the complexity
as:

ρ · min
d∈Dff

((
n + dx − 1

dx

)(
m + dy − 1

dy

)(
k + dz − 1

dz

))2

.

Remark 2. Estimating the impact of degree falls in tri-graded systems is even
more complex than in singly-graded systems. The resulting polynomials do not
have a unique top degree anymore hence usual counting strategies fail. However,
it is still clear that degree falls can only speed up computation.

3 Algorithms for Solving TI

The algorithms against TI build upon relatively old algorithms against the Iso-
morphism of polynomials [10,35]. Here we review the state-of-the-art.

76 L. Ran and S. Samardjiska

3.1 Graph-Theoretic Algorithm of Narayanan Et Al. [30]

The work of Narayanan, Qiao and Tang [30] builds on top of the works of [5,10]
and presents two different algorithms for MCE and ATFE. On a high level, both
algorithms follow the structure of the graph-theoretic algorithm of [10] and can
be described as follows:

– Form the graphs of the two isomorphic tensors C and D (matrix codes or
alternating trilinear forms) as described in Sect. 2.2.

– Collect points from the two graphs into two lists LC and LD such that the
bilinear forms obtained by fixing the tensor at the given point is of specific
rank R. Due to the birthday paradox, the size of the lists needs to be only a
square root of all points satisfying the rank R property.

– For each element in LC and LD apply some sort of distinguishing function f
constructed in such a way that f(a) = f(b) only if (a, b) is a collision pair for
the unknown isometry

– Use the collision pair (a, b) for which f(a) = f(b) to recover the isometry

The difference from [10] which is also the main novelty of this approach, is
the formulation of the distinguishing function. Previously this function was just
solving an inhomogeneous QMLE for every possible pair in LC × LD. With this
approach, there is no need to test each pair, but one can make full use of the
birthday paradox and just look for a collision in the lists.

Besides this novel global invariant (as called in [30]), there are also some new
interesting techniques introduced. For example in the algorithm for MCE, in
order to construct the distinguishing function, the authors use a graph walking
technique to efficiently find a path of length 3n. Until this work, it was an open
question of how to use graph walking techniques to solve MCE. Previously, graph
walking has been efficiently used against ATFE by Beullens in [5].

In some sense, looking for distinguishing cycles in the two graphs was an
inspiration for our work. However, we take one more shortcut, and look for a
unique cycle in the two graphs.

3.2 Purely Algebraic Algorithms for Solving TI

The described graph-theoretic algorithms in the previous subsection crucially
rely on algebraic techniques. For example, the inhomogeneous efficient solver
is purely algebraic, and most likely, can’t be replaced by an equally efficient
combinatorial procedure. Also, the enumeration part of low-rank codewords can
be done much more efficiently by solving the MinRank problem algebraically.

There are, however, also purely algebraic approaches developed in [12,13] for
MCE and [8,37,40] for the related ATFE. Here the solution is modelled as part
of a solution to a system of equations.

Rare Structures in Tensor Graphs 77

Taking the coefficients of the matrices A,A′, B,B′, and C,C′ as unknowns,
we can build the following system of equations:

⎧
⎪⎨

⎪⎩

AA′ = In = A′A
BB′ = Im = B′B
CC′ = Ik = C′C

(1)

⎧
⎪⎨

⎪⎩

C(Ax,By, z) = D(x,y,C′z)
C(Ax,y,Cz) = D(x,B′y, z)
C(x,By,Cz) = D(A′x,y, z)

∀ x ∈ F
n
q ,y ∈ F

m
q , z ∈ F

k
q (2)

⎧
⎪⎨

⎪⎩

C(Ax,y, z) = D(x,B′y,C′z)
C(x,By, z) = D(A′x,y,C′z)
C(x,y,Cz) = D(A′x,B′y, z)

∀ x ∈ F
n
q ,y ∈ F

m
q , z ∈ F

k
q (3)

This is an immense quadratic system of 6nmk + 2(n2 + m2 + k2) equations in
2(n2 + m2 + k2) variables. However, there is a lot of superfluity in this system.
By construction, the syzygy module in degree 3 is quite big.

Solving the system “as is” has a high complexity, the number one reason
being that it has a huge amount of variables. So instead, the current best purely
algebraic algorithm from [12] looks at a subsystem generated as follows.

Consider the equations in (2). Here the left-hand side is quadratic in A,B,C
and the right-hand side is linear in A′,B′,C′. This means we can take lin-
ear combinations to eliminate A′,B′,C′. Then we end up with a system of
3nmk − (n2 + m2 + k2) equations, quadratic in n2 + m2 + k2 variables, A,B,C.
These equations are tri-homogeneous and hence the following Hilbert series is
conjectured:

H(r, s, t) =
(1 − rs)nmk−k2

(1 − rt)nmk−m2
(1 − st)nmk−n2

(1 − rst)−α

(1 − r)n2(1 − s)m2(1 − t)k2 .

Here α = 2nmk − n2 − m2 − k2 + 1 is the dimension of the syzygy module in
tri-degree (1, 1, 1).

Specializing to ATFE. For ATFE a similar system is obtained in the unknown
A and A′: ⎧

⎪⎨

⎪⎩

AA′ = In = A′A
φ(Ax,Ay, z) = ψ(x,y,A′z)
φ(Ax,y, z) = ψ(x,A′y,A′z)

∀ x ∈ F
n
q

This is a system of 2n
(
n
2

)
+ 2n2 quadratic equations in 2n2 variables. However,

the same trick of eliminating A′ can be applied to obtain a system of n
((

n
2

) − n
)

quadratic equations in n2 variables. The following Hilbert series is conjectured
for this system:

H(t) =
(1 − t2)n((n

2)−n)(1 − t3)−β

(1 − t)n2 .

78 L. Ran and S. Samardjiska

Here β = n
((

n
2

) − n
) − (

n
3

)
+ 1 is the dimension of the syzygy module in degree

3. This Hilbert series was experimentally verified for small n and d in [37] and
seems to hold for n not too small.

4 A Hybrid Algorithm for Solving TI

As described in Sect. 2 and seen in Sect. 3 a strong invariant of a tensor is its
graph. Most notably, any isometry between two tensors maps substructures in
one graph to substructures in the second that have some common property.
These can be, for example, points of a certain degree or an edge between two
points of certain degrees. Identifying the substructures that are mapped one
onto another (we will call them “collisions”) can be turned into an algorithm for
finding the isometry.

However, two costly factors arise in such algorithms. The first is finding all
(or a fraction of) such substructures in the graphs and the second is testing
for collisions in some enumerative way. This generally involves a balancing act.
Often, substructures of which there are few are hard to find and substructures
that are easy to find are far from unique. The latter case becomes particularly
prohibitive for big fields, since usually, the amount of substructures is highly
dependent on the field size. So even though finding is easy, enumerating all
candidates becomes the bottleneck. In contrast, when a substructure appears
only once in a graph, finding it in both graphs immediately leads to a collision.

Our attack follows this general approach, but instead of exploiting abundant
substructures, we strive to find such that are rare or unique in a graph. While
we were not able to find a substructure that occurs exactly once, we found
a substructure that occurs exactly once with sufficiently large probability of
≈ 1/q—we call this substructure a triangle. Then, if a triangle appears in the
graph of a specific tensor, by invariance, it occurs in every graph of tensors in
its orbit. Also, given that a triangle consists of three points, whenever we find
such triangles, we get a three-point collision. As we will see, this three-point
collision is enough to solve the corresponding TI problem efficiently.

4.1 Triangles

The rare structure that we consider is a triplet of points that form a triangle in
the graph associated to the tensor. To define it formally, denote the set of all
triplets of points in the graph by T(U, V,W) = P(U) × P(V) × P(W). We have:

Definition 3. Let C : U ×V ×W → Fq be a 3-tensor. We call a triplet of points
(û, v̂, ŵ) ∈ T(U, V,W) a triangle for C if it holds that:

C(û, v̂,−) = 0, C(û,−, ŵ) = 0, C(−, v̂, ŵ) = 0.

Initially, it might seem that such a simple structure should be abundant in the
graphs. However, it turns out that this is not the case at all.

Rare Structures in Tensor Graphs 79

Lemma 1. Let U , V and W be vector spaces over Fq. Then the expectation
value for the amount of triangles is equal to:

EC∈(U⊗V ⊗W)∗(|{T ∈ T(U, V,W) | T is a triangle for C}|) = q−1.

Proof. We follow a proof technique similar to [5]. We first find the probability
that an arbitrary triplet (û, v̂, ŵ) ∈ T(U, V,W) is a triangle, then, we use linear-
ity of the expectation value to get the desired result. Given a point T = (û, v̂, ŵ)
we pick a non-zero representative (u,v,w) and extend it to a base. We obtain
U = 〈u,u2, . . . ,un〉, V = 〈v,v2, . . . ,vm〉, and W = 〈w,w2, . . . ,wk〉.

When we consider a tensor C with respect to this basis we obtain a tensor
C′. If we pick C uniformly at random then C′ will be uniformly random as well.
Then, the condition that T is a triangle for C is equivalent to the condition that
(eU

1 , eV
1 , eW

1) is a triangle for C′. This latter condition can be reformulated as

C(eU
i1 , e

V
1 , eW

1) = C(eU
1 , eV

i2 , e
W
1) = C(eU

1 , eV
1 , eW

i3) = 0

for all 1 ≤ i1 ≤ n, 1 ≤ i2 ≤ m, 1 ≤ i3 ≤ k. See Fig. 1 for a depiction. Since these
values are all independently uniform in Fq we obtain that:

Fig. 1. For a 3-tensor C, the coefficients in the light gray positions should be zero in
order for (eU

1 , eV
1 , eW

1) to be a triangle.

PC∈(U⊗V ⊗W)∗(T is a triangle for C) = q−(n+m+k−2).

Now by simple linearity of the expectation value we obtain:

EC∈(U⊗V ⊗W)∗(|{T ∈ T(U, V,W) | T is a triangle for C}|)
= PC∈(U⊗V ⊗W)∗,T∈T(U,V,W)(T is a triangle) · |T(U, V,W)|
= q−(n+m+k−2) · qn−1 · qm−1 · qk−1

= q−1.

Of course, the expectation value does not directly give us the probability that a
triangle occurs, let alone a unique one. Therefore, we also show a lower bound
for this probability.

80 L. Ran and S. Samardjiska

Corollary 1. Given vector spaces U , V , and W over Fq of dimensions n, m,
and k such that n ≥ m ≥ k ≥ 3 and m + k − 2 ≥ n. Then:

PC∈(U⊗V ⊗W)∗(C has a unique triangle) ≥ q−1 − O(q−2).

Proof. See AppendixA.1.

To support this result we did a Monte-Carlo simulation of the amount of tensors
with (unique) triangles using MAGMA’s VarietySize, the results can be found
in Table 2. For practical reasons, triangles of which the first u,v, or w coordinate
is 0 were not found, so actual numbers might be higher.

Table 2. Fraction of tensors where a triangle was found on 10000 experiments. We
also report the times the triangle was unique.

q (n, m, k) Predicted Found Unique

13

(5,5,5) 769 739 713

(6,5,5) 769 755 725

(6,6,6) 769 692 676

31

(5,5,5) 323 301 196

(6,5,5) 323 306 303

(6,6,6) 323 298 290

251

(5,5,5) 40 46 46

(6,5,5) 40 33 33

(6,6,6) 40 43 43

Remark 3. The constraint m + k − 2 ≥ n is not limiting. The probability that
a tensors graph has any (V,W) edge, which is necessary for a triangle, is upper
bounded by q(m−1)+(k−1)−n. So if instead m + k − 1 ≤ n, this probability is
upper bounded by q−1. If such an edge would exist it would serve as a better
invariant of the tensor than a triangle. Even more, it would be easier to find.

4.2 Finding Triangles

A major reason why previous algorithms do not exploit rare or unique graph
structures is the difficulty of finding them. Searching the whole graph is pro-
hibitively expensive and birthday-based techniques can not be used since the
structures are extremely rare.

To overcome this difficulty, we propose to look for these algebraically. For
the triangles we defined above, the problem can be modeled as a system of
quadratic equations in R = Fq[x2, . . . , xn, y2, . . . , ym, z2, . . . , zk]. Let us denote

Rare Structures in Tensor Graphs 81

x = [1, x2, . . . , xn], y = [1, y2, . . . , ym] and z = [1, z2, . . . , zk]. Indeed, we can
consider the following system:

⎧
⎪⎨

⎪⎩

C(x,y, eW
i) = 0 for 1 ≤ i ≤ k

C(x, eV
i , z) = 0 for 1 ≤ i ≤ m

C(eU
i ,y, z) = 0 for 1 ≤ i ≤ n.

Then, if we find a solution to the system, the point (x,y, z) is a representative
of the triangle. The attentive reader might find that we are not able to find all
triangles in this way. Whenever the first coordinate of u,v, or w is zero. However,
we simply ignore this issue, since one can rerandomize by applying a random
transformation to the given tensor.

Looking at our system we see that we found n + m + k quadratic equations
in n + m + k − 3 variables. We can now go and use our favorite system-solving
technique to find all such solutions. The technique that we will use to compute
the complexity is tri-homogeneous XL, see Sect. 2.3.

We consider the system in the following three sets of variables {x2, . . . , xn},
{y2, . . . , ym}, and {z2, . . . , zk}. Then the system described above consists of n
equations in each of the tri-degrees (1, 1, 0), (1, 0, 1), and (0, 1, 1). Furthermore,
if we set x1 = y1 = z1 = 1 we have the following 2 syzygies in tri-degree (1, 1, 1):

k∑

i=1

C(x,y, eU
i) · zi =

m∑

i=1

C(x, eW
i , z) · yi =

n∑

i=1

C(eV
i ,y, z) · xi.

Therefore, we conjecture the following Hilbert series:

H(r, s, t) =
(1 − rs)n(1 − rt)n(1 − st)n(1 − rst)−2

(1 − r)n−1(1 − s)m−1(1 − t)k−1
.

We confirmed the predicted number of syzygies in all tri-degrees (dx, dy, dz) for
several n,m, k. For simplicity, we only checked parameters that are in use in
cryptography, so n = m = k and n = m+1 = k+1. For the (8, 7, 7) case we find
some wrong predictions. This could be due to extra structure for small n. The
results are summarized in Table 3. In Table 4, one can find the results of running
MAGMA’s GroebnerBasis on the described system for some small values of
n,m, and k. As we can see the solving degree neatly matches the predicted first
fall degree, indicating that this is a valid estimator for the complexity. Note that
GroebnerBasis does not take the specialized tri-graded structure into account.
Hence, specialized implementations, like some form of Tri-XL, could speed up
computation even more.

4.3 From Matching Triangles to Isometry

Now let us see what we can do with such a triangle. Recall our problem state-
ment, we need to find the isometry (A,B,C) : C → D. As stated before, if C
(and thus D) has no triangle, then this attack is impossible. If the triangles do

82 L. Ran and S. Samardjiska

Table 3. These indicate the experimental nullities in each tri-degree. All values that
were predicted wrong are formatted (predicted/actual).

Parameters Tri-degree

(n, m, k) (1, 1, 1) (2, 1, 1) (3, 1, 1) (2, 2, 1) (4, 1, 1) (3, 2, 1) (2, 2, 2)

(7,7,7) 2 61 336 772 1141 — —

(8,8,8) 2 78 504 1174 1960 6356 11601

(9,9,9) 2 97 720 1694 3156 10512 DNF

(8,7,7) 2 63 399 882 1540 4599/4620 7969/8064

(9,8,8) 2 80 584 1316 2544 7896 13907

Table 4. Finding triangles in 3-TI.

Actual Predicted

(n, m, k) Time Memory dsolv dsolv dff

(6,6,6) 4 s 32 MB 5 (4,3,1) (3,1,1)

(7,7,7) 163 s 288 MB 6 (6,3,1) (3,2,1)

(8,8,8) 7 h 10 GB 7 (6,4,1) (3,3,1)

(7,6,6) 7 s 64 MB 5 (4,3,1) (3,1,1)

(8,7,7) 450 s 626 MB 6 (6,3,1) (3,2,1)

exist but are not unique, then we iterate over the combinations. So let us assume
that C and D have unique triangles TC and TD. By applying suitable basis trans-
formations we can transform these triangles to lie in any position. Therefore,
without loss of generality we assume TC = (eU

1 , eV
1 , eW

1) = TD. Afterwards we
just compose the solution with the inverse of the chosen basis transformations.

Since the isometry maps TC to TD, we have that A,B, and C have the
following form:

A =
[

λ A12

0(n−1)×1 A22

]

B =
[

μ B12

0(m−1)×1 B22

]

C =
[

ν C12

0(k−1)×1 C22

]

(4)

For the inverses of the matrices, we have the form

A′ = λ−1

[
1 A12A−1

22

0 λA−1
22

]

B′ = μ−1

[
1 B12B−1

22

0 μB−1
22

]

C′ = ν−1

[
1 C12C−1

22

0 νC−1
22

]

. (5)

Here λ, μ, ν are some scalars in Fq that come from the fact that our triangles
live in projective space. However, we can freely rescale B and C by scaling A
accordingly, so without loss of generality we assume μ = ν = 1. Under these
assumptions, we get that the triangle vectors are eigenvectors of the isometry
matrices, more concretely, Ae1 = λe1, Be1 = e1, Ce1 = e1. Plugging these
relations into the equations in (2) and (3), part of them become linear, i.e. we

Rare Structures in Tensor Graphs 83

obtain:
{

C(Ax, eV
1 , z) = D(x, eV

1 ,C′z)
C(x, eV

1 ,Cz) = D(A′x, eV
1 , z)

∀ x ∈ F
n
q , z ∈ F

k
q (6)

{
C(Ax,y, eW

1) = D(x,B′y, eW
1)

C(x,By, eW
1) = D(A′x,y, eW

1)
∀ x ∈ F

n
q ,y ∈ F

m
q (7)

Notice that these correspond exactly to the top and front slices of the tensor.
Furthermore, we also get the following, almost linear, equations (recall that λ is
unknown):

{
C(λeU

1 ,By, z) = D(eU
1 ,y,C′z)

C(λeU
1 ,y,Cz) = D(eU

1 ,B′y, z)
∀ y ∈ F

m
q , z ∈ F

k
q (8)

Since the matrices C(x, eV
1 , z) are not full rank by construction, we know that

not all the linear relations in Eq. (6) are independent. Similarly, for the Eq. (7) and
Eq. (8). As we can see, a big chunk of the variables can already be eliminated by lin-
ear equations. On top of that, there is a substantial amount of quadratic equations
that the solution has to satisfy. Instead of analyzing whether there are any alge-
braic dependencies between those linear and quadratic equations, we went with
a more practical approach and ran a Gröbner basis algorithm on the resulting
system. For all experiments, the system terminated in degree 2 so we conjecture
that this is the solving degree for such systems. This would lead to a complexity
of O(

(
n2+1

2

)ω
) = O(n4ω). Here ω is the linear algebra constant. In any case, as

can be seen from the experimental results in Table 5, this part of the algorithm is
practical for all values of n for which we can hope to find a triangle.

Table 5. Running times for the post-collision algorithm. We also report the linear
independent equations in the system presented in Eqs. (6), (7) and (8).

(n, m, k) Variables Linear equations Quadratic equations Time dsolv

(8,8,8) 238 196 2802 2 s 2

(14,14,14) 1094 674 15962 245 s 2

(20,20,20) 2282 1444 47042 3 h 2

(9,8,8) 370 224 3156 68 s 2

(16,15,15) 1322 840 13566 536 s 2

(21,20,20) 2362 1520 49364 3 h 2

4.4 Putting It All Together

As we saw above, the cost of finding the triangle is the most dominating. If we
take into account the search for an attack then we get the following complexity
for the original MEDS parameters (Table 6):

84 L. Ran and S. Samardjiska

Table 6. The log2 complexity estimates for the original MEDS parameters. All com-
plexities are in field operations. We use the solving degree as an estimator here.

[12] [30] This work

n q Specs Best previous incl. search prob. 1/q

Level I 14 4093 147 95 102 90

Level III 22 4093 217 145 155 143

Level V 30 2039 276 180 208 197

Recently, as a result of the attack from [30], the MEDS team updated the
parameters [32]. In Table 7, we show the complexity results for the new parame-
ters. As we can see, the new parameters are secure against this attack, even up
to the first fall degree.

Table 7. Complexity estimations log2 for newest MEDS parameter set. As [30] was
only shown to work for balanced parameters we estimate its complexity for the nearest
balanced parameters.

First fall degree Solving degree [30]

n m k q dff compl. dsolv compl. compl.

Level I 26 25 25 4093 (11, 18, 1) 151 (13, 20, 1) 165 164*

Level III 35 34 34 4093 (16, 25, 1) 210 (18, 27, 1) 224 219*

Level V 45 44 44 4093 (23, 31, 1) 275 (25, 33, 1) 289 280*

5 Application to ATFE

Having seen the above algorithm, a natural question is to ask whether it can also
be applied to more structured tensors, like alternating tensors. It turns out, that
indeed it does, and that after taking care of some technicalities, we can even use
the extra structure in our advantage.

First, let us try the same as before, but now in the reduced graph. We look
at triplets of points (v̂1, v̂2, v̂3) ∈ T(V, V, V) for which

φ(v̂1, v̂2,−) = φ(v̂1,−, v̂3) = φ(−, v̂2, v̂3) = 0.

Now by anti-symmetry and tri-linearity this means that φ(v̂1, v̂2 + v̂3,−) = 0
and also φ(v̂1, v̂1,−) = 0. In other words, let ŵ1, ŵ2, ŵ3 be any linear combina-
tions of v̂1, v̂2, v̂3, then (ŵ1, ŵ2, ŵ3) is a triangle as well. Even more, (v̂, v̂, v̂)
is a triangle for any v̂ ∈ P(V).

This structure points us to look at a modified definition of a “triangle”. Let
T(V) = {W ⊂ V | dim(W) = 3} be the set of all 3-dimensional subspaces of V .

Rare Structures in Tensor Graphs 85

Definition 4. Let φ :
∧3

V → Fq be an alternating trilinear form. We call a
3-dimensional subspace T ∈ T(V) a triangle for φ if

φ(v,w,−) = 0 ∀ v,w ∈ T.

This definition has been considered before in [17] in the pursuit of classifying
alternating trilinear forms. There they were called 3-dimensional 2-singular sub-
spaces. Just as in the unstructured case, we have the following:

Lemma 2. The expectation value for the number of such constructions in a
random alternating trilinear form is equal to q−1, i.e.:

Eφ∈(
∧3 V)∗(|{T ∈ T(V) | T is a triangle for φ}|) = q−1.

Proof. We follow a similar structure as in Lemma 1. We extend 〈v1,v2,v3〉 =
T ∈ T(V) to a basis V = 〈v1,v2,v3, . . . ,vn〉. Applying a basis transformation
keeps the coefficients of φ uniformly random. So we need to compute the prob-
ability that (eV

1 , eV
2 , eV

3) is a triangle for a random φ. This latter condition can
be reformulated as φ123 = φ12i = φ13i = φ23i = 0 for all 4 ≤ i ≤ n. (See Fig. 2).

Fig. 2. For an ATF φ, the coefficients in the light gray positions should be zero for
〈e1, e2, e3〉 to be a triangle. The coefficients corresponding to the dark gray positions
are zero by alternatingness.

Taking symmetries into account these are exactly 3(n−3)+1 relations. Since
the coefficients are all uniform in Fq and using simple linearity of the expectation
value, we obtain:

Eφ∈(
∧3 V)∗(|{T ∈ T(V) | T is a triangle for φ}|)

= Pφ∈(
∧3 V)∗,T∈T(V)(T is a triangle for φ) · |T(V)|

= q−(3(n−3)+1) · q3(n−3)

= q−1.

To say something about how reliably our new algorithm can be used, we need
a stronger result, i.e., not only the expectation, but the probability of having a
unique triangle. Fortunately, we have the following corollary:

86 L. Ran and S. Samardjiska

Corollary 2. Given a vector space V over Fq of dimension n = dim(V) ≥ 9:

Pφ∈(
∧3 V)∗(φ has a unique triangle) ≥ q−1 − O(q−2).

Proof. See AppendixA.2.

We verify this experimentally using the polynomial system described below.
The results, which are in line with our corollary, are given in Table 8. For practical
reasons, we assume that the triangle does not intersect with the x1 = x2 = x3 = 0
hyperplane. This allows us to fix variables to make solving computable. Again,
MAGMA’s VarietySize is used on the system described in the next section.

Table 8. Fraction of tensors where a triangle was found on 10000 experiments. We
also report the times the triangle was unique.

q n Predicted Found Unique

13

9 769 720 665

10 769 716 694

11 769 759 740

31

9 323 266 259

10 323 311 308

11 323 319 314

251

9 40 33 33

10 40 33 33

11 40 40 40

5.1 Finding Triangles

To find these triangles we are going to use algebraic methods again. In this case
we will be working over the ring R = Fq[x4, . . . , xn, y4, . . . , yn, z4, . . . , zn]. We
use a shorthand notation for the following vectors in Rn:

x = [1, 0, 0, x4, . . . , xn], y = [0, 1, 0, y4, . . . , yn], z = [0, 0, 1, z4, . . . , zn].

Now, given an alternating trilinear form φ, our system for finding a triangle looks
as follows:

⎧
⎪⎨

⎪⎩

f
(i)
xy := φ(x,y, ei) = 0

f
(i)
yz := φ(y, z, ei) = 0 ∀1 ≤ i ≤ n

f
(i)
zx := φ(z,x, ei) = 0

(9)

It is clear that when we have found a solution (x4, . . . , xn, y4, . . . , yn, z4, . . . , zn)
we indeed have also found a triangle.

Rare Structures in Tensor Graphs 87

We consider solving this system using Gröbner basis methods. To make the
analysis precise we are going to conjecture a Hilbert series, but first, we find a
class of structural syzygies. In tri-degree (1, 1, 1), just as in the MCE case, we
have the following 2 linear independent syzygies appearing:

n∑

i=1

φ(x,y, ei) · zi =
n∑

i=1

φ(y, z, ei) · xi =
n∑

i=1

φ(z,x, ei) · yi.

However, in the ATFE case, there are 6 more syzygies, in tri-degrees that are a
permutation of (2, 1, 0). They are due to the alternating properties:

n∑

i=1

φ(x,y, ei) · xi = φ(x,y,x) = 0

Taking everything together we conjecture the Hilbert series. For reasons that
become apparent in Sect. 5.3 we consider the tri-homogenized version instead:

S(r, s, t) = (1 − r2 s)(1 − rs2)(1 − s2t)(1 − st2)(1 − t2r)(1 − tr2)(1 − rst)2

H(r, s, t) =
(1 − rs)n(1 − rt)n(1 − st)n

(1 − r)n−2(1 − s)n−2(1 − t)n−2
· S−1.

We created the Macaulay matrix for different values of n, dx, dy, and dz and
computed their rank. With this, we verified the amount of linear independent
syzygies predicted by the Hilbert series. The results are summarized in Table 9.

Table 9. Experimental syzygies in each tri-degree (q = 29). All values that were
predicted wrong are formatted (predicted/actual).

Tri-degree

n (2, 2, 0) (2, 1, 1) (4, 1, 0) (3, 2, 0) (3, 1, 1) (2, 2, 1) (5, 1, 0) (4, 2, 0) (3, 3, 0)

12 86 184 55 803 1726 4002 220/221 4281/4282 7241/7242

13 100 213 66 1032 2207 5140 286/287 6018/6019 10319/10320

14 115 244 78 1300 2768 6472 364 8231 14277

15 131 277 91 1610 3415 8013 455 10999

16 148 312 105 1965 4154 9778 560

17 166 349 120 2368 4991

18 185 388 136 2822 5932

19 205 429 153 3330

20 226 472 171 3895

Now, let us see what this means in practice. In Table 10, we report the run-
ning time of MAGMA’s GroebnerBasis on this system. As we can see, both
dsolv and dff largely overestimate the actual solving degree. Given that the

88 L. Ran and S. Samardjiska

experimental results on the Hilbert series are so affirmative, this might seem
odd. What happens in practice is that there are quite some structural degree
falls. We will see more on these in Sect. 5.3. For now, the main takeaway is that
for n = 13 and n = 14, finding triangles is practical.

Table 10. Finding triangles in ATFE, experimental results (q = 29).

Actual Predicted

n Time Memory dsolv dsolv dff

12 29 s 96 MB 4 (7, 3, 1) (5, 2, 1)

13 490 s 850 MB 4 (7, 4, 1) (5, 3, 1)

14 30 h 29 GB 5 (7, 5, 1) (5, 4, 1)

15 ≥ 14 d ≥ 260 GB ≥ 6 (7, 6, 1) (5, 5, 1)

5.2 Post-collision

Now, following the same line of argumentation as in Sect. 4.3, assume that φ
and ψ both have a unique triangle in general position 〈e1, e2, e3〉. This places
the following limit on any transformation A : φ → ψ between them:

A =
(

A11 A12

0(n−3)×3 A22

)

A−1 =
(

A−1
11 −A−1

11 A12A−1
22

0(n−3)×3 A−1
22

)

These restrictions unfortunately do not generate linear equations. However,
instead, we consider this system as a tri-graded system in variable sets

{A11,A′
11}, {A12,A′

12}, {A22,A′
22}.

Inspired by an unverified Hilbert series (not shown here) we use degree weights
to put more emphasis on the {A11,A′

11} variables. Now running GroebnerBasis
yields the desired results, these can be found in Table 11 below. Given the effi-
ciency of solving n = 25, we do not optimize beyond this.

Table 11. Practical runtimes of the post-collision algorithm, q = 232 − 5

n Time (s) Memory (MB) (wt11, wt12, wt22) weighted dsolv

13 102 864 (1, 3, 3) 6

20 2317 8287 (1, 3, 3) 6

25 8736 21750 (1, 3, 3) 6

Given that the complexity of the post-collision is negligible we provide the
complexities for the complete algorithm in Table 12. These hold for the 1/q
amount of ATFE problems that have a triangle.

Rare Structures in Tensor Graphs 89

Table 12. The log2 complexity for solving ATFE (with probability 1/q) in field oper-
ations. The parameters are taken from the ALTEQ specifications [8].

[8] [37] This work

n Specs Best previous dsolv compl. dff compl. Time

Level I 13 143 120 62 51 1501 s

Level III 20 219 165 108 96

Level V 25 276 203 141 128

5.3 A Peculiar Set of Degree Falls

The results in Table 10 indicate that there is something more going on than
our Hilbert series predicts. This has to do with the fact that there are addi-
tional degree falls present. In F4-like algorithms, these degree falls immediately
speed up computation. In this section, we show some structural degree falls that
happen for all values of n. First, we need to extend the definition of alternating
multilinear forms to multivariate polynomials:

Definition 5. Let f ∈ Fq[x,y, z], where x = (x1, . . . , xn), y = (y1, . . . , yn), z =
(z1, . . . , zn). We call f alternating if

f(x,y, z) = −f(y,x, z) = −f(z,y,x).

Remark 4. Just as in the case of alternating trilinear forms, one can show that,
in finite fields, this is equivalent to putting constraints on the coefficients of such
polynomials. The polynomial f =

∑
α,β,γ∈Z

n
≥0

cαβγxαyβzγ is alternating if and
only if

cαβγ = −cβαγ = −cγβα ∀α, β, γ ∈ Z
n
≥0.

As an example, the alternating tri-homogeneous polynomials living in tri-
degree (1, 1, 1) are exactly the alternating trilinear forms. A simple counting
argument tells us that the dimension of tri-homogeneous alternating elements in
tri-degree (d, d, d) is exactly

(
Mn,d

3

)
. Here Mn,d =

(
n+d−1

d

)
is the amount of degree

d monomials in n variables. For d = 1 we then indeed get
(
n
3

)
. Furthermore,

we find that there are no tri-homogeneous alternating elements in tri-degree
(dx, dy, dz) if dx �= dy or dx �= dz.

Now back to the degree falls. A degree fall happens when there is a syzygy
among the homogeneous top parts of elements which is not a full syzygy. Recall
our system Eq. (9). We can write the top-degree part of our system using the
following substitutes

x = [0, 0, 0, x4, . . . , xn], y = [0, 0, 0, y4, . . . , yn], z = [0, 0, 0, z4, . . . , zn].

Then we can easily write down the top-degree parts of our system:

f
(i)
xy = f (i)

xy(x,y, z)

90 L. Ran and S. Samardjiska

To construct syzygies among these, we will build alternating functions using
symmetry. We will use the following lemma.

Lemma 3. Let f ∈ Fq[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn] such that f is alternat-
ing in its first two arguments, i.e. f(x,y, z) = −f(y,x, z). Then,

S(f)(x,y, z) := f(x,y, z) + f(z,x,y) + f(y, z,x)

is alternating.

In our system, the polynomials f
(i)
xy are indeed alternating in the first two

arguments and hence the polynomials f
(i)
xy are too. Furthermore, for the top-

degree parts we have f
(i)
xy(y, z,x) = f

(i)
yz (x,y, z). Therefore, the polynomial func-

tion
S(f (i)

xy) = f
(i)
xy + f

(i)
yz + f

(i)
zx

is alternating and a linear combination of the top degrees of polynomials in our

system. We can take this a step further and consider S(f (i)
xy · g(z)) for a linear

polynomial g. The result lies in degree (1, 1, 1) and is, in fact, an alternating
trilinear form. More generally, we can look at the subspace of the Macaulay

space in (1, 1, 1) generated by S(f (i)
xy · zj) for 1 ≤ i ≤ n and 1 ≤ j ≤ n − 3.

We know that this space is contained in (
∧3

F
n−3
q)∗. Hence, by the rank nullity

theorem, we can conclude that there are at least n(n − 3) − (
n−3
3

)
syzygies in

the top-degree parts. For n ≤ 13 this turns out to be more than 0. This explains
why n = 13 runs so much faster than anticipated. With experiments, we were
able to verify that these are indeed degree falls and not complete syzygies and
that the number is correct. The results are given in Table 13.

Table 13. Structural degree falls in tri-degree (1, 1, 1), experimentally verified.

n degree falls

10 35

11 32

12 24

13 10

For n ≥ 14 these degree falls do not appear anymore, but there are others.
Let g ∈ R be a homogeneous polynomial in tri-degree (d−1, d−1, d) such that it
is symmetric in the first two arguments, i.e. g(x,y, z) = g(y,x, z). Now, due to

the symmetry of g, f
(i)
xy · g is still alternating in its first two elements. Therefore,

S(f (i)
xy · g) is again alternating and in the degree (d, d, d) Macaulay space. We

Rare Structures in Tensor Graphs 91

can apply rank-nullity again for the subspace generated by such g and find that
the amount of top-degree syzygies appearing is

(
Mn−3,d−1 + 1

2

)

· Mn−3,d · n −
(

Mn−3,d

3

)

.

We did experiments to verify these numbers but found that there are even more
degree falls appearing than predicted by the formula above. All of those were
indeed degree falls and not full syzygies. Due to the size of the matrices involved
only a part of the predictions could be verified, see Table 14.

Table 14. Structural degree falls in tri-degree (2, 2, 2) and (3, 3, 3).

degree falls (2, 2, 2)

n predicted actual

14 15224 18941

15 15184 22337

16 11011

degree falls (3, 3, 3)

n predicted

17 23866080

20 77142736

25 245964576

Even after identifying these (2, 2, 2) degree falls for n = 15 and adding those
to the system, unfortunately, the system was still not solvable in total degree
5. So while these syzygies likely contribute to a lower solving degree than 11 =
5 + 5 + 1 (as in Table 10), we do not (yet) know by how much.

6 Potential Generalizations and Future Work

Given the success of these small graph invariants on 3-TI and its structured
variant, the question arises as to how this generalizes to other structures on
tensors. A quick back-of-the-envelope calculation tells us the expectation value
for similar structures in QMLE and Cubic-IP should be 1/q too. However, as
we saw already in Remark 3, experimental evidence is needed before drawing
conclusions.

Another interesting generalization might be to see how well this applies for k-
tensors with k ≥ 4. While these tensors are not (yet) cryptographically relevant,
this might still provide insights into general invariants of tensors. One obvious
hurdle in this case is that simple graphs might not be sufficient anymore.

Next to these generalizations, there are also two other open questions remain-
ing after this work. It would be interesting to know how extra degree falls that we
found contribute to the solving degree. Being able to make better predictions for
the solving degree would give us more precise security estimates. Secondly, those
degree falls also seem to exist, albeit fewer, in general systems of skew-symmetric
bilinear equations. These might be used to speed up solving such systems as well.

92 L. Ran and S. Samardjiska

A Lower Bounds on Probabilities of Triangles

The purpose of this section is to prove Corollary 1 and Corollary 2. To lower
bound the probability of triangles we are going to use the following lemma.

Lemma 4. Let X be a discrete distribution with values in Z≥0. Then:

P(X = 1) ≥ 2E(X) − E(X2).

Proof. Using that probabilities are non-negative:

P(X = 1) ≥
∑

i≥0

(2i − i2)P(X = i) = 2E(X) − E(X2).

Now, using this lemma, the task at hand is to compute E(X2) for MCE and
ATFE. Let us denote T�C (resp. T�φ) if T is a triangle for C (resp. φ).

A.1 MCE

Lemma 5. Suppose we have vector spaces U , V , and W over Fq of dimensions
n, m, and k, then:

EC∈(U⊗V ⊗W)∗(|{T ∈ T(U, V,W) | T�C}|2)
≈ q−1 + q−2 + q−(n−1) + q−(m−1) + q−(k−1)

+ q−(n+m−k) + q−(m+k−n) + q−(k+n−m).

Proof. We start with the observation that, for a given tensor C, we have:

|{T ∈ T | T�C}|2 = |{(T1, T2) ∈ T
2 | T1�C, T2�C}|.

We are going to calculate the probability that both T1 = (u, v, w) and T2 =
(u′, v′, w′) are triangles for a random C. To do this, we need to distinguish some
cases. We define the following partition of T2:

T∅ = {(T1, T2) ∈ T
2|u �= u′, v �= v′, w �= w′}

Tu = {(T1, T2) ∈ T
2|u = u′, v �= v′, w �= w′} (resp. Tv,Tw)

Tuv = {(T1, T2) ∈ T
2|u = u′, v = v′, w �= w′} (resp. Tvw,Twu)

Tuvw = {(T1, T2) ∈ T
2|u = u′, v = v′, w = w′}.

For each of these sets, the probability that an element is a pair of triangles
for a random C is constant. To see this we are going to consider the tensor in the
extended basis 〈u, u2, . . . , un〉 if u = u′ and 〈u, u′, u3 . . . , un〉 if u �= u′ (similarly
for v and w). Then, the coefficients of these tensors are again uniformly random.
We count the amount of indices (i, j, l) which should have a 0 so that T1 and T2

are triangles in Table 15.

Rare Structures in Tensor Graphs 93

Table 15. Sizes and indices that should be zero for the different sets in the partition.

Set Size (logq) Zeroes Set of index sets

T0 6n − 18 6n − 16 {1, 2, �}, {1, 3, �}, {2, 3, �}, {4, 5, �}, {4, 6, �}, {5, 6, �}
T1 5n − 13 6n − 20 {1, 2, �}, {1, 3, �}, {2, 3, �}, {1, 4, �}, {1, 5, �}, {4, 5, �}
T2 4n − 10 5n − 14 {1, 2, �}, {1, 3, �}, {2, 3, �}, {1, 4, �}, {2, 4, �}
T3 3n − 9 3n − 8 {1, 2, �}, {1, 3, �}, {2, 3, �}

Then, by linearity we can compute the expectation value:

E(|{T1, T2 ∈ T | T1�C, T2�C}|) = q−(2n+2m+2k−4)|T∅|
+ q−(2n+2m+2k−6) (|Tu| + |Tv| + |Tw|)
+ q−(2n+2m+k−4)|Tuv| + q−(n+2m+2k−4)|Tvw|
+ q−(2n+m+2k−4)|Twu| + q−(n+m+k−2)|Tuvw|
= q−1 + q−2 + q−(n−1) + q−(m−1) + q−(k−1)

+ q−(n+m−k) + q−(m+k−n) + q−(k+n−m).

Corollary 3. Given vector spaces U , V , and W over Fq of dimensions n, m,
and k, then:

PC∈(U⊗V ⊗W)∗(C has unique triangle) ≥ q−1 − q−2 − q−(n−1) − q−(m−1) − q−(k−1)

− q−(n+m−k) − q−(m+k−n) − q−(k+n−m).

Now Corollary 1 follows immediately.

A.2 ATFE

Lemma 6. Suppose we have a vector space V over Fq of dimension n then:

Eφ∈(
∧3 V)∗(|{T ∈ T(V) | T�φ}|2) ≈ q−1 + q−2 + q−(n−4) + q−(n−7).

Proof. The proof is structured similarly. This time, we partition T
2 in the fol-

lowing sets:

Ti = {(T1, T2) ∈ T
2|dim(T1 ∩ T2) = i} for i = 0, 1, 2, 3

The probability is again constant on these sets for random φ. Given a
pair of triangles (T1, T2) ∈ Ti we pick a basis 〈u1, . . . , un〉 such that, T1 =
〈u1, u2, u3〉 and

T2 =

⎧
⎪⎪⎨

⎪⎪⎩

〈u4, u5, u6〉 if i = 0,
〈u1, u4, u5〉 if i = 1,
〈u1, u2, u4〉 if i = 2,
〈u1, u2, u3〉 if i = 3.

94 L. Ran and S. Samardjiska

Table 16. Sizes and indices that should be zero for the different sets in the partition.

Set Size (logq) Zeroes Set of index sets

T0 6n − 18 6n − 16 {1, 2, �}, {1, 3, �}, {2, 3, �}, {4, 5, �}, {4, 6, �}, {5, 6, �}
T1 5n − 13 6n − 20 {1, 2, �}, {1, 3, �}, {2, 3, �}, {1, 4, �}, {1, 5, �}, {4, 5, �}
T2 4n − 10 5n − 14 {1, 2, �}, {1, 3, �}, {2, 3, �}, {1, 4, �}, {2, 4, �}
T3 3n − 9 3n − 8 {1, 2, �}, {1, 3, �}, {2, 3, �}

Note that this is possible by first picking a basis of T1 ∩ T2 by definition of Ti.
Then, the coefficients of these ATFs are again uniformly random. Now we count
the number of index sets {i, j, k} such that φijk must be zero in order for T1 and
T2 to be a triangle. These results are in table Table 16

Then, again by linearity, we can compute the expectation value:

E(|{T1,T2 ∈ T | T1�φ, T2�φ}|)
= q−(6n−16)|T0| + q−(6n−20)|T1| + q−(5n−14)|T2| + q−(3n−8)|T3|
= q−1 + q−2 + q−(n−7) + q−(n−4).

Corollary 4. Given a vector space V over Fq of dimension n = dim(V) then:

Pφ∈(
∧3 V)∗ (φ has a unique triangle) ≥ q

−1 − q
−2 − q

−(n−7) − q
−(n−4)

.

Now Corollary 2 follows immediately.

References

1. NIST fourth round announcement. NIST Official Website (2021), https://csrc.nist.
gov/projects/post-quantum-cryptography/round-4-submissions

2. Bardet, M., Faugère, J., Salvy, B., Spaenlehauer, P.: On the complexity of solving
quadratic Boolean systems. Journal of Complexity 29(1), 53–75 (2013)

3. Barenghi, A., Biasse, J., Persichetti, E., Santini, P.: LESS-FM: fine-tuning sig-
natures from the code equivalence problem. In: Cheon, J.H., Tillich, J. (eds.)
PQCrypto 2021. LNCS, vol. 12841, pp. 23–43. Springer (2021)

4. Beullens, W.: Not enough LESS: an improved algorithm for solving code equiv-
alence problems over Fq. In: Dunkelman, O., Jacobson, M.J., O’Flynn, C. (eds.)
SAC 2020. LNCS, vol. 12804, pp. 387–403. Springer (2020)

5. Beullens, W.: Graph-theoretic algorithms for the alternating trilinear form equiva-
lence problem. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology
- CRYPTO 2023, pp. 101–126. Springer Nature Switzerland, Cham (2023)

6. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer (2020)

7. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is More: Code-Based
Signatures Without Syndromes. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT
2020. LNCS, vol. 12174, pp. 45–65. Springer (2020)

https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions

Rare Structures in Tensor Graphs 95

8. Bläser, M., Duong, D.H., Narayanan, A.K., Plantard, T., Qiao, Y., Sipasseuth, A., ,
Tang, G.: The ALTEQ Signature Scheme: Algorithm Specifications and Supporting
Documentation. NIST PQC Submission (2023)

9. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System. I. The User
Language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

10. Bouillaguet, C., Fouque, P., Véber, A.: Graph-theoretic algorithms for the “iso-
morphism of polynomials” problem. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer (2013)

11. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University
of Innsbruck (1965)

12. Chou, T., Niederhagen, R., Persichetti, E., Ran, L., Randrianarisoa, T.H., Rei-
jnders, K., Samardjiska, S., Trimoska, M.: MEDS – Matrix Equivalence Digital
Signature (2023), https://meds-pqc.org/spec/MEDS-2023-05-31.pdf, submission
to the NIST Digital Signature Scheme standardization process

13. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your meds: Digital signatures from matrix
code equivalence. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds.) Progress
in Cryptology - AFRICACRYPT 2023, pp. 28–52. Springer Nature Switzerland,
Cham (2023)

14. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer (2000)

15. Couvreur, A., Debris-Alazard, T., Gaborit, P.: On the hardness of code equivalence
problems in rank metric. arXiv (2021)

16. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 759–789. Springer (2019)

17. Draisma, J., Shaw, R.: Singular lines of trilinear forms. Linear algebra and its
applications 433(3), 690–697 (2010)

18. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

19. Faugère, J.C., Perret, L.: Polynomial equivalence problems: Algorithmic and the-
oretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer (2006)

20. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM 38(3), 690-
728 (jul 1991). https://doi.org/10.1145/116825.116852, https://doi.org/10.1145/
116825.116852

21. Grochow, J.A., Qiao, Y.: Isomorphism problems for tensors, groups, and cubic
forms: completeness and reductions (2019)

22. Grochow, J.A., Qiao, Y., Tang, G.: Average-case algorithms for testing iso-
morphism of polynomials, algebras, and multilinear forms. Journal of Groups,
Complexity, Cryptology Volume 14, Issue 1 (Aug 2022). https://doi.org/10.
46298/jgcc.2022.14.1.9431, https://gcc.episciences.org/9836, preliminary version
appeared in STACS ’21. https://doi.org/10.4230/LIPIcs.STACS.2021.38. Preprint
available at arXiv:2012.01085

23. Hulsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag,
S.L., Kampanakis, P., Kolbl, S., Lange, T., Lauridsen, M.M., Mendel, F., Niederha-
gen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Aumasson, J.P., Westerbaan,
B., Beullens, W.: SPHINCS+. NIST PQC Submission (2020)

https://meds-pqc.org/spec/MEDS-2023-05-31.pdf
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.46298/jgcc.2022.14.1.9431
https://doi.org/10.46298/jgcc.2022.14.1.9431
https://gcc.episciences.org/9836
https://doi.org/10.4230/LIPIcs.STACS.2021.38
http://arxiv.org/abs/2012.01085

96 L. Ran and S. Samardjiska

24. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: extended
hash-based signatures. RFC 8391 (2018)

25. ISO (International Organization for Standardization): Information security, cyber-
security and privacy protection: Iso/iec wd 14888-4 information technology - secu-
rity techniques - digital signatures with appendix - part 4: Stateful hash-based
mechanisms, https://www.iso.org/standard/80492.html

26. Joux, A., Vitse, V.: A Crossbred Algorithm for Solving Boolean Polynomial Sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J. (eds.) Number-Theoretic
Methods in Cryptology, pp. 3–21. Springer International Publishing, Cham (2018)

27. Lazard, D.: Gröbner-Bases, Gaussian elimination and resolution of systems of alge-
braic equations. In: van Hulzen, J.A. (ed.) EUROCAL. Lecture Notes in Computer
Science, vol. 162, pp. 146–156. Springer (1983)

28. Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE
Trans. Inf. Theory 28(3), 496–510 (1982)

29. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: CRYSTALS-DILITHIUM. NIST PQC Submission (2020)

30. Narayanan, A.K., Qiao, Y., Tang, G.: Algorithms for matrix code and alternating
trilinear form equivalences via new isomorphism invariants. Springer-Verlag (2024)

31. NIST (National Institute for Standards and Technology): Post-Quantum Cryp-
tography Standardization (2017). https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

32. NIST (National Institute for Standards and Technology): Fifth PQC
Standardization Conference (2024). https://csrc.nist.gov/Events/2024/fifth-pqc-
standardization-conference

33. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of asymmetric algorithms. In: EUROCRYPT ’96. LNCS,
vol. 1070, pp. 33–48. Springer (1996)

34. Perret, L.: On the computational complexity of some equivalence problems of poly-
nomial systems of equations over finite fields. Electronic Colloquium on Computa-
tional Complexity (ECCC) (116) (2004)

35. Perret, L.: A Fast Cryptanalysis of the Isomorphism of Polynomials with One
Secret Problem. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 3494,
pp. 354–370. Springer (2005)

36. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. NIST PQC Submission
(2020)

37. Ran, L., Samardjiska, S., Trimoska, M.: Algebraic algorithm for the alternating
trilinear form equivalence problem. In: Esser, A., Santini, P. (eds.) Code-Based
Cryptography, pp. 84–103. Springer Nature Switzerland, Cham (2023)

38. Reijnders, K., Samardjiska, S., Trimoska, M.: Hardness estimates of the code equiv-
alence problem in the rank metric. Designs, Codes and Cryptography 92, 1–30 (01
2024). https://doi.org/10.1007/s10623-023-01338-x

39. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D.: CRYSTALS-KYBER. NIST PQC Sub-
mission (2020)

40. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical
post-quantum signature schemes from isomorphism problems of trilinear forms.
In: EUROCRYPT 2022. LNCS, vol. 13277, pp. 582–612. Springer (2022)

https://www.iso.org/standard/80492.html
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Events/2024/fifth-pqc-standardization-conference
https://csrc.nist.gov/Events/2024/fifth-pqc-standardization-conference
https://doi.org/10.1007/s10623-023-01338-x

Fault Attacks and Side-Channel
Analysis

It’s a Kind of Magic: A Novel Conditional
GAN Framework for Efficient Profiling

Side-Channel Analysis

Sengim Karayalçın1(B) , Marina Krček2 , Lichao Wu3 , Stjepan Picek4 ,
and Guilherme Perin1

1 Leiden University, Leiden, Netherlands
{s.karayalcin,g.perin}@liacs.leidenuniv.nl

2 Delft University of Technology, Delft, Netherlands
m.krcek@tudelft.nl

3 Technical University of Darmstadt, Darmstadt, Germany
lichao.wu@tu-darmstadt.de

4 Radboud University, Nijmegen, Netherlands
stjepan.picek@ru.nl

Abstract. Profiling side-channel analysis (SCA) is widely used to eval-
uate the security of cryptographic implementations under worst-case
attack scenarios. This method assumes a strong adversary with a fully
controlled device clone, known as a profiling device, with full access to
the internal state of the target algorithm, including the mask shares.
However, acquiring such a profiling device in the real world is challeng-
ing, as secure products enforce strong life cycle protection, particularly
on devices that allow the user partial (e.g., debug mode) or full (e.g., test
mode) control. This enforcement restricts access to profiling devices, sig-
nificantly reducing the effectiveness of profiling SCA.

To address this limitation, this paper introduces a novel framework
that allows an attacker to create and learn from their own white-box ref-
erence design without needing privileged access on the profiling device.
Specifically, the attacker first implements the target algorithm on a dif-
ferent type of device with full control. Since this device is a white box
to the attacker, they can access all internal states and mask shares. A
novel conditional generative adversarial network (CGAN) framework is
then introduced to mimic the feature extraction procedure from the ref-
erence device and transfer this experience to extract high-order leakages
from the target device. These extracted features then serve as inputs
for profiled SCA. Experiments show that our approach significantly
enhances the efficacy of black-box profiling SCA, matching or poten-
tially exceeding the results of worst-case security evaluations. Compared
with conventional profiling SCA, which has strict requirements on the
profiling device, our framework relaxes this threat model and, thus, can
be better adapted to real-world attacks.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 99–131, 2025.
https://doi.org/10.1007/978-981-96-0944-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_4&domain=pdf
http://orcid.org/0009-0000-1598-8400
http://orcid.org/0000-0001-8475-1853
http://orcid.org/0000-0002-7139-732X
http://orcid.org/0000-0001-7509-4337
http://orcid.org/0000-0003-3799-7636
https://doi.org/10.1007/978-981-96-0944-4_4

100 S. Karayalçın et al.

1 Introduction

Commonly used cryptographic algorithms, such as AES and 3DES, are math-
ematically secure, as simply knowing the input and output data along with
the details of the algorithm is insufficient to recover the key within a reason-
able computation time. However, cryptographic implementations on hardware
may introduce unintentional information leakages via, for instance, power con-
sumption [27], electromagnetic emission (EM) [1], execution time [26], temper-
ature [23], and acoustics [17]. These leakages could be exploited through side-
channel analysis (SCA) and finally extract secret information.

The research community has known the threat of SCA for more than 25 years.
Multiple attacks have been developed and can be generally categorized into two
groups, depending on the availability of the profiling device. Non-profiling SCA
leverages statistical methods, distinguishers, and leakage assessment techniques
to launch direct side-channel attacks. Examples of such attacks include Differ-
ential Power Analysis [28], Correlation Power Analysis [5], and Mutual Infor-
mation Analysis [18]. These attack methods are implicitly treated as real-world
security threats, mainly because an attack is directly mounted on the victim’s
device; querying encryption or decryption executions are the only requirements
to deploy the attack. On the other hand, research on profiling SCA, such as
template attack [11] and deep learning-based SCA [34,45] has largely aimed at
enabling worst-case security assessments [7] with an assumption of access to
an identical copy of the target device. A profiling model is first built by map-
ping the relationship between the leakage measurements and the corresponding
labels (key-related intermediate data) obtained from this copy. Then, an attacker
collects leakage measurements from the target device and feeds them to the pro-
filing model to obtain the label prediction. On top of this threat model, recent
works further assume insight into values of mask shares generated during cryp-
tographic executions [36], making the attack fully white-box. An attacker can
profile each intermediate data or mask share and can finally combine the profil-
ing results together to recover the secret. Although optimal attack performance
can be reached via this threat model, we argue this threat model, including the
access to an identical device copy and the mask-shares knowledge, is not realis-
tic, as secure products often enforce robust life cycle protections, especially on
devices that offer partial (e.g., debug mode) or full (e.g., test mode) user con-
trol. Even for the security evaluation labs that are supposed to have all design
details [42], this threat model is overly strong, as the mask shares are commonly
stored in protected registers and are not accessible even by a kernel user. Even
in evaluation settings for software implementations, it is often not possible to
access randomness as this would require modifications to the implementation
(e.g., using a known seed or instrumenting source code), which results in the
evaluation targeting a characterization of the implementation as opposed to the
actual target [30]. On the other hand, if an attack can be performed with this
attack assumption, attacks are significantly easier as an attacker can profile each
individual mask share and finally recover the secret with, for instance, Soft Ana-
lytical Side-Channel Attacks [40].

It’s a Kind of Magic 101

This paper introduces a novel framework based on conditional generative
adversarial networks (CGAN) to address the overly strong attack assumptions
in profiling side-channel analysis (SCA). In line with [30], we assume that the
attacker is aware of the cryptographic implementation and masking scheme used
on the target device. With this design knowledge, the attacker sets up a similar
cryptographic implementation on a different type of the device, referred to as
the reference implementation. Since the attacker is not restricted by the device
type, they can freely choose devices that grant full control and access to all
internal states of the target algorithm, including mask shares. The proposed
CGAN-based structure is then introduced to mimic white-box feature selection
performed on the reference implementation and efficiently extract features from
a target implementation with unknown masks. This framework transforms a con-
ventional (black-box) profiling attack into a white-box profiling attack but with
reduced attack assumptions. Additionally, our framework enhances the inter-
pretability of the attack on the target dataset by splitting the feature extraction
and exploitation phases, providing deeper insights into the attack process.

In summary, our main contributions are:

– We propose a novel conditional generative adversarial network-based SCA
framework (CGAN-SCA) that allows an adversary to leverage the knowledge
from a reference implementation to extract features from a target implementa-
tion. This modified threat model and corresponding CGAN-based framework
demonstrate the potential risks that arise when an adversary has full control
over an implementation similar to the target one.

– The proposed framework allows an adversary to convert a black-box profil-
ing attack towards a white-box profiling attack capability, which drastically
improves the black-box profiling attack performance. Our results demonstrate
that applying our framework significantly reduces the difficulties of finding
an optimal profiling model in a non-worst-case security evaluation.

– The proposed CGAN-SCA framework can extract features from high-order
leakages, such as first-order masking schemes. We provide a detailed analysis
to demonstrate how the generator in a CGAN architecture precisely mimics
the features selected from a reference implementation.

– Our results indicate that once an efficient CGAN architecture is found, a
hyperparameter search for a profiling attack can be done with negligible effort,
similar to a worst-case security evaluation.1

Note: More experimental results can be found in [25]. Our source code is avail-
able in an anonymous repository.2

1 We refer to Section 6 of [30] for a discussion about difficulties in finding deep learning-
based profiling models in worst and non-worst case security evaluations.

2 https://anonymous.4open.science/r/cgan sca-7A33/.

https://anonymous.4open.science/r/cgan_sca-7A33/

102 S. Karayalçın et al.

2 Background

2.1 GANs and CGANs

Generative models are machine learning models that learn the underlying prob-
ability distribution of a given dataset [19]. Their primary objective is to generate
new samples that resemble the training data in terms of statistical properties and
structure. While discriminative models focus on learning the decision boundary
between different classes or categories of data, generative models aim to under-
stand and capture the characteristics and patterns of the entire dataset.

Generative adversarial networks proposed a novel way to train generative
models [20]. The overall idea is to adversarially train a generator and discrim-
inator where the discriminator attempts to differentiate between real and gen-
erated images, and the generator is trained to generate fake images that fool
the discriminator. These types of models have been used extensively across a
wide variety of domains. Examples include image generation [20], image trans-
lation [24], and speech-synthesis [29].

As shown in Fig. 1a, the structure consists of two adversarial models compet-
ing against each other: a generator G, with parameters θg, and a discriminator
D, with parameters θd. The main goal of the generator is to take input noise dis-
tribution p(z) and to produce synthetic or fake output data G(z, θg) that follows
a data distribution present in real data. The discriminator is trained to provide
the probability D(x, θd) that an input data x comes from a real training set or
the generator. Both generator and discriminator are trained simultaneously in
a way that θg to minimize log(1 − D(G(z))) and θd to minimize log D(x), as
following a min-max game with value function:

min
G

max
D

V (G,D) = Ex∼p(x)[log D(x)] + Ez∼p(z)[log(1 − D(G(z)))]. (1)

Conditional Generative Adversarial Networks (CGANs) [32], illustrated in
Fig. 1b, are a variant of the traditional GAN architecture incorporating addi-
tional information to guide the generation process. In CGANs, the generator
and discriminator receive extra input in the form of conditional variables, which
can be class labels, attribute vectors, or any other auxiliary information. This
conditioning allows for generating more targeted and controlled outputs.

2.2 Generative Models for SCA

Generative models in side-channel analysis have been limited to a few applica-
tions. In [41], the authors considered generative adversarial networks for data
augmentation. Later, a more elaborated analysis with conditional generative
adversarial networks also considered data augmentation [33]. Both analyses were
applied to protected AES implementations. In [44], the authors considered Vari-
ational AutoEncoders (VAE) to generate reconstructed and synthetic traces that
model the true conditional probability distribution of real leakage traces. In [13],
the authors proposed the EVIL-machine, a framework using a GAN-like struc-
ture to find a suitable leakage model for the target device, replacing the need

It’s a Kind of Magic 103

Fig. 1. GAN and CGAN structures.

for prior knowledge of the leakage characteristics. The structure is extended to
mount non-profiled attacks that exploit the learned leakage model. In [10], the
authors presented an approach using a GAN-based structure to mitigate the
issues related to the portability of profiling models. Like our framework, the
authors extracted an intermediate representation of the leakages from a pro-
filing device and then trained a generator to extract a similar representation
from unlabeled attack traces measured on another device of the same model.
They considered only unprotected implementations running on the same device
model. Finally, in [16], a GAN structure is used to translate between side-channel
domains. To accomplish this, pairs of traces are required. Again, only unpro-
tected implementations are considered. While these works consider GAN struc-
tures to transform leakage traces, these require paired measurements in different
side-channel domains [16] or only consider portability [10]. As such, the differ-
ences between the adversarial and target datasets are fairly minimal, allowing for
training the GAN structure without labels. In this work, the differences are more
significant, necessitating the inclusion of labels in the discriminator to facilitate
the convergence of our models.

When we look at applications in DLSCA where information on other imple-
mentations is utilized to build more powerful models, the use cases are still
limited. Several works have looked at utilizing transfer learning techniques to
limit the profiling complexity of attacking novel targets [15,38,43]. These works
generally look at fine-tuning models that were pre-trained on a similar task,
which reduces the number of profiling traces required from the profiling device.
Similarly, several works incorporate knowledge of the masking scheme to imple-
ment tailored DL layers that explicitly recombine secret shares [9,30]. The main
benefits here are, again, to reduce the number of required profiling traces. The
CGAN-SCA framework that we propose in the next section acts as a feature
extractor from raw datasets, and therefore, our work can also be seen as a pre-
processing method. Regarding applying deep neural networks for preprocessing
leakage traces specifically, we refer to Section 4.2 from [36]. We emphasize that
none of the related works consider a generative adversarial architecture to effi-
ciently extract features from a target dataset by learning the probability distri-
bution from an adversarial dataset, as detailed next.

104 S. Karayalçın et al.

2.3 Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) measures the strength of a desired signal com-
pared to the background noise level, indicating the clarity and quality of the
signal in relation to the interference or irrelevant information present. In the
side-channel analysis context, SNR is a measure of the amount of leakage that
is present in a side-channel trace. It is defined as:

SNR =
V ar(E(X|Y))
E(V ar(X|Y)))

. (2)

Here, E represents the arithmetic mean function and V ar is the variance. Gener-
ally, we assume X to be a single point in a side-channel trace, and we condition
on Y , representing the intermediate value leaked.

3 CGAN-SCA Framework

This section proposes a novel profiling attack framework based on conditional
generative adversarial networks for side-channel analysis (CGAN-SCA). To this
end, we propose an extended profiling SCA threat model, as described next.

3.1 Threat Model and Notations

The classic threat model for profiled attacks in SCA assumes an attacker has an
open and programmable copy of the attacked device [11]. With this privileged
access right, an attacker can enable and disable countermeasures and has access
to mask shares used to generate masks (on the profiling device). This threat
model allows an evaluator to create templates for each secret share straight-
forwardly and then explicitly recombine the retrieved shares during the attack
phase. As a consequence, this attack assumption leads to near-optimal attack
performance with relatively limited resources [8]. However, as mentioned in the
introduction, access to mask shares is often not possible in practical settings.
In line with the scheme-aware threat model proposed in [30], where an attacker
has (some) knowledge of the implementation specifics of the masking scheme
but does not have access to mask shares, this work extends this threat model by
including an additional device (on top of the profiling and attack device) that
runs a similar implementation in a fully white-box setting (i.e., with access to
mask values during profiling). We refer to this device as the reference implemen-
tation. Here, access to mask values is not a problem as the reference is a separate
implementation the adversary develops themselves. Therefore, any restrictions
that apply to the identical device clone that is used in conventional profiling SCA
do not apply to the reference implementation. In scenarios where an attacker has
access to the target source code, this can even be used to create the reference
dataset by instrumenting it and taking separate measurements. In less permis-
sive scenarios where an attacker only knows the type of countermeasure (i.e., the
target is protected with first-order Boolean masking), they can create a different

It’s a Kind of Magic 105

implementation that runs the same (type of) countermeasure. If a similar pub-
lic dataset is available, the reference implementation could even be a publicly
released dataset.

One may doubt the similarity between the reference device and the target
device. It is intuitively clear that the more similar the reference and target device
are, the better. However, when differences are too large, the framework might not
be able to improve over standard profiling attacks. Broadly, it is advisable to take
devices (and implementations) that operate on the same word sizes. In practice,
this means that it seems unlikely that using a software device that operates
on 8 bits of the internal state at a time as a reference can help when we are
trying to attack a hardware (or bit-sliced) implementation that operates on larger
states. Based on our results, improvements to black-box attacks can be achieved
even when reference and target are running on different device architectures and
running different implementations of the same masking scheme. A more in-depth
discussion can be found in Sect. 8.

Based on our threat model, we refer to three categories of trace sets: Xref ,
Xprof , and Xtarget, representing leakages from the reference, profiling, and target
devices, respectively. For clarity, Xref has known key(s) and masks, Xprof has
known key(s) and unknown masks, and Xtarget has unknown key and masks. A
feature selection process over Xref results in an adversarial dataset3 for the pro-
posed CGAN, also referred to as reference features fref . The features extracted
with the proposed CGAN-based architecture from Xprof and Xtarget are referred
to as target or generated features fprof and ftarget. Nf , is the number of features
in the fref , fprof , or ftarget sets. The validation set is a subset of Xprof , denoted
as Xval with features fval. Note that the validation set is excluded from training
and used to simulate attacks for hyperparameter tuning.

3.2 A Novel Conditional GAN Framework

The proposed Conditional GAN-based framework, referred to as CGAN-SCA,
is illustrated in Fig. 2. The structure consists of the following main blocks:

1. Feature selection (top of Fig. 2): this block receives at its inputs the set of ref-
erence side-channel measurements Xref and the masks (randomness) associ-
ated with this dataset. This block outputs the features fref (i.e., the adversar-
ial dataset), which should contain the most leaky samples from Xref , similar
to the points of interest (POI) selection. In this paper, we consider differ-
ent methods for feature selection: SNR, Linear Discriminant Analysis (LDA),
and Principal Component Analysis (PCA). The feature selection process must
only be done once for each reference dataset and feature selection method.

2. Generator G (middle of Fig. 2): this block receives the side-channel measure-
ments from the target implementation at its inputs, Xprof or Xtarget. The
generator’s output is the set of extracted features, fprof or ftarget, also a

3 The term adversarial is not connected with the domain of security of AI, e.g., adver-
sarial examples, but with the fact that it is a dataset used by an adversary utilizing
a GAN.

106 S. Karayalçın et al.

Fig. 2. Proposed CGAN-SCA framework. Xref is the reference dataset with known
secrets (i.e., masks and keys), Xprof is the profiling set with known key(s) and unknown
masks, and Xtarget is the target device with unknown key and mask. Yref and Yprof

are corresponding labels to the Xref and Xprof datasets, respectively.

latent representation of the traces. It is trained to generate fprof that looks
real to the discriminator.

3. Discriminator D (upper right of Fig. 2): this block receives at its input the set
of features (fref or fprof) and the corresponding set of labels (Yref or Yprof).
The output of the discriminator is a value representation of the loss func-
tion. The discriminator is trained to discriminate between real and generated
features (fref and fprof) using labels Yref and Yprof .

4. Profiling attack (lower half of Fig. 2): after the generator G is trained, it is
used to generate fprof and ftarget/fval and a profiling attack is applied on
these features. The attack follows the same classic profiling attack structure
(i.e., profiling and attack phases), where any type of profiling model can be
used. The main difference is that the model is profiled with extracted features
fprof to attack ftarget/fval, which should contain only leaky points of interest
from the original target traces.

The main goal of training the proposed CGAN model is to generate ftarget
outputs with the same dimension as given by fref and with most of its features
containing main side-channel leakages from Xtarget. Thus, the generator acts
as a feature extraction or dimensionality reduction mechanism. Different from
a classic CGAN structure where the generator receives at its inputs a random
source and a label, our generator receives only the original traces Xtarget from the
target implementation and no labels. This is important as for Xtarget, we do not

It’s a Kind of Magic 107

have labels Ytarget, and if the generator relies on labels for extracting features,
it is not possible to apply the generator to Xtarget as labels are unavailable. We
emphasize that this architecture is a new concept introduced in this paper.

The main goal in training the generator G is to learn parameters θG such
that new samples fprof are statistically indistinguishable from samples from
reference fref . In other words, we train θG to transform input target traces
Xtarget to the probability distribution of fref . Determining the distance between
two distributions is a two-sample hypothesis test problem, which is difficult for
complicated distributions with high dimensions. Therefore, we will also judge
the quality of the generator by computing the SNR between ftarget (i.e., the
output of the generator) and the high-order secret shares from the target device.
In our threat model, an attacker does not know these high-order secret shares
from Xtarget, and these values will not interfere with the training of generator
and discriminator models. Here, we consider them only to visually confirm that
the generator extracts meaningful representations from Xtarget. It is important
to note that, during the CGAN training, we can only use Xprof , as the structure
requires the knowledge of its labels Yprof . In this paper, the labels Yref and Yprof

are always the value of the S-box output byte from the first AES encryption
round, without assuming the knowledge of any mask value.

After training the CGAN structure, the trained generator model is used to
transform the profiling, validation, and attack sets from Xprof and Xtarget into
fprof and ftarget, as shown in the bottom part of Fig. 2. Note how this feature
extraction process (i.e., predicting ftarget from Xtarget) does not involve any
label. In the next phase, we utilize the transformed fprof and ftarget sets to
launch standard profiling attacks. In the attack phase, we obtain the probability
P (k) for each key candidate k, which allows us to derive the guessing entropy or
success rate [37] of the correct key. Therefore, the main advantage of using the
CGAN-SCA framework as a preprocessing step is that feature extraction can
be done against a black-box profiling target, allowing key recovery results closer
to white-box profiling attack performance without expensive hyperparameter
tuning efforts, as shown in Sect. 7.

3.3 CGAN Architecture

We conducted preliminary experiments on the CGAN-SCA framework to deter-
mine well-performing (though not yet optimal) architectures for both the dis-
criminator and generator models. Since this work only addresses synchronized
datasets, we verified that small MLP-based architectures for the discriminator
and generator already demonstrate satisfactory performance. However, a thor-
ough hyperparameter search is essential to achieve better results. In the case
of desynchronized measurements, CNN-based layers are highly recommended,
but this is beyond the scope of this paper and will be explored in future works.
In this section, we first describe the architectural choices for the discriminator
and generator. Then, we discuss how to evaluate the efficacy of CGAN feature
selection. We cover the specifics of our hyperparameter searches to find optimal
solutions in Sect. 4.2.

108 S. Karayalçın et al.

During the training of the CGAN model, the objective of the discriminator is
to distinguish between fref and fprof . Conversely, the objective of the generator
is to generate fprof that is similar to fref . While these objectives will result in
realistic-looking fprof , the generator is not forced to extract the side-channel
leakages from Xprof in any way as it is not conditioned. While a conventional
CGAN model, where labels Yprof are provided to both the generator and the
discriminator, seems like a straightforward solution to alleviate this problem,
the labels are unavailable during the attack phase. In other words, the generator
needs to convert Xtarget into ftarget without labels. As such, we provide labels
only to the discriminator, which only received fprof . This choice allows the dis-
criminator to check whether the provided leakages in fprof correspond to the
label Yprof . This will then force the generator to use the side-channel leakages
in Xprof in its generated fprof as otherwise, the discriminator can easily classify
fprof as fake.

Discriminator Architecture. We first look at how to construct the discrimi-
nator model as a poorly configured discriminator will always result in the CGAN
model failing to generate useful ftarget. Our main goal in constructing the dis-
criminator is to ensure it uses the leakages in fref and fprof and does not ‘mem-
orize’ the correct fref . Several works have shown the capability of MLPs to learn
to classify first-order protected datasets from relatively small intervals containing
leaky samples [3] or even raw traces [34]. Thus, it should be relatively easy for an
MLP-based discriminator to learn to combine leakages when its inputs contain
only leaky samples. Developing architectures for other schemes should also be
straightforward, as full access to secret shares of the reference implementation
is available. Pre-training (part of) the discriminator in a classification task, as
is done in [10], can also be an option. Learning higher-order schemes can then
be accomplished using knowledge of secret shares during training [14,31].

The discriminator serves two primary purposes: (1) classifying the input,
which comprises a combination of labels and features, into two classes (0 or
‘fake’ and 1 or ‘real’), and (2) comprehending the relationship between labels
and features. In the second case, we expect the discriminator to recognize an
input combination of labels and features as ‘real’ if the features represent the
corresponding label class. If the discriminator cannot classify whether a given
combination of features and labels is real or fake, we assume that the generated
features, denoted as fprof , are as realistic as the reference features fref . The
discriminator model is set with a binary cross-entropy loss function.

The number of features in fref and fprof is limited to a maximum of Nf =
100, as the evaluated datasets contain a limited number of leaky points of interest
to what concerns the processing of high-order leakages (e.g., masks and masked
S-box output bytes). In the first experiments from Sect. 4, we define Nf = 100 for
ASCADr, ASCADf, and DPAv4.2. For CHES CTF 2018 and ESHARD-AES128,
we consider Nf = 20, as these two datasets are more noisy than previous ones.

Figure 3 illustrates the generic structure of the MLP-based discriminator
architecture. The input label (due to the conditioned fashion of the CGAN

It’s a Kind of Magic 109

structure) is concatenated with the input features that can be either fref or
fprof . For this architecture, we use relatively large, fully connected (dense) lay-
ers after the embedding layer of the class label. Later, in Sect. 4, we refer to
the number of dense layers after the embedding layer as dense layers embedding,
in which the number of neurons in these layers will be referred to as neurons
embedding. After the concatenation layer, we consider dense layers, and each
one of them is followed by a dropout layer. Similarly to the embedding layers,
the number of dense layers after the concatenation, whose are always inter-
leaved with a dropout layer, will be referred to as dense layers dropout, each
one with a number of neurons referred to as neurons dropout. The output layer
of the discriminator always employs the sigmoid activation function for binary
classification. Dropout layers are included in the discriminator as a means of reg-
ularization. We recommended performing hyperparameter tuning, using random
search [34] as detailed in Sect. 4.2, to determine the optimal number of dense
layers, their activation functions, and the corresponding number of neurons. To
reduce the search space, this model utilizes the Adam optimizer with a learn-
ing rate of 0.0025 and a β value of 0.5. These hyperparameters are commonly
employed in MLP-based profiling attacks [3,36], and we assume they will also
yield favorable results in this case. We emphasize that tuning is performed for
the rest of the hyperparameters.

Fig. 3. Generic architecture for the discriminator.

Generator Architecture. Different from the originally proposed CGAN struc-
ture [32] and its variants [12,46], our generator receives at its input real data
Xprof/Xtarget rather than a noise distribution p(z). The generator architecture is
a simple MLP structure without any regularization mechanism. What is expected
from the generator is to learn a mapping function f(x, θG) : Xtarget −→ ftarget
representing a feature extraction process. When Xtarget is a set of leakage
traces collected from a first-order masked AES implementation, the generator is
expected to transfer from the input to the output the features from Xtarget that
contain the highest SNR values with respect to two secret shares in the case of
the first order masked dataset.

110 S. Karayalçın et al.

While the task the generator needs to perform is conceptually fairly simple,
in practice, learning to extract leaky points of interest can be difficult. This
is especially true when attacks against the (resampled) full-length traces are
considered. In Table 9 of [34], we see that only between 0% and 5% of random
models result in successful attacks against full-length traces, while when features
are selected based on SNR values in the white-box scenario, almost all of them
can successfully recover the target key byte. As such, finding an architecture that
is well-tuned to the task of extracting these features also requires hyperparameter
tuning effort.

3.4 Assessing CGAN’s Efficiency

Our CGAN-SCA framework assumes that only the reference device is fully con-
trolled and that its secret shares are known. On the other hand, the randomness
used to generate masks of the profiling/target dataset is unknown. This creates
a challenging situation where accurately verifying the quality of the extracted
features from Xprof/Xtarget becomes difficult. In simpler terms, we aim to mea-
sure the extent to which ftarget represents the extracted high-order leakages
from Xtarget when the target is an n-order masked implementation. To demon-
strate the effectiveness of our CGAN-SCA solution, we utilize publicly available
AES-128 datasets that also provide access to masks. Consequently, we calcu-
late the SNR of the secret shares derived from the extracted features, ftarget,
which comes from the generator’s output. These SNR values are computed solely
to confirm that the trained generator can automatically extract leakages from
Xtarget. We emphasize that the CGAN model is neither trained nor validated
using any information regarding the masks associated with the target dataset.
Thus, for the targeted implementation, the threat model always follows the clas-
sic black-box profiling attack scenario.

At the end of each CGAN training epoch, we predict the generator with the
attack set from the target dataset Xtarget, and we compute the SNR between
extracted features ftarget and the secret shares. This gives us two vectors with
the same number of features from ftarget. From these SNR vectors, we store
the maximum SNR value. As the results from Sect. 4 confirm, the generator can
extract features from Xtarget, and the SNR values of secret masks from ftarget
are high.

4 Experimental Results

This section first introduces the reference implementation we considered in this
paper. Then, we perform a hyperparameter search to find generator and dis-
criminator architectures for different reference and target dataset combinations.
The best CGAN architectures are used to conduct profiling attacks and compare
them with the state-of-the-art.

It’s a Kind of Magic 111

4.1 Datasets

Our framework requires limited similarity between the reference and target
implementations. To illustrate this, this paper considers five publicly available
AES software implementations and each of them can serve as a reference imple-
mentation. The implementation details and side-channel measurement setup are
detailed in Table 1. The AES is implemented on different platforms with different
instruction set architectures and clock speeds. In terms of leakage measurement,
besides the difference in the leakage sources, the side-channel acquisition pro-
cess varies significantly between each implementation: ASCAD datasets were
acquired with a sampling rate of 2G samples per second (S/s), the ESHARD-
AES128 dataset was measured with a sampling rate of 200MS/s (for other
datasets, this information is not available).

Table 1. Dataset setups. All the datasets implement the AES-128 algorithm.

Dataset Side-Channel Type Platform and ISA Clock Speed Countermeasure

ASCADf [3] EM AVR RISC (8 bits) 4MHz Boolean Masking

ASCADr [3] EM AVR RISC (8 bits) 4MHz Boolean Masking

DPAv4.2 [4] Power AVR MIPS (8 bits) 4MHz RSM Masking

CHES CTF 2018 [22] Power ARM Cortex-M4 (32 bits) 168MHz Boolean Masking

ESHARD-AES128 [39] EM ARM Cortex-M4 (32 bits) 30MHz Boolean Masking

The side-channel leakages of four of them, namely ASCADr, ASCADf,
DPAv4.2, and CHES CTF 2018, are the same as adopted for the NOPOI sce-
nario in [34] (see Sect. 2.3 and Table reftab:hpspssearch of [34] for specific details
of the selected intervals). The raw side-channel measurements from ASCADr,
ASCADf, DPAv4.2, and CHES CTF 2018 contain large traces with 100 000,
250 000, 150 000, and 150 000 sample points per trace, respectively. Working with
such large intervals is computationally intensive, and in this paper, we also con-
sider window resampling with a window of 20 and a step of 10. The resampled
datasets result in preprocessed side-channel measurements with 25 000, 10 000,
15 000, and 15 000 samples per trace, and we consider 200 000, 50 000, 70 000,
and 30 000 measurements as profiling sets for ASCADr, ASCADf, DPAv4.2, and
CHES CTF 2018, respectively. For all datasets, we consider 5 000 measurements
as validation sets and another 5 000 as attack sets.

The fifth dataset is ESHARD-AES128, and it consists of side-channel mea-
surements collected from a software-masked AES-128 implementation running
on an ARM Cortex-M4 device. The AES implementation is protected with a
first-order Boolean masking scheme and shuffling of the S-box operations. In
this work, we consider a trimmed version of the dataset that is publicly avail-
able4 and includes the processing of the masks and all S-box operations in the

4 https://gitlab.com/eshard/nucleo sw aes masked shuffled.

https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled

112 S. Karayalçın et al.

first encryption round without shuffling. This dataset contains 100 000 mea-
surements, which are split into groups of 90 000, 5 000, and 5 000 for profiling,
validation, and attack sets, respectively.

ASCADf and ESHARD-AES128 datasets are the only datasets in which the
profiling, validation, and attack keys are equal and fixed. For the rest of the
datasets, profiling, validation, and attack keys differ.

4.2 CGAN Hyperparameter Search

Through preliminary experiments, we have already confirmed that identifying
effective generator and discriminator architectures is a cost-effective process,
as most of the hyperparameter combinations we have tested yield satisfactory
results, but better sets of hyperparameters can be found. For this purpose, we
employ a random search approach with predefined hyperparameter ranges, as
outlined in Table 2. Dense layers may have different numbers of neurons for the
generator, and the subsequent layer never has more neurons than the previous
layer. This design choice reduces the search space. Due to the limited options
available for each specific hyperparameter, the number of potential generator
architectures is capped at 744, while the number of potential discriminator archi-
tectures is limited to 324. Consequently, there exists a total of 241 056 possible
CGAN hyperparameter selections. In addition, the generator and discriminator
employ the Adam optimizer with fixed learning rates. For the discriminator, we
set the learning rate to 0.0025, while for the generator, the learning rate is set
to 0.0002. The discrepancy in learning rates follows [21]. Like other neural net-
work training procedures, the CGAN training process is conducted in batches,
with a fixed batch size of 400 measurements across all hyperparameter configu-
rations and experiments from this paper. Although the batch size and learning
rates could also be included in the hyperparameter search process, we decided
to fix these as using poor learning-rate/batch-size combinations would result in
training an unnecessarily large amount of non-converging models.

Table 2. Hyperparameter search ranges for generator and discriminator architectures.

Generator Discriminator

Hyperparameter Options Hyperparameter Options

Dense layers 1, 2, 3, 4 Dense layers Embedding 1, 2, 3

Neurons 100, 200, 300, 400, 500 Neurons Embedding 100, 200, 500

Activation Function linear, relu, selu, Dense layers Dropout 1, 2, 3

elu, leakyrelu, tanh Neurons Dropout 100, 200, 500

Dropout Rate 0.5, 0.6, 0.7, 0.8

Activation Function leakyrelu

To identify the best hyperparameter setup, we need an evaluation metric. As
conventional machine learning metrics are generally not suitable for assessing

It’s a Kind of Magic 113

models in SCA [35], we perform a profiling attack (on the validation set) on
extracted features to evaluate the trained models. The target dataset Xprof is
split into profiling and validation sets. As illustrated in Fig. 2, the input to the
generator is the profiling set Xprof . After the CGAN training is finished for every
hyperparameter search attempt, we predict on profiling and validation sets from
Xprof with the trained generator. This gives us fprof and fval, respectively. For
both sets, the keys are assumed to be known, allowing us to validate the whole
process. To check how well the trained generator can extract leaky features from
Xprof , we perform a profiling attack by training a profiling model with fprof
and by computing guessing entropy from fval. The profiling model consists of a
4-layer MLP (each layer with 100 neurons and elu activation function) trained
for 100 epochs. These hyperparameters were defined based on preliminary exper-
iments and delivered relatively efficient profiling attack results. Here, we could
also tune the profiling model architecture to find the optimal solution, which
is a process that we cover in Sect. 7. The trained generator that extracts fprof
and fval resulting in the most successful profiling attack (i.e., the profiling model
that requires the least number of validation traces fval to reach guessing entropy
equal to one) is considered the optimal solution.

The inputs to the discriminator in the CGAN architecture include the
extracted features (fref or fprof) and their corresponding labels (yref or yprof).
The labels yref or yprof refer to one output byte from the first S-box in the
first AES encryption round: S-box(di,j ⊕ ki,j). di,j (resp. ki,j) denote the j-th
plaintext byte (resp. j-th key byte) from the i-th side-channel measurement.
Only when ESHARD-AES128 is involved, the datasets are labeled according to
the Hamming weight of S-box output bytes, i.e., HW (S-box(di,j ⊕ki,j)), as this
dataset leaks in this leakage model and no successful attack results were found
otherwise. Note that yref or yprof need to be labeled with the same leakage
model.

Next, we provide results for ASCADr reference datasets. This dataset was
selected as a reference here as it provides the best results across the board.
Results with different reference datasets can be found in [25, Appendix A].

4.3 ASCADr as the Reference Dataset

In our first analysis, ASCADr is considered the reference dataset. We deploy a
random hyperparameter search process for each target dataset with 100 search
attempts. The CGAN is trained for 200 epochs for each of these search attempts.
At the end of each training epoch, we compute SNR between generated fea-
tures ftarget and secret shares, specifically, the masks and masked S-box out-
put, available with the target dataset. It is important to note that, as mentioned
in Sect. 3.4, these secret shares are assumed to be unknown to the attacker.
However, in this context, we utilize their knowledge to provide evidence of our
results.

Table 3 lists the best-found CGAN hyperparameters when ASCADf,
DPAV4.2, ESHARD-AES128, and CHES CTF 2018 are considered as target
datasets. Each profiling attack conducted after each hyperparameter search

114 S. Karayalçın et al.

attempt is applied only to the target key byte. When the target dataset is
ASCADf, the target key byte is k2, the first masked key byte in this dataset.
For the DPAv4.2, ESHARD-AES128, and CHES CTF 2018 datasets, the target
key byte is k0.

Table 3. Best CGAN hyperparameter for different target datasets when ASCADr is
a reference dataset.

Generator Network

Hyperparameter ASCADf DPAv4.2 ESHARD-AES128 CHES CTF 2018

Dense layers 1 4 3 4

Neurons 300 200-200-200-100 500-500-500 100-100-100-100

Activation Function linear linear leakyrelu linear

Discriminator Network

Hyperparameter ASCADf DPAv4.2 ESHARD-AES128 CHES CTF 2018

Dense layers Embedding 2 1 1 2

Neurons Embedding 100 100 200 200

Dense layers Dropout 3 1 1 1

Neurons Dropout 200 200 200 200

Dropout Rate 0.7 0.8 0.7 0.5

Activation Function leakyrelu leakyrelu leakyrelu leakyrelu

After finding the best CGAN architecture for each target dataset when
ASCADr is set as the reference dataset, we repeat the CGAN training plus
the profiling attack for the rest of the key bytes in the target dataset.

Our datasets are all first-order masked AES implementations. The extracted
features ftarget should contain leakages from the masked S-box output byte
and the mask. However, as the Boolean masking operation is commutative, the
generator cannot know what secret share should be the first or the second share.
However, the order of secret shares in the generator’s output has no impact on
the whole process as long as the generator can extract leaky features from the
two secret shares from Xtarget. Notably, for masking schemes where the order
of share values matters for recombination, the generator should learn to order
shares accordingly.

Figure 4 shows the evolution of the maximum SNR values for each secret
share during CGAN training. This plot illustrates the results for all target key
bytes, and the average SNR is illustrated in blue for share 1 and orange for
share 2. The results are provided for ASCADf, DPAv4.2, and ESHARD-AES128
as target datasets.5 Note that these figures also show the maximum SNR values

5 As masks are unavailable for the CHES CTF 2018 dataset, we cannot perform this
analysis for this target.

It’s a Kind of Magic 115

from the fref (in dashed green line) and Xtarget (dashed red line), which are
averaged over SNR obtained from secret shares associated to each key byte. As
we can see, for all target key bytes, the generator can extract features ftarget
from Xtarget, which results in high SNR values. This confirms that our proposed
CGAN structure can efficiently extract features from high-order leaky points. In
Sect. 6, a visualization analysis is applied to the generator to express in more
detail what features are extracted from Xtarget.

Fig. 4. Performance of CGAN architecture against different target datasets, Xtarget,
when ASCADr is the reference dataset.

Another interesting outcome from the results shown in Fig. 4 is that when
DPAv4.2 and ESHARD-128 are the target datasets, the averaged SNR levels
from ftarget (extracted features) are higher than the SNR levels from Xtarget

(raw datasets). This occurs due to averaging but also because for some of the
target key bytes, the SNR from ftarget is higher than the SNR from Xtarget.
This emphasizes the high capability of the trained generator to act as an efficient
feature extractor.

4.4 Profiling Complexity of the CGAN-SCA Framework

In this section, we evaluate the profiling complexity of the CGAN as a feature
extractor and its impact on the complexity of a black-box profiling attack on the
target dataset. This is conducted by varying the number of measurements from
Xprof that is considered for the training of generator and discriminator architec-
tures. This will allow us to check whether using reduced Xprof datasets still pro-
vides efficient applications of our proposed CGAN-SCA framework. An attacker
that is limited in the number of measurements from the target device is a realistic
assumption, and having a framework that works well under these circumstances is
beneficial for security assessments. Note that we do not limit the number of traces
that can be collected from a reference implementation as in our extended threat
model. We assume this is not a serious limitation for an attacker.

In this experimental setup, we first find hyperparameters that work in more
limited scenarios. The best architectures found in Sect. 4.2 using the full target
datasets do not generalize well when fewer traces are available. Thus, we repeat

116 S. Karayalçın et al.

the random hyperparameter search using the ranges provided in Sect. 4.2. We run
100 search attempts combination and select the best generator and discriminator
architectures using the validation metric explained in Sect. 3.4. For this random
search, we considered 30 0000 traces from Xprof .

Using the best-found generator and discriminator architectures, we then train
CGAN models using the reference dataset and 10 000 through 70 000 traces with
10 000 trace steps. To check how the CGAN model trained with different num-
bers of profiling traces Xprof impacts the performance of a black-box profiling
attack, we ran a random search using the obtained fprof with varying numbers of
profiling traces. As the main idea here is to focus on the process that is efficient
with less hyperparameter tuning efforts with respect to finding a good profiling
model, we decided to limit the profiling model size to small MLP networks with
up to four hidden layers. The hyperparameter ranges for the profiling attack
model search are shown in Table 4.

Table 4. Hyperparameter search ranges for MLP as a profiling attack model.

Hyperparameter Options

Dense layers 1, 2, 3, 4

Neurons 20, 50, 100, 200, 300, 400, 500

Activation Function elu, selu, relu, leakyrelu, tanh

Learning Rate 0.001, 0.005, 0.0001, 0.0005

Batch Size 100, 200, 300, 400

Weight Initialization random (normal/uniform), he (normal/uniform), glorot (normal/uniform)

For comparison, we also run these attacks in a white-box (WB) profiling
scenario (following the white-box DL setup in Sect. 7) where features from
Xprof/Xtarget are selected based on SNR.

As can be seen in Table 5, the CGAN framework can be used even in scenar-
ios where only limited profiling traces are available from the target device. The
columns indicate the number of profiling traces Xprof considered for training
the CGAN architecture. Successful attacks are possible with only 10 000 profil-
ing traces in both tested scenarios. While the attack results are not as efficient as
with more traces, the ability of the CGAN network to learn in this limited sce-
nario is somewhat surprising as the conventional discriminative DLSCA models
often require significantly more profiling traces to generate efficient models [30].
In fact, our results are more aligned with the scheme-aware adversary who uti-
lizes knowledge of the masking scheme to explicitly embed the combination of
secret shares into a neural network layer (namely, the Grouprecombine- [30] and
Bilinear [9] layers). As such, we note that including reference traces has similar
benefits to these layers in terms of aiding the networks in learning the secret-
share recombination.

Furthermore, in Table 5, we see that training a CGAN model with larger
numbers of profiling traces can alleviate the need for using the full profiling set

It’s a Kind of Magic 117

in the subsequent attack phase. The CGAN feature selection has a similar effect
to selecting features in a white-box setting. While using more profiling traces has
clear benefits regarding attack performance, the feature selection provided by
the CGAN makes it significantly easier for attack models to converge in limited
scenarios by eliminating the presence of uninformative samples. This emphasizes
that the CGAN framework can, to an extent, emulate feature selection effectively
without having access to the mask shares of a target device.

Table 5. Number of traces to reach GE= 1 for varying numbers of profiling traces for
ASCADr vs. DPAv4.2

CGAN training traces

Profiling Traces 10 00020 00030 00040 00050 00060 00070 000WB

70 000 - - - - - - 9 1

67 500 - - - - - - 11 1

65 000 - - - - - - 10 1

62 500 - - - - - - 9 1

60 000 - - - - - 19 10 2

57 500 - - - - - 21 10 1

55 000 - - - - - 20 10 1

52 500 - - - - - 25 11 2

50 000 - - - - 21 20 11 1

47 500 - - - - 22 25 12 1

45 000 - - - - 22 26 10 2

42 500 - - - - 24 22 11 2

40 000 - - - 29 25 25 11 2

37 500 - - - 35 27 29 11 2

35 000 - - - 31 25 22 11 2

32 500 - - - 35 26 23 15 2

30 000 - - 14 36 25 29 12 2

27 500 - - 11 35 28 30 15 2

25 000 - - 15 37 29 29 15 2

22 500 - - 18 38 27 28 20 2

20 000 - 28 21 39 33 28 19 3

17 500 - 30 21 45 31 34 27 3

15 000 - 37 26 58 45 56 34 3

12 500 - 32 33 72 70 66 60 4

10 000 627 48 38 99 89 155 96 4

7 500 680 56 46 131 143 107 203 5

5 000 797 91 78 251 252 372 285 12

118 S. Karayalçın et al.

5 The Analysis of the Latent Space

In this section, we analyze how variations in the construction of fref can impact
how the generator network performs at extracting features. We first look at
the effect of organizing leaky features in fref in various ways and whether the
generator network can mimic these patterns accurately. Second, we investigate
whether fref can also be created using alternative pre-processing methods, such
as PCA and LDA.

5.1 Varying fref Leakage Pattern

Here, we analyze whether the generator network in the CGAN framework can
mimic the leakage patterns present in the adversarial set fref . This analysis
provides more insights into the relationship between the generator and discrim-
inator. As explained before, the generator needs to extract main features from
Xtarget, and it is important to confirm if these extracted features ftarget follow
the pattern from reference features fref . This is an expected outcome from the
generator as it follows the principle of GAN architectures where the generator
is trained to produce outputs that are statistically similar to the adversarial
dataset (which, in our case, is given by fref).

This analysis considers ASCADr to be the reference dataset and ASCADf to
be the target dataset. This scenario was chosen as these datasets have very high
SNR peaks concerning their secret shares and are of the same implementation
and device model, simplifying the analysis without expensive hyperparameter
tuning efforts. Note, however, that these datasets were acquired with distinct
acquisition settings.

From the SNR-based feature selection process on ASCADr, we select 50
features for each secret share to have a total of Nf = 100. Thus, we organize
these features in two different patterns, as shown in Figs. 5a and 5c. During the
training of the CGAN architecture, at the end of each epoch, we compute the
SNR levels for the secret shares on ftarget, provided by the generator. Note in the
results given in Figs. 5b and 5d how the generator learns to mimic precisely the
leakage distributions from fref . These plots represent the range of minimum and
maximum SNR values obtained during CGAN training epochs (i.e., we compute
the SNR at the end of each CGAN training epoch). The solid lines represent
the mean SNR values. These results confirm that our generator can extract
leaky features from the input target traces Xtarget. An essential insight derived
from this analysis is the significant role played by the feature selection process
in transforming Xref into fref for the generator’s feature extraction task. The
number and distribution of leaky points of interest in fref directly impact the
generator’s performance on its task.

5.2 Varying Reference Feature Selection Method

While it is clear that the generator can effectively emulate feature selection
of SNR peaks, this method is relatively straightforward when compared with

It’s a Kind of Magic 119

methods currently used in literature, like LDA [6] or PCA. It is interesting to
verify whether our framework allows alternative feature selection methods to be
emulated. To this end, we run experiments using LDA and PCA for constructing
fref . For both methods, we first select the 100 highest SNR features for each
share and then transform these features into 5 components per share. Thus, in
total, the number of features becomes Nf = 10. To test whether the framework
can also emulate these methods, we run attacks against DPAv4.2 using ASCADr
as a reference. To tune models for these cases, we run a hyperparameter search
using the same ranges as in Sect. 4.2.

In Fig. 6, we see that the more complex feature selection methods used for the
reference dataset still result in converging generators. After training generator
and discriminator models, when both PCA and LDA are taken into account
for feature selection from the reference dataset, we apply profiling attacks on
extracted features fprof and ftarget. We can retrieve the correct key byte with
4 and 3 traces for PCA and LDA, respectively. The final performance is similar
to the performance of the generators in Sect. 4, and the attack performance is
comparable to the attacks with the same datasets in Table 6. From these results,
we can conclude that the CGAN framework is not limited to only using SNR-
based feature selection and also performs well for alternative solutions.

6 Visualizing Generator’s Feature Extraction with LRP
Attribution Method

In the previous section, we demonstrated that the generator effectively extracts
features from Xtarget by mimicking the pattern observed in fref . Additionally,
we also verified that the feature selection method to produce fref has little
impact on the whole CGAN-SCA results. This section applies the Layer-wise
Relevance Propagation (LRP) [2] method to analyze the generator further. LRP
is a cost-effective solution that provides interpretability and, for our case, con-
firms that the generator accurately captures leakage from actual leaky points of
interest from Xtarget. The primary objective of this section is to present evidence
that the generator, although not conditioned with labels, can extract features
from the high-order leaky points of interest rather than functioning solely as a
preprocessing step that leads to dimensionality reduction.

In Fig. 7, we provide two scenarios. The figure on the top-left shows the
LRP values obtained from the trained generator when the reference dataset is
ASCADr, and the target dataset is ASCADf. The generator’s output produces
ftarget with Nf = 100 features per trace. For this case, the selected pattern
for fref is exactly what is shown in Fig. 5a. Thus, as the generated features
ftarget have the same shape as shown in Fig. 5b, we compute LRP for the first
50 features for share 1 and the other 50 features for share 2. Comparing with
the SNR values obtained from the same target key byte of ASCADf (plot on
the bottom-left of Fig. 7), we see that the generator extracts the correct features
from Xtarget.

120 S. Karayalçın et al.

Fig. 5. SNRs of fref (left) with the corresponding ftarget (right).

Furthermore, we present an example using the ESHARD-128 dataset. In this
case, the generator is trained with ASCADf as the reference dataset. Following
the same process as in the previous example, we obtain the results depicted
on the right side of Fig. 7. It is noteworthy how the generator can extract fea-
tures that align with the location of SNR peaks concerning the processing of
high-order leakages. This interpretability analysis confirms the generator’s effec-
tiveness in extracting high-order leakages from a target dataset when it is not
even conditioned to any label class. Indeed, only conditioning the discrimina-
tor in our proposed CGAN structure is enough to implement efficient feature
extraction from masked datasets. However, as the CGAN structure never sees
the labels from the target attack set and is still able to extract features from this

It’s a Kind of Magic 121

Fig. 6. Maximum SNR evolution for the best model hyperparameter search ASCADr
vs. DPAv4.2 using LDA/PCA for generating fref .

Fig. 7. Comparison between LRP magnitude and SNR values from secret shares
obtained for a single target key byte.

attack set efficiently, we may intuitively conclude that the generator learns to
extract input features from specific positions. The results in this section provide
conditions to make the application of the CGAN-SCA framework to black-box
profiling attacks more interpretable. It points out the locations in the target
dataset Xtarget, where feature extraction can expose potential vulnerabilities in
the implemented countermeasures.

7 Profiling Attacks and Comparison with State-of-the-Art

We employ state-of-the-art profiling attack methods as a benchmark to compare
against our results. More precisely, we compare the number of attack traces that
are necessary to achieve guessing entropy equal to 1 when the attack considers
up to 2 000 traces. Moreover, we compare the success of a hyperparameter search
process. The following analysis is conducted for each dataset:

122 S. Karayalçın et al.

- CGAN-SCA with DL-based profiling attack (CGAN-SCA): this attack
is implemented with the CGAN-SCA framework presented in Sect. 3.2. The
CGAN-SCA architecture is trained to achieve an efficient generator model that
converts Xprof and Xtarget traces into fprof and ftarget. After obtaining these
extracted features, we apply a DL-based profiling attack.

- DL-based black-box profiling attack (BBDL): in this case, we apply
DL-based profiling SCA on datasets without feature selection. The attack is
considered a black box as the profiling phase does not consider any knowledge
about countermeasures or secret randomness.

- DL-based white-box profiling attack (WBDL): this profiling attack
assumes that during profiling, an adversary can implement feature selection as
countermeasures (i.e., the masking scheme) and secret randomness (i.e., secret
masks) are known. Therefore, feature or points of interest selection can be applied
to profiling and attack traces.

- White-box Gaussian Template Attack (WBTA): this process follows
a white-box profiling attack in which points of interest are selected based on
the set of highest SNR peaks obtained with the knowledge of secret masks.
For all scenarios, we select 1 000 points of interest by targeting a second-order
leakage function (500 points of interest for each share), which is reduced with
linear discriminant analysis (LDA) to 10 points of interest. Afterward, we build
Gaussian templates with them.

Fig. 8. GE results for key-byte 2 for various targets and methods (ref: ASCADr)

The first three profiling methods, which consist of deep learning-based pro-
filing models, include a hyperparameter tuning process for a small MLP model.

It’s a Kind of Magic 123

For each of the 16 target key bytes from the full AES 128-bit key, we search
for 100 random MLP architectures using the same hyperparameter ranges from
Table 4. Each of these MLP architectures is then trained, validated, and tested
separately with:

1. fprof , ftarget, and fval sets, respectively, obtained by predicting the generator
G with the profiling, validation, and attack sets from the Xprof and Xtarget.
This way, we implement the aforementioned CGAN-SCA with DL-based
profiling attack;

2. original Xprof (split into profiling and validation traces) and Xtarget, to imple-
ment the aforementioned DL-based black-box profiling attack: BBDL.

3. SNR-based selected features from Xprof and Xtarget to implement the afore-
mentioned DL-based white-box profiling attack: WBDL.

Through this comparison, we emphasize the significantly reduced effort from
the CGAN-SCA approach in finding an efficient profiling model that shows per-
formance comparable to optimal profiling models, as is expected for WBDL
and WBTA. Table 6 provides the performance of the five aforementioned profil-
ing attack methods on datasets listed in Sect. 4.1. For the case of CGAN-SCA
methods, we provide results for different reference datasets. This table shows
results with different colors to differentiate among profiling attack categories for
better readability.

As can be seen in Fig. 8 and Table 6, the attacks using ASCADr as a refer-
ence for all targets improve substantially over the BBDL attacks. Furthermore,
in the best-case scenarios for ASCAD(r/f) and DPAv4.2, results are compara-
ble to attacks following white-box assumptions.6 Only for ESHARD, and when
DPAv4.2 is used as a reference, we see that white-box attacks still substan-
tially outperform our attacks. We mostly attribute this to the larger difference
in implementations/devices, which we discuss in more depth in Sect. 8.

Table 7 shows the search success from the hyperparameter search part of DL-
based profiling attack methods. The search success indicates the percentage of
times a profiling model has reached the guessing entropy of 1 with less than 2 000
attack traces. The percentages are the average of all target key bytes. CGAN-
SCA and WBDL present similar performances and are significantly superior to
black-box DL. This finding is impressive if we remember that CGAN-SCA is
a black-box (i.e., non-worst case) profiling approach. The results from Table 7
corroborate what was already shown in [34]: spending significant effort on hyper-
parameter search process eventually results in a high-performing deep neural net-
work against first-order masking in AES implementations. However, what mat-
ters in this table is the search success, which informs more about the chances of
finding a good group of hyperparameters and training settings. Although black-
box DL-based profiling attacks result in successful attacks with (in some cases)
very few required attack traces, the search success with CGAN-SCA frame-
work and white-box DL approaches are significantly higher. For instance, when
6 While it seems likely that CHES CTF 2018 results are competitive with white-box

attacks, we cannot verify this as mask values are not available.

124 S. Karayalçın et al.

Table 6. The minimum number of attack traces to obtain guessing entropy equal to
1. The symbol x indicates that the target key byte is not recovered with 2 000 attack
traces. The NA indicates that the attack is not applicable because the target key bytes
are unprotected.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

Method

Target
ASCADr

CGAN-SCA (ref: ASCADf) NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CGAN-SCA (ref: DPAv4.2) NA NA 4 2 2 2 5 11 10 2 6 8 5 2 2 2

White-box DL NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Black-box DL NA NA 1 2 3 1 29 5 1 16 9 9 9 6 1 1

White-box TA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ASCADf

CGAN-SCA (ref: ASCADr) NA NA 1 1 1 1 1 1 4 1 5 1 15 5 1 5

CGAN-SCA (ref: DPAv4.2) NA NA 3 3 2 2 2 3 7 2 5 2 7 5 2 5

White-box DL NA NA 1 1 1 1 1 1 4 1 2 1 3 3 1 1

Black-box DL NA NA 9 6 9 8 18 x 27 6 20 6 x 34 17 7

White-box TA NA NA 1 1 1 1 1 1 4 1 2 1 8 4 1 5

DPAv4.2

CGAN-SCA (ref: ASCADr) 1 3 2 5 3 2 4 2 7 2 3 3 2 2 5 2

CGAN-SCA (ref: ASCADf) 5 2 3 12 3 6 5 9 4 3 7 6 3 2 5 8

White-box DL 1 1 1 2 3 1 2 1 3 1 2 2 1 1 2 1

Black-box DL x 315 140 x x x 1454 x x x x x x x x x

White-box TA 3 2 2 3 2 3 3 2 5 3 4 3 2 2 3 2

CHES CTF 2018

CGAN-SCA (ref: ASCADr) 36 24 22 20 51 19 21 36 34 18 25 23 24 22 22 19

CGAN-SCA (ref: ASCADf) 19 39 27 30 19 14 22 25 32 15 29 30 33 18 27 18

CGAN-SCA (ref: DPAv4.2) 91 47 36 115 159 200 73 138 858 56 136 50 557 78 124 52

Black-box DL x 471 367 77 668 1327 304 1216 1369 957 83 662 x 459 413 380

ESHARD-AES128

CGAN-SCA (ref: ASCADr) 556 1105 312 224 709 257 396 206 967 385 244 272 309 294 292 299

CGAN-SCA (ref: ASCADf) 491 1248 528 357 1539 532 641 493 622 552 373 513 732 406 454 572

CGAN-SCA (ref: DPAv4.2) 1353 x x 1242 x x x 1051 x 1787 1643 x x x x x

White-box DL 640 1546 875 727 x 774 799 667 x 846 487 745 1162 649 818 1037

Black-box DL 758 748 625 616 1957 950 536 700 x 769 846 479 1527 769 572 462

White-box TA 67 81 97 89 110 75 123 107 152 100 100 89 127 87 111 111

Table 7. Search success for MLP-based profiling attack with random hyperparameter
search. The percentage indicates the number of successful MLP models out of 100, and
it is averaged for all target key bytes.

Target

Method CGAN-SCA CGAN-SCA CGAN-SCA White-box Black-box

(ref: ASCADr) (ref: ASCADf) (ref: DPAv4.2) DL DL

ASCADr NA 72.80% 90.47% 99.88% 8.92%

ASCADf 64.22% NA 68.25% 70.58% 9.24%

DPAv4.2 65.07% 62.16% NA 63.68% 0.74%

CHES CTF 2018 61.10% 99.55% 33.15% NA 12.14%

ESHARD-AES128 94.56% 54.48% 10.17% 63.68% 35.60%

It’s a Kind of Magic 125

ASCADr is set as a reference, and DPAv4.2 is set as a target, the search success
for a black-box DL is 0.74%, while for CGAN-SCA is 65.07%. For the case when
ASCADf is the reference and CHES CTF 2018 is the target, the search success
increases from 12.14% for a black-box approach to 99.55% with our CGAN-SCA
framework. This justifies the need for feature selection (in the case of white-box)
or feature extraction (in the case of CGAN-SCA framework) to speed up secu-
rity evaluations. Since our proposed solution is also black-box, it becomes very
attractive for efficiently assessing the security of masked implementations.

8 Discussion

Profiling attack results presented in this paper are aligned with the state-of-the-
art for the evaluated datasets (see [34] for the ASCAD, CHES CTF 2018, and
DPAv4.2 datasets. To the authors’ knowledge, there are no published ESHARD-
AES128 dataset results for profiling attacks). Such results were possible due to
the following additional elements in a security assessment process:

1. Using a (white-box) reference dataset. The CGAN-SCA structure
requires a reference device with similar implementation specifications to the
target one. This paper shows that reference and target datasets can be gath-
ered from different devices, cryptographic designs (with at least the same
cryptographic algorithm and a similar masking scheme), varying source codes,
and different acquisition setups. For some experimental examples, reference
and target datasets come from different side-channel types (e.g., power and
electromagnetic analysis). Together with the availability of a reference imple-
mentation, it should also be possible to implement feature selection from
this same implementation. This paper assumes that secret masks from the
reference implementation are known to compute feature selection.

2. The employment of a generative model for feature extraction from
target side-channel measurements. As specified in Sect. 3.2, the CGAN-
SCA framework can implement feature extraction from a target dataset, and
a reference dataset is used as an adversarial dataset. We are aware that this
whole process increases the complexity of the analysis because a CGAN archi-
tecture (i.e., generator and discriminator neural networks) needs to be trained
before applying a profiling attack on the extracted features from the target
dataset. However, our experimental analysis demonstrated that when an effi-
cient CGAN architecture is found, and the extracted features contain high
SNR levels concerning the leakage of intermediate variable (e.g., masks and
masked S-Box outputs), defining a profiling model becomes relatively easy.
Therefore, in practice, the efforts to find an efficient profiling model (see [34]
where the authors performed very costly hyperparameter tuning processes)
are transferred to defining an efficient CGAN architecture.

3. Hyperparameter tuning for generator and discriminator models.
An efficient CGAN architecture requires some carefully tuned generator and
discriminator models. Overall, this is the only time-consuming part of the
proposed CGAN-SCA framework. However, this whole process brings clear

126 S. Karayalçın et al.

benefits, as a feature extraction process from raw side-channel measurements
becomes possible without assuming any knowledge about low-level counter-
measure details and secret randomness.

Our results present three broad categories of ‘similar’ implementations, allow-
ing us to give some takeaways on how similar the reference implementation must
be:

1. ASCAD(f/r) vs. ASCAD(f/r): The reference device and implementation
are the exact same. This scenario can occur when an attacker/evaluator has
access to the source code of an implementation but cannot alter this imple-
mentation on the target device. In such a scenario, the attacker/evaluator
could utilize an instrumented version of the source to create a reference
dataset. Our results in Sect. 4 show that the inclusion of this reference imple-
mentation results in significantly improved attack results over black-box DL
attacks, and the results are competitive with white-box approaches.

2. ASCAD(f/r) vs. DPAv4.2: The reference and target devices are similar
in that both are 8-bit micro-controllers with RISC-based micro-architectures.
The measurements for these targets are in different side-channel domains
(EM for ASCAD vs Power for DPA). Both implementations incorporate
Boolean masking-based countermeasures, although the specifics of the imple-
mentations differ somewhat. For DPAv4.2, an RSM-based masking scheme is
employed, which results in 16 possible mask values, while for both ASCAD
versions, we have 256 possible mask values. Results here still showcase strong
improvements over black-box DL, especially when DPAv4.2 is the target, but
the attacks are somewhat less efficient than white-box attacks.

3. (ASCAD/DPA) vs. (CHES CTF/ESHARD): We target 32-bit micro-
controllers with ARM micro-architectures while using 8-bit AVR micro-
controllers as the reference. The implementations are broadly similar in that
these are all software AES implementations protected with first-order Boolean
masking. As we see in Table 6, the attacks against both CHES CTF and
ESHARD are better than the black-box DL attacks when ASCAD is used as
the reference, while the results are similar to (CHES CTF), or worse than
(ESHARD) black-box attacks when DPA is used as the reference. Addition-
ally, we see that for ESHARD, the performance of white-box attacks is still
significantly better than that of our CGAN-SCA setups.

In ideal cases where the reference implementation only differs in terms of
allowing the knowledge of mask values,7 we see that results are competitive with
white-box attacks. The device model and architecture similarity are more impor-
tant than countermeasure implementation for other settings. While our results
do not allow for strong requirements on the reference implementation, overall,
the necessary ‘similarity’ to improve over black-box attacks is not extremely
stringent. In some of the tested settings where the devices differ in terms of
micro-architecture and implementation, we still see improvements over black-box

7 The ASCAD(f/r) vs. ASCAD(f/r) scenario.

It’s a Kind of Magic 127

attacks although the performance in these cases is worse than their white-box
counterparts. In addition, it is more important to ensure the devices are similar
in terms of, e.g., micro-architecture or bus size, over specific countermeasure
implementation details (i.e., RSM vs. Boolean masking).

9 Conclusions and Future Work

This paper proposes a novel CGAN-based framework to automatically extract
features from a target dataset when the adversarial dataset comes from a similar,
open, and fully controlled implementation. Our solution differs from conventional
CGAN architectures from the literature: the generator receives real (target)
traces instead of noise, and it is not conditioned with label class, allowing it to
extract features from an unlabeled attack set. By applying our framework to five
publicly available masked AES datasets, we obtain profiling attack results that
significantly surpass the state-of-the-art black-box security assessment and rival
the performance of worst-case (white-box) security evaluations. The proposed
CGAN-SCA framework can precisely extract features from high-order leakages
by mimicking the feature distribution present in a reference dataset. Our method
makes hyperparameter tuning in a deep learning-based profiling attack almost
negligible, similar to white-box deep learning-based security evaluations.

For future work, we plan to investigate the effectiveness of CGAN architec-
tures to extract features from high-order masking schemes. Moreover, we plan
to implement more complex generator and discriminator models, such as CNN-
based architectures, which could extract features from desynchronized datasets.
More complex CGAN structures could potentially reduce some of our frame-
work’s limitations, such as using a reference dataset with a minimum acceptable
SNR level regarding the n secret shares. A way to define a cost-efficient early
stopping metric during CGAN training could also be an interesting research
direction. Finally, we plan to explore whether the proposed structure can be
adapted to non-profiling settings.

Acknowledgements. This work was performed using the ALICE compute resources
provided by Leiden University.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Jr., B.S.K., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,
August 13-15, 2002, Revised Papers. Lecture Notes in Computer Science, vol. 2523,
pp. 29–45. Springer (2002). https://doi.org/10.1007/3-540-36400-5 4

2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE 10(7), 1–46 (07 2015). https://doi.org/10.1371/journal.
pone.0130140

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140

128 S. Karayalçın et al.

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptographic Engi-
neering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

4. Bhasin, S., Bruneau, N., Danger, J., Guilley, S., Najm, Z.: Analysis and improve-
ments of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas,
V., Schaumont, P. (eds.) Security, Privacy, and Applied Cryptography Engineer-
ing - 4th International Conference, SPACE 2014, Pune, India, October 18-22,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8804, pp. 201–218.
Springer (2014). https://doi.org/10.1007/978-3-319-12060-7 14, https://doi.org/
10.1007/978-3-319-12060-7 14

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings. Lecture Notes in Computer Science, vol. 3156, pp. 16–
29. Springer (2004). https://doi.org/10.1007/978-3-540-28632-5 2

6. Bronchain, O., Cassiers, G., Standaert, F.: Give me 5 minutes: Attacking ASCAD
with a single side-channel trace. IACR Cryptol. ePrint Arch. p. 817 (2021), https://
eprint.iacr.org/2021/817

7. Bronchain, O., Durvaux, F., Masure, L., Standaert, F.: Efficient profiled side-
channel analysis of masked implementations, extended. IEEE Trans. Inf. Forensics
Secur. 17, 574–584 (2022). https://doi.org/10.1109/TIFS.2022.3144871

8. Bronchain, O., Standaert, F.: Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(2), 1–25 (2020). https://doi.org/10.13154/tches.v2020.i2.1-25

9. Cao, P., Zhang, C., Lu, X., Gu, D., Xu, S.: Improving deep learning based second-
order side-channel analysis with bilinear CNN. IEEE Trans. Inf. Forensics Secur.
17, 3863–3876 (2022). https://doi.org/10.1109/TIFS.2022.3216959

10. Cao, P., Zhang, H., Gu, D., Lu, Y., Yuan, Y.: AL-PA: cross-device profiled side-
channel attack using adversarial learning. In: Oshana, R. (ed.) DAC ’22: 59th
ACM/IEEE Design Automation Conference, San Francisco, California, USA, July
10 - 14, 2022. pp. 691–696. ACM (2022). https://doi.org/10.1145/3489517.3530517

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002).
https://doi.org/10.1007/3-540-36400-5 3

12. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain. pp. 2172–2180 (2016), https://proceedings.neurips.cc/paper/
2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html

13. Cristiani, V., Lecomte, M., Maurine, P.: The evil machine: Encode, visualize and
interpret the leakage. In: Proceedings of the 38th ACM/SIGAPP Symposium on
Applied Computing. p. 1566-1575. SAC ’23, Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3555776.3577688

14. Dubrova, E., Ngo, K., Gärtner, J.: Breaking a fifth-order masked implementation of
crystals-kyber by copy-paste. IACR Cryptol. ePrint Arch. p. 1713 (2022), https://
eprint.iacr.org/2022/1713

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-540-28632-5_2
https://eprint.iacr.org/2021/817
https://eprint.iacr.org/2021/817
https://doi.org/10.1109/TIFS.2022.3144871
https://doi.org/10.13154/tches.v2020.i2.1-25
https://doi.org/10.1109/TIFS.2022.3216959
https://doi.org/10.1145/3489517.3530517
https://doi.org/10.1007/3-540-36400-5_3
https://proceedings.neurips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://doi.org/10.1145/3555776.3577688
https://eprint.iacr.org/2022/1713
https://eprint.iacr.org/2022/1713

It’s a Kind of Magic 129

15. Genevey-Metat, C., Gérard, B., Heuser, A.: On what to learn: Train or adapt a
deeply learned profile? IACR Cryptol. ePrint Arch. p. 952 (2020), https://eprint.
iacr.org/2020/952

16. Genevey-Metat, C., Heuser, A., Gérard, B.: Trace-to-trace translation for SCA. In:
Grosso, V., Pöppelmann, T. (eds.) Smart Card Research and Advanced Applica-
tions - 20th International Conference, CARDIS 2021, Lübeck, Germany, Novem-
ber 11-12, 2021, Revised Selected Papers. Lecture Notes in Computer Science, vol.
13173, pp. 24–43. Springer (2021). https://doi.org/10.1007/978-3-030-97348-3 2

17. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 8616, pp. 444–461. Springer (2014). https://doi.org/10.1007/978-3-662-44371-
2 25

18. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13,
2008. Proceedings. Lecture Notes in Computer Science, vol. 5154, pp. 426–442.
Springer (2008). https://doi.org/10.1007/978-3-540-85053-3 27

19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http://
www.deeplearningbook.org

20. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances
in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada. pp. 2672–2680 (2014), https://proceedings.neurips.cc/paper/2014/hash/
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

21. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Guyon,
I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA. pp. 6626–6637 (2017), https://proceedings.neurips.cc/
paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html

22. Hu, Y., Zheng, Y., Feng, P., Liu, L., Zhang, C., Gohr, A., Jacob, S., Schindler,
W., Buhan, I., Tobich, K.: Machine learning and side channel analysis in a CTF
competition. IACR Cryptol. ePrint Arch. p. 860 (2019), https://eprint.iacr.org/
2019/860

23. Hutter, M., Schmidt, J.: The temperature side channel and heating fault attacks.
In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Appli-
cations - 12th International Conference, CARDIS 2013, Berlin, Germany, Novem-
ber 27-29, 2013. Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8419, pp. 219–235. Springer (2013). https://doi.org/10.1007/978-3-319-08302-
5 15

24. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp. 5967–
5976. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.632

https://eprint.iacr.org/2020/952
https://eprint.iacr.org/2020/952
https://doi.org/10.1007/978-3-030-97348-3_2
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-540-85053-3_27
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://eprint.iacr.org/2019/860
https://eprint.iacr.org/2019/860
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1109/CVPR.2017.632

130 S. Karayalçın et al.

25. Karayalcin, S., Krcek, M., Wu, L., Picek, S., Perin, G.: It’s a kind of magic: A novel
conditional GAN framework for efficient profiling side-channel analysis (extended
version). Cryptology ePrint Archive, Paper 2023/1108 (2023), https://eprint.iacr.
org/2023/1108

26. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of CRYPTO’96. LNCS, vol. 1109, pp. 104–113.
Springer-Verlag (1996)

27. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. Lec-
ture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999). https://
doi.org/10.1007/3-540-48405-1 25

28. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of the
19th Annual International Cryptology Conference on Advances in Cryptology. pp.
388–397. CRYPTO ’99, Springer-Verlag, London, UK, UK (1999), http://dl.acm.
org/citation.cfm?id=646764.703989

29. Kong, J., Kim, J., Bae, J.: Hifi-gan: Generative adversarial networks for efficient
and high fidelity speech synthesis. In: Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/
2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html

30. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don’t learn what you already
know scheme-aware modeling for profiling side-channel analysis against masking.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 32–59 (2023). https://doi.
org/10.46586/tches.v2023.i1.32-59

31. Masure, L., Strullu, R.: Side channel analysis against the anssi’s protected AES
implementation on ARM. IACR Cryptol. ePrint Arch. p. 592 (2021), https://
eprint.iacr.org/2021/592

32. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR
abs/1411.1784 (2014), http://arxiv.org/abs/1411.1784

33. Mukhtar, N., Batina, L., Picek, S., Kong, Y.: Fake it till you make it: Data aug-
mentation using generative adversarial networks for all the crypto you need on
small devices. In: Galbraith, S.D. (ed.) Topics in Cryptology - CT-RSA 2022 -
Cryptographers’ Track at the RSA Conference 2022, Virtual Event, March 1-2,
2022, Proceedings. Lecture Notes in Computer Science, vol. 13161, pp. 297–321.
Springer (2022). https://doi.org/10.1007/978-3-030-95312-6 13

34. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for deep learning-
based side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2022(4), 828-861 (Aug 2022). https://doi.org/10.46586/tches.
v2022.i4.828-861, https://tches.iacr.org/index.php/TCHES/article/view/9842

35. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel evalu-
ations. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(1), 209–237 (Nov 2018). https://doi.org/10.13154/tches.v2019.i1.209-237,
https://tches.iacr.org/index.php/TCHES/article/view/7339

36. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: Deep learning-based
physical side-channel analysis. ACM Comput. Surv. (oct 2022). https://doi.org/
10.1145/3569577, just Accepted

https://eprint.iacr.org/2023/1108
https://eprint.iacr.org/2023/1108
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.46586/tches.v2023.i1.32-59
https://eprint.iacr.org/2021/592
https://eprint.iacr.org/2021/592
http://arxiv.org/abs/1411.1784
https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.46586/tches.v2022.i4.828-861
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577

It’s a Kind of Magic 131

37. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443–461. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

38. Thapar, D., Alam, M., Mukhopadhyay, D.: Deep learning assisted cross-family
profiled side-channel attacks using transfer learning. In: 22nd International Sym-
posium on Quality Electronic Design, ISQED 2021, Santa Clara, CA, USA, April
7-9, 2021. pp. 178–185. IEEE (2021). https://doi.org/10.1109/ISQED51717.2021.
9424254

39. Vasselle, A., Thiebeauld, H., Maurine, P.: Spatial dependency analysis to extract
information from side-channel mixtures: extended version. J. Cryptogr. Eng. 13(4),
409–425 (2023). https://doi.org/10.1007/S13389-022-00307-9

40. Veyrat-Charvillon, N., Gérard, B., Standaert, F.X.: Soft analytical side-channel
attacks. In: Advances in Cryptology–ASIACRYPT 2014: 20th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, ROC, December 7-11, 2014. Proceedings, Part I 20. pp. 282–
296. Springer (2014)

41. Wang, P., Chen, P., Luo, Z., Dong, G., Zheng, M., Yu, N., Hu, H.: Enhancing the
performance of practical profiling side-channel attacks using conditional generative
adversarial networks. CoRR abs/2007.05285 (2020), https://arxiv.org/abs/2007.
05285

42. Wu, L., Perin, G., Picek, S.: Not so difficult in the end: Breaking the lookup table-
based affine masking scheme. In: Carlet, C., Mandal, K., Rijmen, V. (eds.) Selected
Areas in Cryptography - SAC 2023 - 30th International Conference, Fredericton,
Canada, August 14-18, 2023, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 14201, pp. 82–96. Springer (2023). https://doi.org/10.1007/978-3-
031-53368-6 5

43. Yu, H., Shan, H., Panoff, M., Jin, Y.: Cross-device profiled side-channel attacks
using meta-transfer learning. In: 58th ACM/IEEE Design Automation Conference,
DAC 2021, San Francisco, CA, USA, December 5-9, 2021. pp. 703–708. IEEE
(2021). https://doi.org/10.1109/DAC18074.2021.9586100

44. Zaid, G., Bossuet, L., Carbone, M., Habrard, A., Venelli, A.: Conditional varia-
tional autoencoder based on stochastic attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2023(2), 310–357 (2023). https://doi.org/10.46586/tches.v2023.i2.
310-357

45. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient cnn archi-
tectures in profiling attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020(1), 1–36 (Nov 2019). https://doi.org/10.13154/tches.
v2020.i1.1-36, https://tches.iacr.org/index.php/TCHES/article/view/8391

46. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: IEEE International Conference on Com-
puter Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. pp. 2242–2251. IEEE
Computer Society (2017). https://doi.org/10.1109/ICCV.2017.244

https://doi.org/10.1109/ISQED51717.2021.9424254
https://doi.org/10.1109/ISQED51717.2021.9424254
https://doi.org/10.1007/S13389-022-00307-9
https://arxiv.org/abs/2007.05285
https://arxiv.org/abs/2007.05285
https://doi.org/10.1007/978-3-031-53368-6_5
https://doi.org/10.1007/978-3-031-53368-6_5
https://doi.org/10.1109/DAC18074.2021.9586100
https://doi.org/10.46586/tches.v2023.i2.310-357
https://doi.org/10.46586/tches.v2023.i2.310-357
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.1109/ICCV.2017.244

ZKFault: Fault Attack Analysis
on Zero-Knowledge Based Post-quantum Digital

Signature Schemes

Puja Mondal1(B) , Supriya Adhikary1 , Suparna Kundu2 ,
and Angshuman Karmakar1

1 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India
{pujamondal,adhikarys,angshuman}@cse.iitk.ac.in

2 COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452,
3001 Leuven-Heverlee, Belgium

suparna.kundu@esat.kuleuven.be

Abstract. Computationally hard problems based on coding theory,
such as the syndrome decoding problem, have been used for construct-
ing secure cryptographic schemes for a long time. Schemes based on
these problems are also assumed to be secure against quantum comput-
ers. However, these schemes are often considered impractical for real-
world deployment due to large key sizes and inefficient computation
time. In the recent call for standardization of additional post-quantum
digital signatures by the National Institute of Standards and Technol-
ogy, several code-based candidates have been proposed, including LESS,
CROSS, and MEDS. These schemes are designed on the relatively new
zero-knowledge framework. Although several works analyze the hardness
of these schemes, there is hardly any work that examines the security of
these schemes in the presence of physical attacks. In this work, we analyze
these signature schemes from the perspective of fault attacks. All these
schemes use a similar tree-based construction to compress the signature
size. We attack this component of these schemes. Therefore, our attack
is applicable to all of these schemes. In this work, we first analyze the
LESS signature scheme and devise our attack. Furthermore, we showed
how this attack can be extended to the CROSS signature scheme. Our
attacks are built on very simple fault assumptions. Our results show that
we can recover the entire secret key of LESS and CROSS using as little
as a single fault. Finally, we propose various countermeasures to prevent
these kinds of attacks and discuss their efficiency and shortcomings.

Keywords: Post-quantum cryptography · Post-quantum signature ·
Code-based cryptography · Fault attacks · LESS · CROSS

1 Introduction

Digital signature schemes are one of the most used and fundamental cryp-
tographic primitives. The security of our current prevalent digital signature

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 132–167, 2025.
https://doi.org/10.1007/978-981-96-0944-4_5

http://orcid.org/0009-0006-7300-8435
http://orcid.org/0000-0002-0701-8049
http://orcid.org/0000-0003-4354-852X
http://orcid.org/0000-0003-2594-588X
https://doi.org/10.1007/978-981-96-0944-4_5

ZKFault 133

schemes based on integer factorization [33] or elliptic curve discrete loga-
rithms [23] can be compromised using a large quantum computer [30,37].
Therefore, we need quantum computer-resistant digital signature algorithms.
In 2022, the National Institute of Standards and Technology (NIST) selects
three post-quantum digital signature schemes [2] CRYSTALS-DILITHIUM [15],
FALCON, and SPHINCS+ [5] for standardization. Among them, FALCON and
DILITHIUM are based on lattices, and SPHINCS+ is a hash-based signature
scheme.

A majority of these signature schemes are lattice-based. Therefore, a break-
through result in the field of cryptanalysis of lattice-based cryptography could
create a major dilemma in the transition from classical to post-quantum cryp-
tography. Such incidents are not very rare. Some recent examples are Cas-
tryck et al.’s [10] attack on the post-quantum key-exchange mechanism based
on supersingular isogeny Diffe-Hellman [19] problem or Beullens’s attack [6] on
post-quantum digital signature scheme Rainbow [14]. Both of these schemes
were finalists of the NIST’s post-quantum standardization procedure. There-
fore, diversification in the underlying hard problems ensures that if one of the
cryptographic schemes is compromised, others may remain secure. Another prob-
lem of the currently standardized signature schemes is their very large signature
sizes compared to classical signatures. This renders them almost impractical for
real-world use cases like SSL/TLS certificate chains. Recognizing the critical
importance of diversification and the practical use of digital signatures, NIST
has recently issued an additional call [25] for post-quantum secure digital signa-
tures. In this call, NIST emphasizes the importance of small signature and fast
verification to enhance practicality.

Linear Equivalence Signature Scheme (LESS) [7,35] is a submitted digi-
tal signature scheme aimed at increasing diversification and smaller signature
and public key sizes. There are other code-based submissions like WAVE [36],
enhanced pqsigRM [11], and CROSS [34]. These schemes are based on the Syn-
drome Decoding Problem (SDP) for linear codes. The hardness of SDP relies on
different variants of Information Set Decoding (ISD) algorithms. On the other
hand, LESS has avoided the SDP, and it is the first cryptographic scheme based
on the Code Equivalence Problem (CEP). The CEP asks to determine if two
linear codes are equivalent to each other. In the Hamming metric, the notion
of equivalence is linked to the existence of a monomial transformation, often
termed the Linear Equivalence Problem (LEP).

Due to the choice of this hard problem, the designers could choose parame-
ters that lead to smaller key sizes without compromising security. The designers
have also proposed different compression techniques to reduce the key sizes.
LESS offers a balanced trade-off between the combined public key and signature
size and the efficiency of signing and verification routines. Table 4 in Appendix A
compares the key sizes and efficiency of LESS and other code-based digital sig-
nature schemes.

We want to note that LESS first introduced the novel problem CEP or
LEP for cryptographic constructions. It uses a 3-round interactive sigma pro-

134 P. Mondal et al.

tocol between a prover and a verifier. Other signature schemes like MEDS and
CROSS are also based on similar zero-knowledge identification schemes. Multi-
ple rounds of the identification scheme are used here, which is converted into a
signature scheme using the Fiat-Shamir transformation. However, using multiple
rounds increases the signature size. Here, we have noticed that all three signature
schemes, LESS, CROSS and MEDS [12], use the same compression technique
that helped the designers ease the long-enduring bottleneck of large signature
sizes in code-based cryptography. However, the implementation of this common
compression technique has potential vulnerabilities against fault attacks that we
identified in this work. Our primary motivation in this work is to uncover poten-
tial vulnerabilities against a wide spectrum of fault attacks and propose suitable
countermeasures for the schemes LESS and CROSS that use the protocols hav-
ing the same compression technique. We are confident that this work will help to
improve the LESS and CROSS signature schemes and be useful in the evaluation
of NIST’s standardization procedure. Further, we strongly believe that this will
also be beneficial to other cryptographic signature schemes, such as MEDS, as
it uses a similar technique. Below, we briefly summarize our contributions.

Fault Analysis of LESS Digital Signature: We have explored several fault
attack surfaces of the LESS signature scheme that could be exploited by an
adversary. We found different attack surfaces in the signing algorithm of LESS,
and attack strategies that can be utilized on those attack surfaces. We observed
that the designers of LESS proposed a technique to compress the signature size.
They used a binary tree called Reference Tree to fulfil this purpose. We show
that the modification of the values in the tree during the signing algorithm leaks
information about the secret key as part of the output signature. We further use
this information to recover the full secret key.

Versatility of Our Fault Attack: Our attack assumes a single fault injection
model. We want to note that our focus was to develop the theoretical framework
to recover the secret after the fault injection. In this regard, our attack can
be realized using many different faults. Therefore, it is very versatile i.e. not
skewed in favour of the attacker. In particular, we discuss the applicability of
our attack using different types of faults, such as instruction skip, stuck-at-zero,
and bit-flip. These types of faults can be realized using different mechanisms
such as voltage glitch [13], Rowhammer [24,31], clock glitch [9,28], laser fault
injection [8], electromagnetic fault injection [17,20] etc.
Strong Mathematical Analysis: We give detailed mathematical analysis to
recover the secret key after the fault injections. We consider an arbitrary loca-
tion for the fault injection, which is known to the attacker. Then, discuss the
methods to recover the secret key in different scenarios. To further improve
the effectiveness and practicality of our attack, we also provide a very effective
method to remove noise from the experiments i.e. differentiating between effec-
tive and ineffective faults. This is a non-trivial problem in any fault injection
attack. We mathematically derived the expected amount of secret information
that can be recovered from a single effective fault.

ZKFault 135

Application to Other Zero-Knowledge Based Signature Schemes: Other
code-based signature schemes in the NIST additional call for signatures such as
CROSS [34] and MEDS [12], use a similar zero-knowledge framework as LESS.
In these frameworks, the challenger and prover must communicate a series of
challenges and responses for the soundness of schemes. This increases the sig-
nature size of the digital signature schemes designed using this framework. All
these three signature schemes use a binary tree-based compression technique to
reduce the signature size. As our attack targets this method, our attack strategy
can also be extended to these schemes. We have explained this strategy for the
CROSS signature scheme in this work.
Attack Simulation: We have an end-to-end fault attack simulation on the
reference implementation of LESS and CROSS signature schemes. For LESS, we
have simulated the attack in a way so that it can count the number of secret
matrix recovered with one faulted signature, the number of faulted signatures
required to recover the whole secret. Also, our simulation induces fault with
varying successful fault probability. In both schemes, we modify a particular
node of the binary tree structure and then recover the secret from the faulted
signatures. We have shown that if we inject fault in a specific location, then the
entire secret can be recovered from a single effective fault signature for all the
parameter sets of LESS except the parameter LESS-1s. For the CROSS signature
scheme, only one effective faulted signature is enough to recover the complete
secret for all parameters.
Countermeasures: Finally, we discuss different countermeasures that can pre-
vent such attacks. We show that these countermeasures are effective against
the single-fault attack models. Our first countermeasure removes the primary
source of vulnerability i.e. the generation of the Reference Tree. This rather
simple method increases the signature size. The second countermeasure modi-
fies the Reference Tree generation procedure such that the attack surfaces are
eliminated. This method ensures that the signature sizes stay the same as the
original LESS proposal [35]. Lastly, we implemented the second countermeasure
for LESS and compared its performance with the original LESS implementation.
The performance cost of our second countermeasure is the same as the cost of
the original LESS implementation.

2 Preliminaries

Zq denotes the ring of integers modulo q. Additionally, Fq and F
∗
q have been

used to signify the field with q elements and the multiplicative group of this field
Fq, respectively. The sets F

k
q and F

k×n
q represent the collection of all vectors of

size k and all matrices of dimension k × n over the field Fq, respectively. We use
calligraphic uppercase (C) to denote a linear code.

The lowercase letters (a) and uppercase letters (A) denote the scalars and
the ordered set of scalars, respectively. Ac represents the complement of the set
A. We use bold lowercase (a) to denote vectors in any domain, and the i-th

136 P. Mondal et al.

entry of the vector a is denoted by a[i]. We denote the i-th standard basis as
ei. The transpose of a vector a is denoted by aT .

The bold uppercase letters (A) represent matrices. Let A be a matrix, then
A[i, j] represents the i, j-th entry of the matrix A. Also, A[∗, j] and A[i, ∗]
represent the j-th column and i-th row of the matrix A respectively. Let J ⊂ Zn

be an ordered set of column indices of the matrix A, then the notation A[∗, J]
represents the submatrix of A formed by selecting columns with indices specified
in the set J . Similarly, if J is an ordered set of row indices of matrix A, then the
notation A[J, ∗] represents the submatrix of A formed by selecting rows with
indices specified in the set J . The transpose of a matrix A is denoted by AT .
The inner product of two vectors a and b of same size is denoted by 〈a, b〉 and
is defined by

∑
i a[i]b[i]. The set of all invertible matrices of order k over Fq is

denoted by GLk(q).

2.1 Definitions

Definition 1. (Monomial matrix) An n × n matrix A is called a monomial
matrix if we can write A := (u[0]eπ(0) | u[1]eπ(1) | · · · | u[n−1]eπ(n−1)). Here,
u ∈ F

n
q , π : Zn → Zn is a permutation and u[j]eπ(j) is j-th column of A. We

represent the monomial matrix A with the pair (π, u).

Definition 2. (Partial monomial matrix) An n × k matrix B is
called a partial monomial matrix if we can write the matrix B :=
(v[0]eπ∗(0) | v[1]eπ∗(1) | · · · | v[k − 1]eπ∗(k−1)). Here, n > k, v ∈ F

k
q and

π∗ : Zk → Zn is an injective mapping. We represent the partial monomial matrix
B with the pair (π∗, v).

We denote the set of all invertible monomial matrices of order n and the set
of all partial monomial matrices of order n × k over Fq by Mn(q) and M ′

n,k(q)
respectively.

Definition 3. (Reduced Row-Echelon form) A matrix A of order m × n
is said to be in Reduced Row-Echelon form (RREF) if the following conditions
hold

i. For each 0 ≤ i ≤ m−1, 0 ≤ j ≤ n−1, if the i-th row contains the first non-
zero element at j-th position, then the first non-zero element of (i + 1)-th
row should be after the j-th position.

ii. The first non-zero element of any non-zero row is 1.
iii. The leading element is the only non-zero element of that column.

We can transfer any matrix A to its RREF form by applying some elementary
row operations [22] on the matrix A, and we denote this transformation by
RREF(A). Also, note that a matrix has a unique RREF. The first non-zero elements
of RREF(A) in each row are called pivots and the columns that contain pivot are
called pivot column of the matrix RREF(A). The remaining columns are called
non-pivot columns.

ZKFault 137

Definition 4. (Lexicographically sorted order) Let a and b be two vectors
of the same size over the field Fq. We call the vectors a and b are in lexico-
graphical order if a[i] < b[i] holds, where i is the first position where two vectors
differ. We denote it as a < b. Let there be r vectors v0, v1, · · · , vr−1 over
the field Fq. We call these vectors in lexicographically sorted order if, for any
0 ≤ i, j < r, vi < vj holds whenever i < j.

A matrix G is lexicographically sorted if its columns are in ascending lexico-
graphical order. In this paper, the function LexMinCol makes each column of
input matrix G to lexicography sorted order by multiplying the inverse of the
first non-zero element of that column and LexSort function is used to sort the
columns of G in lexicographically sorted order.

Definition 5. (Linear code) An [n, k]-linear code C of length n and dimension
k is a linear subspace of the vector space F

n
q . It can be represented by a matrix

G ∈ F
k×n
q , which is called a generator matrix. For any u ∈ F

k
q , the generator

matrix G maps it to a code-word uG ∈ F
n
q .

Definition 6. (Linear code equivalence) Let C and C′ be two linear codes
of length n and dimension k with generator matrices G and G′ respectively. We
call the codes C and C′ linearly equivalent, if there exist matrices Q ∈ Mn(q),
S ∈ GLk(q) such that G′ = SGQ.

Definition 7. (Information Set (IS) of a Linear Code [27]) Let C be a
linear code with length n, and J ⊂ Zn be a set with cardinality k. Consider G
as the generator matrix of code C. Define J as an information set corresponding
to G if inverse of G[∗, J] exists i.e., G[∗, J] is non-singular.

2.2 LESS Signature Scheme

The signature scheme LESS is based on the hardness of the Linear-code Equiva-
lence Problem (LEP). LESS signature [35] uses a 3-round interactive sigma pro-
tocol [16] between a prover and a verifier to establish the message’s authenticity
and the Fiat Shamir transformation [1] to transform this interactive protocol
into a signature scheme. In this section, we describe the key generation and the
signature algorithm of the digital signature LESS as it is most relevant to our
work. Meanwhile, the verification algorithm is described in Appendix B. The
description of the LESS signature involves some additional functions that we
describe below.

– CSPRNG(seed, ·): This is a pseudo-random number generator, which takes a
seed as input and outputs a pseudo-random string. The resulting output can
be formatted according to preference, either as a string of seed values or a
matrix. The uses of the function as CSPRNG(seed, SRREF), CSPRNG(seed, St,w)
and CSPRNG(seed, Mn(q)) represents sampling a generator matrix in RREF,
sampling the fixed weight digest vector and sampling a monomial matrix,
respectively using the provided seed.

138 P. Mondal et al.

– SeedTree(seed, salt): This function generates a tree of height 	log t
. It
begins with λ bit input seed and uses the CSPRNG function to generate 2λ
bits. This long string is divided into two parts: the first λ bits are used for
the left child and the last λ bits for the right child. The bits corresponding to
each child are again fed into the CSPRNG with salt to generate the next layer
of the nodes in the tree. This process is repeated until the tree with height
	log t
 is constructed.

– PrepareDigestInput(G, Q′): This function takes the matrices G which
is in RREF and a monomial matrix Q′ as inputs. Then computes G′ as
(G′, pivot column) = RREF(GQ′T). Let J = {α0, α1, · · · , αk−1} be the
set of pivot column indices, which is essentially the information set (IS) of
G′. Then, compute the partial monomial matrix Q

′
and the matrix V

′
as

Q
′
= Q′T [∗, J] and V

′
= LexSort(LexMinCol(G′[∗, Jc])) . After this com-

putation, this function returns the partial monomial matrix Q
′
and the matrix

V
′
as outputs.

– SeedTreePaths(seed, f): Given a seed tree seed and a binary string f
representing the leaves to be disclosed, this procedure derives which nodes of
the seed tree should be disclosed so that the verifier can rebuild all the leaves
which have been marked by the binary string. A detailed description of this
function is given in Algorithm 4.

– CompressRREF and CompressMono: CompressRREF function is used to com-
press a matrix G in RREF, and similarly CompressMono is used to compress
a monomial matrix. Each compression procedure have corresponding expan-
sion procedure that converts the compressed information to its proper matrix
form. Therefore, we can assume using or not using these function does not
affect the functionality of key generation, signing or verification of LESS.

Algorithm 1. LESS KeyGen(λ) [4,7]
Input: None
Output: SK = (MSEED, gseed), PK = (gseed, G1, . . . , Gs−1)

1: MSEED
$←− {0, 1}λ

2: mseed ←− CSPRNG(MSEED) ∈ {0, 1}(s−1)λ

3: gseed
$←− {0, 1}λ

4: G0 ← CSPRNG(gseed, SRREF)
5: for i = 1; i < s; i = i + 1 do
6: Qi ←− CSPRNG(mseed[i], Mn(q))
7: (Gi, pivot column) ← RREF(G0(Q

−1
i)T)

8: PK[i] ← CompressRREF(Gi, pivot column)

9: Return (SK, PK)

Key Generation of LESS: It is presented in Algorithm 1. Given a secu-
rity parameter λ, the two outputs of this algorithm are the secret key SK and

ZKFault 139

the public key PK. The first component of the secret key is the master key
MSEED ∈ {0, 1}λ. Using the CSPRNG function, the vector mseed ∈ {0, 1}(s−1)λ

is generated from the MSEED, which contains s − 1 many λ-bit binary strings.
Now, the i-th secret monomial matrix Qi is generated from mseed[i] ∈ {0, 1}λ.
Note that these generated Qi’s are all secret monomial matrices. Also, the seed
gseed is employed in the generation of the public matrix G0. The remaining
part of the public key consists of the matrices Gi for 1 ≤ i ≤ s − 1, which are
generated using the process described in Algorithm 11.

Algorithm 2. LESS Sign(m, SK)
Input: Message m ∈ Z

len
2 and secret key SK = (MSEED, gseed).

Output: The signature τ = (salt, cmt, T reeNode, rsp).

1: mseed ←− CSPRNG(MSEED) ∈ {0, 1}(s−1)λ

2: EMSEED
$←− {0, 1}λ, salt

$←− {0, 1}λ

3: seed ←− SeedTree(EMSEED, salt)
4: ESEED = Leaf nodes of the seed
5: G0 ← CSPRNG(gseed, SRREF)
6: for i = 0; i < t; i = i + 1 do
7: ˜Qi ←− CSPRNG(ESEED[i], Mn(q))

8: (Qi, V i) ←− PrepareDigestInput(G0, ˜Qi)

9: cmt ← H(V 0, . . . , V t−1, m, len, salt)
10: d ← CSPRNG(cmt, St,w)
11: for i = 0; i < t; i = i + 1 do
12: if d[i] = 0 then
13: f [i] = 0
14: else
15: f [i] = 1

16: T reeNode ← SeedTreePaths(seed, f) � (Alg. 4)
17: k = 0
18: for i = 0; i < t; i = i + 1 do
19: if d[i] �= 0 then
20: j = d[i]
21: Qj ←− CSPRNG(mseed[j], Mn(q))
22: Q∗

k ← QT
j Qi

23: rsp[k] ← CompressMono(Q∗
k)

24: k = k + 1

25: Return τ = (salt, cmt, T reeNode, rsp)

Signature Algorithm of LESS: The signature algorithm shown in Algo-
rithm 2 takes a message string m of length len and the secret key SK =
(MSEED, gseed) as inputs and returns a corresponding signature τ . The main
1 For simplicity and compactness, we follow the implementation of LESS instead of

the specification document.

140 P. Mondal et al.

secret key component of SK is the master seed MSEED. All the s−1 monomial
matrices Qj are generated from the MSEED and used to produce signatures.
That is, instead of having information of MSEED, if we have the information
of all of s − 1 monomial matrices Qj , then we can construct the same valid
signature. Therefore, these monomial matrices Qj are considered equivalent to
the secret key component MSEED. To reduce the signature size, the authors of
LESS have incorporated a method involving tree construction. We explain this
process briefly here.

Fig. 1. Example of seed tree

First, we outline the procedure for generating a set of t ephemeral monomial
matrices represented by Q̃0, Q̃1, · · · , Q̃t−1 through the generation of t random
ephemeral seeds denoted as ESEED[i] for 0 ≤ i < t. The process involves the
following steps:

– Start by sampling a random master seed EMSEED $←− {0, 1}λ.
– Build a tree of seed nodes using SeedTree procedure, with output tree

named seed. The height and the number of leaf nodes of the output tree
are 	log(t)
 and 2l = 2�log(t)� respectively where the input seed is the master
seed EMSEED.

– Select the first t leaf nodes of the seed as the ephemeral seeds ESEED[i],
where ESEED[i] = seed[2l − 1 + i] for 0 ≤ i < t.

– Using CSPRNG function Q̃i is prepared for each ESEED[i].

Lines 6–8 of Algorithm 2, correspond to generating the partial monomial matri-
ces Qi, the matrices V i having the information of the non-pivot part corre-
sponding to the matrix G0Q̃

T
i . Using the information of all V i matrices, mes-

sage m, message length len and salt, the digest d ∈ Z
t
s is prepared. This

digest vector d has fixed weight w, where weight of the vector d is defined
as wt(d) := | {i : d[i] �= 0} |. We will briefly discuss the SeedTreePaths proce-
dure in Algorithm 4, as our attack is based on exploting this procedure. This
SeedTreePaths (Algorithm 4) helps to reduce the size of the signature. Finally,
the signature will return QT

d[i]Qi whenever d[i] �= 0, and it also reveals the

seed nodes so that Q̃i can be generated from the revealed seed nodes for all

ZKFault 141

i such that d[i] = 0. Note that whenever we try to return Q̃i, it is enough
to return ESEED[i]’s instead. Also, having the information of any ancestor
node of the seed ESEED[i](= seed[2l − 1 + i]), we can get the informa-
tion of ESEED[i]. This is the idea behind the minimization of the number
of seeds that are to be sent. This minimized set is returned as TreeNode.
Consider the example in Fig. 1, where the leaf nodes are ESEED[i]’s and the
shaded leaf nodes represent all those positions where d takes the value 0 i.e.,
these are the ESEED[i]’s that are to be revealed. Observe that revealing only
TreeNode = (seed[1], seed[13]) is enough, as the required ESEED[i]’s can
be regenerated at the time of verification. Consequently, this minimizes the sig-
nature size.

Now, in lines 18–24 of Algorithm 2, the rsp is prepared by appending the
partial monomial matrices QT

d[i]Qi for all i such that d[i] is non-zero. Since the
length and the weight of the fixed weight digest d are t and w respectively,
the vector d has exactly w many non-zero elements and t − w many zero ele-
ments. Therefore, the signature will contain the component rsp having exactly
w many matrices of the form QT

d[i]Qi. After all of these computations, (salt,

cmt, TreeNode, rsp) is generated as the signature.

2.3 Parameter Set

There are three security levels of LESS [35] and their corresponding parameter
sets, which are shown in Table 1. Here, the code parameters are given by n: the
length of the code, k: the dimension of the code, q: prime modulus corresponding
to the finite field Fq, 2l: the number of leaf nodes of the seed tree, where 2l =
2�log t�, t: the length of the digest d, w: the fixed weight of the digest d and
s: s − 1 is the number of secret monomial matrices. According to the LESS
documentation [35], multiple parameter sets are defined for each security level of
LESS, and the optimization criteria for each of these parameter sets are different.
The “b” version (e.g., LESS-1b) refers to the parameter set with balanced public
key and signature size, the “s” (e.g., LESS-1s) version refers to the parameter
set with smaller signature size, and the “i” (only LESS-1i) version refers to the
parameter set with intermediate public key and signature size.

3 Our Work: Fault Analysis of LESS

One of the strongest physical attacks on the digital signature schemes is to
recover the secret or signing key, as the adversary can compute any valid message
and signature pair using the recovered signing key. In general, only the key
generation and the signing algorithm involve the secret key. However, only the
signing algorithm uses the long-term secret key (the same secret key is used
multiple times), making it most suitable for performing a physical attack [9,
18,29,38]. In this work, our objective is to mount a fault attack on the zero-
knowledge based digital signature schemes. In this attack model, the adversary
would query the faulted signature oracle (which outputs a signature with some

142 P. Mondal et al.

Table 1. Parameter set of LESS [35] for different security levels

Security

level

Parameter

set

Parameters Public key (PK)

(KiB)

Signature (τ)

(KiB)n k q l t w s

1

LESS-1b

252 126 127 128

247 30 2 13.7 8.1

LESS-1i 244 20 4 41.1 6.1

LESS-1s 198 17 8 95.9 5.2

3
LESS-3b

400 200 127 512
759 33 2 34.5 18.4

LESS-3s 895 26 3 68.9 14.1

5
LESS-5b

548 274 127
1024 1352 40 2 64.6 32.5

LESS-5s 512 907 37 3 129.0 26.1

injected faults) multiple times. In this section, we will progressively describe
our fault attack strategy to recover the secret monomial matrices for the LESS
signature scheme. Later in Sect. 4, we show that the same attack strategy can
be employed in other zero-knowledge based signature schemes, such as CROSS,
to recover the signing key.

3.1 An Observation on LESS

LESS signature algorithm presented in Algorithm 2 returns either the informa-
tion of the monomial matrix Q̃j or the multiplication QT

d[j]Qj for any j ∈ Zt.
Here, Qj is a partial monomial matrix that is generated from the matrix
Q̃j by using the PrepareDigestInput function. If we manage to get a pair
(Q̃j , QT

d[j]Qj) for some d[j] �= 0, then we can construct the pair (Qj , QT
d[j]Qj).

This pair (Qj , QT
d[j]Qj) leaks some information of matrix QT

d[j] that is directly
follows from the following lemma.

Lemma 1. Let A = (π, u) ∈ Mn(q) be a monomial matrix and B = (π′, u′) ∈
M ′

n,k(q) be a partial monomial matrix. Let C = (π′′, u′′) ∈ M ′
n,k(q) be the

partial monomial matrix defined by C = AT B. Given the matrices B and C,
we can compute exactly k many columns of the monomial matrix AT . More
specifically, for all 0 ≤ j < k, we can compute π−1(π′(j)) and u[π−1(π′(j))].

Proof. For the monomial matrix A represented by (π, u), the transpose of A is
the following matrix

AT = [u[π−1(0)]eπ−1(0) | u[π−1(1)]eπ−1(1) | · · · | u[π−1(n − 1)]eπ−1(n−1)]

The multiplication of the monomial matrix AT with the partial monomial
matrix B is given by

AT B = [u[π−1(π′(0))]u′[0]eπ−1(π′(0)) | · · · | u[π−1(π′(k − 1))]u′[k − 1]eπ−1(π′(k−1))]

ZKFault 143

Since C = AT B, so for all 0 ≤ j < k we have C[∗, j] = (AT B)[∗, j], which
implies u′′[j]eπ′′(j) = u[π−1(π′

∗(j)]u
′[j]eπ−1(π′∗(j)). This gives us the following

u′′[j] = u[π−1(π′(j))]u′[j]

π′′(j) = π−1(π′(j))

Since B and C are known, we have the information of each π′(j), π′′(j), u′[j]
and u′′[j] where 0 ≤ j < k. Therefore for all 0 ≤ j < k we have,

u[π−1(π′(j))] = u′′[j](u′[j])−1

π−1(π′(j)) = π′′(j)
(1)

Note that we have computed π′(j)-th column of the matrix AT for all
0 ≤ j < k. �

For simplicity, in this part, we will use consider the matrices Q̃j , Qj and
Qd[j] as the matrices Q̃, Q and Q respectively. Recall the prepareDigestInput

function, it was taking G0 and a monomial matrix Q̃ = (π̃, υ̃) as input and
Q is one of the outputs of the function. The Q is computed in a way that
G0Q = G0(Q̃)T [∗, J†], where J† is an IS of G0(Q̃)T . From the definition of IS,
we can say that G0Q is a non-singular matrix. Observe that,

G0Q = [υ0 · gπ(0) | υ1 · gπ(1) | · · · | υk−1 · gπ(k−1)] (2)

Where Q is a partial monomial matrix represented by (π, υ). Since the matrix
representation in Eq. 2 is non-singular, the set J = {π(i) : i ∈ Zk} is the IS of
G0.

Now consider we are given the pair (Q̃, QT Q), where Q represented by
(π, υ) and Q is generated from Q̃ using the function prepareDigestInput.
Now, QT Q is a partial monomial matrix and let it be represented by (π∗, υ∗)
then from Lemma 1, we can write that for any j ∈ Zk

π−1(π(i)) = π∗(i)

υ[π−1(π(i))] = υ∗[i](υ[i])−1· (3)

This Eq. 3 gives us the partially recovered secret i.e. only k many columns of
QT . According to the definition of π, the set {π(i) : i ∈ Zk} is the set J
which is the information set of G0. Now, if Q is a secret monomial then from
the key generation of LESS, we can say that Ĝ = RREF(G0(QT)−1) is a part
of the public key. We can further write Ĝ = SG0(QT)−1 for some non-singular
matrix S. Consider Ĝ = [ĝ0 | ĝ1 | · · · | ĝn−1] then for all i ∈ Zn we have
ĝi = S · (

(υ[i])−1 · gπ(i)

)
which implies that for all i ∈ Zn,

ĝπ−1(i) = S · (
(υ[π−1(i)])−1 · gi

)
(4)

Consider that the set J have the elements j0, j1, · · · , jk−1, and we take the
matrix G∗ = [ĝπ−1(j0) | ĝπ−1(j1) | · · · | ĝπ−1(jk−1)] and also take the matrix

G′ = [(υ[π−1(j0)])−1 · gj0 | (υ[π−1(j1)])−1 · gj1 | · · · | (υ[π−1(jk−1)])−1 · gjk−1]

144 P. Mondal et al.

From Eq. 4, we have G∗ = SG′ and since J is an IS of G0, so G′ is a non-singular
matrix. Also G′ and G∗ are both computable as for each j ∈ J , π−1(j) and
v[π−1(j)] are already recovered. Therefore, we can compute S = G∗ · (G′)−1.
Finally, we have S−1Ĝ = G0(QT)−1, where S, G0 and Ĝ are known. Using
Algorithm 3, we can recover the full secret.

Algorithm 3. getColumnPermutation(Ĝ,G0,S)
Input: The partially recovered secret π : J∗ → J and v[j] ∀j ∈ J∗, where J∗ =

{π−1(i) : i ∈ J}, public information G0 and ̂G, recovered matrix S
Output: Outputs rest of the secret π : Jc

∗ → Jc and v[j] ∀j ∈ Jc
∗

1: [g0 | g1 | · · · | gn−1] ← G0

2: [ĝ0 | ĝ1 | · · · | ĝn−1] ← ̂G
3: for j ∈ Jc do
4: for i ∈ Jc

∗ do
5: for a ∈ Fq do
6: if gj = a · (S−1ĝi) then
7: assign π(i) ← j
8: assign v[i] ← a

We can conclude that from one pair (Q̃j , QT
d[j]Qj), we can recover the secret

monomial matrix QT
d[j], where d[j] �= 0. However, we will not receive the pair

(Q̃j , QT
d[j]Qj) if the signatures are generated by executing the signing algorithm

properly. Therefore, we must find strategies to disrupt the normal flow of execu-
tion to help us get such pairs. Also, note that, if the number of secret monomial
matrices(s−1) is greater than one, then receiving only one such pair is not enough
to retrieve all the secret monomials. So, we may require multiple faulted signatures
to receive several such pairs and finally recover all the secret monomial matrices.
All of these analysis are briefly described in the later sections.

3.2 Identification of Attack Surfaces

As we observed that having one pair of the form (Q̃j , QT
d[j]Qj) is enough to

recover the secret matrix QT
d[j], where d[j] �= 0. Also, observe that, in LESS,

there are s − 1 secret monomial matrices Qi for 1 ≤ i ≤ s − 1, and t ephemeral
monomial matrices Q̃j for 0 ≤ j < t as described in Sect. 2.2. Hence, our goal is
to find at least one pair of the form (Q̃j , QT

d[j]Qj), where 1 ≤ d[j] ≤ s − 1 and
0 ≤ j < t by manipulating the signing algorithm.

Note that, LESS is a code-based signature scheme based on the sigma-
protocol with Fiat-Shamir transformation. In Algorithm 2, the signer generates
the random challenge d (fixed weight digest), from commitment (cmt) using the
pseudo-random function CSPRNG. Any fault injection before the challenge gener-
ation may modify the challenge value, but that is an output of a pseudo-random

ZKFault 145

function. This would not help, as we need to recover the secret key. Therefore,
we have targeted to inject a fault after the generation of d.

Modification of the Vector d: As we can see from Algorithm 2, the digest d
(d[i] for 0 ≤ i < t) value decides whether Q̃i is revealed or QT

d[i]Qi is revealed.
Therefore, the most obvious target for fault injection is the digest d to reveal
both Q̃i and QT

d[i]Qi for some i. If we modify some value d[i] of d (line 11 in
Algorithm 2) from 0 to some non-zero value r by injecting fault, then we will
get the information of QT

r Qi instead of getting information of Q̃i. Similarly, if
we change the value of d[i] from non-zero value r to 0, then we will get the
information of Q̃i instead of getting information about QT

r Qi. In both cases, we
do not receive Q̃i and QT

r Qi together. Therefore, modifying the d value does
not satisfy our purpose.

Algorithm 4. SeedTreePaths
Input: The Seed Tree seed and the vector f .
Output: Outputs T reeNode a subset of Seed Tree which consists only the seedi’s

that does not correspond to f [i] = 1.
1: for i = 0; i < 4l − 1; i = i + 1 do
2: x[i] = 0

3: x ← compute seeds to publish(f , x) � (Alg. 5)
4: j = 0
5: for i = 0; i < 4l − 1; i = i + 1 do
6: if (x[i] = 0 and x[Parent(i)] = 1) then
7: T reeNode[j] = seed[i]
8: j = j + 1

9: return T reeNode

One might think of using the cases d[i] = 0 bypassing the check d[i] �= 0
(line 19) using a fault. However, mseed[0] does not exist and might cause an
error during execution. Therefore, modifying anything from lines 18–24 would
not benefit us. Now, we analyse the remaining steps (lines 11–16) of Algorithm 2.
In these steps, we can modify the value of the vector f . Also, the SeedTreePaths
algorithm is another potential candidate for fault injection, which is presented in
Algorithm 4. It uses an auxiliary function compute seeds to publish described
in Algorithm 5. In the SeedTreePaths procedure, a tree x of size 4l − 1 is
initialized with all zero. We call this tree as Reference Tree. In Algorithm 5, the
values of the leaf nodes of the Reference Tree are updated according to the f i.e.,
x[2l−1+i] are assigned the value f [i] for all 0 ≤ i < t. The remaining nodes of the
Reference Tree are assigned the value using the formula x[i] = x[2i+1]∨x[2i+2],
signifying that if either child has a value of 1, the corresponding parent will be
assigned 1. In this way, the value of the Reference Tree x has been updated in
a bottom-up approach. Now, some locations in Seed Tree are to be published as
TreeNode with the help of the Reference Tree. Algorithm 4 checks if the i-th

146 P. Mondal et al.

Algorithm 5. compute seeds to publish
Input: A vector f of size t and the Reference Tree x.
Output: Modified Reference Tree x.
1: for i = 0; i < t; i = i + 1 do
2: x[2l − 1 + i] = f [i]

3: for i = 2l − 2; i ≥ 0; i = i − 1 do
4: x[i] = x[2i + 1] ∨ x[2i + 2]

5: return x

node of Reference Tree x[i] is zero and its parent x[Parent(i)] is 1, where the
function Parent(·) is defined as follows:

Parent(i) =

{
0 if i = 0
� i−1

2 � otherwise

If the validity check is satisfied, then seed[i], the i-th node of the Seed Tree is
appended to TreeNode.

Example 1. In Fig. 2, we have given an example for leaf nodes 2l = 8 and
the vector d is chosen as (0, 3, 1, 1, 0, 0, 0, 0). Then, the vector f will
be (0, 1, 1, 1, 0, 0, 0, 0). From Fig. 2, we can see that for i = 2, 7 the
condition “x[i] = 0 and x[Parent(i)] = 1” is satisfied. Therefore, the vector
TreeNode = (seed[2], seed[7]) and rsp = (QT

d[1]Q1, QT
d[2]Q2, QT

d[3]Q3) =
(QT

3 Q1, QT
1 Q2, QT

1 Q3) will be extracted from Seed Tree is revealed at
the end. From the seeds seed[2] seed[7], we can compute the leaf seeds
seed[7], seed[11], seed[12], seed[13], seed[14] which are equals to the leaf
seeds ESEED[0], ESEED[4], ESEED[5], ESEED[6], ESEED[7] respec-

Fig. 2. Example for extraction of T reeNode from Seed Tree using Reference Tree,
following Algorithm 4

ZKFault 147

tively. From these seeds, we can compute the matrices Q̃0, Q̃4, Q̃5, Q̃6, Q̃7.
From the output of LESS Sign algorithm, we will get either Q̃j or QT

d[j]Qj .

As we can observe from Algorithm 4, the seeds from Seed Tree that are revealed
as TreeNode are directly associated with the values in f and the Reference
Tree x. Therefore, we can try injecting faults in various locations of f or x.

Modification of any node of the Reference Tree x: Here, we investigate
the effect of modification of some fixed i-th value of the tree x in Algorithm 5.
Without loss of generality, assume x[i0], x[i1], · · · , x[ir−1] be the leaf nodes of
the subtree with root node x[i], where r ≥ 1. Now, suppose we inject a fault in
the signature algorithm to modify the value of i-th node of the Reference Tree x.
In that case, the signature algorithm will give us the faulted signature. However,
even if we try to inject a fault in a physical machine, the fault can only occur
with a certain probability. If we assume that the fault injection is successful,
even then, there are several cases:

– Case 1: The node x[i] is 0 in the non-faulted case. In this case, since the actual
value x[i] is 0, all the leaf nodes in the subtree rooted at x[i] must be zero.
Hence, the vectors f and d do not have any non-zero value at the positions
corresponding to the leaf nodes x[i0], x[i1], · · · , x[ir−1]. Therefore, the rsp
does not contain multiplication of any secret monomial matrix with the partial
monomial matrix Qij−2l+1, where 0 ≤ j < r i.e., we can not get any informa-
tion about the secret matrices.

– Case 2: The node x[i] is 1 in the non-faulted case, and after the fault injection,
it has changed to 0. Since the Reference Tree is updated in a bottom-up app-
roach, the modification of the i-th node x[i] may affect the ancestors of x[i].
Consequently, it may change the root node x[0]. In this case, assume that it
changes the value of the root node x[0] to 0. This case can occur only if all
non-zero leaves fall under the subtree rooted at x[i]. Since the value of the root
node is zero, all the ancestors of x[i] including x[0] are zero. Therefore, neither
seed[i] nor any of its ancestors in Seed Tree is released because the Algorithm 4
requires the parent of x[j] to be 1 if we want to release the seed[j], i.e. such
fault does not provide any advantage to us. Therefore, the nodes in the subtree
rooted at x[i] do not affect the fault injection, so no extra information can be
achieved from the released seeds corresponding to this subtree.

Example 2. We consider the fixed digest vector d, f , and the Reference Tree x
of Example 1 in a non-faulted scenario. We modify the value of x[1] from 1 → 0
that changes the value of x[0] from 1 → 0. Figure 3 represents the Reference Tree
and the related node of Seed Tree in faulted case. In this case, only x[7] satisfies
the condition “x[7] = 0 and x[Parent(7)] = 1”. Therefore, TreeNode will be
(seed[7]) and rsp = (QT

d[1]Q1, QT
d[2]Q2, QT

d[3]Q3) = (QT
3 Q1, QT

1 Q2, QT
1 Q3).

None of the monomial matrices Q̃1, Q̃2, Q̃3 can be generated from seed[7].
Therefore, we are unable to recover any secret key-related information from this
faulted signature.

148 P. Mondal et al.

Fig. 3. Example of Case 2

– Case 3: The node x[i] is 1 in the non-faulted case. After the fault injection,
it has changed to 0, but x[0] remains 1. Since the actual value of x[i] is 1,
there exists some leaf node x[ij] such that x[ij] = 1. Therefore, it follows that
f [ij−2l+1] is non-zero and consequently d[ij−2l+1] is also non-zero. Without
loss of generality, assume that ij − 2l + 1 = k′ then rsp contains QT

d[k′]Qk′ .
Also, since the faulted value of x[i] is 0 and x[0] = 1, so TreeNode will
contain either seed[i] or any of its ancestors in Seed Tree from which we can
generate the leaf node seed[ij] of the subtree rooted at seed[i]. Hence, the
ephemeral key ESEED[k′] and consequently the monomial matrix Q̃k′ can
be generated. Therefore, we retrieve the pair (Q̃k′ , QT

d[k′]Qk′) .

Example 3. We consider the fixed digest vector d, f , and the Reference Tree x of
Example 1 in a non-faulted scenario. We modify the value of x[3] from 1 → 0 that
does not change the value of x[0]. Figure 4 represents the Reference Tree and the
related node of Seed Tree in the faulted case. From this Fig. 4 we can see that for
i = 2, 3 the condition “x[i] = 0 and x[Parent(i)] = 1” is satisfied. Therefore,
TreeNode will be (seed[2], seed[3]) and rsp = (QT

3 Q1, QT
1 Q2, QT

1 Q3).
Now seed[3] is contained in the signature component Reference Tree that we
can generate the seed seed[8] to the 8 − 2l + 1 = 8 − 8 + 1 = 1-st monomial
matrix Q̃1. So, from this faulted signature, we found the pair (Q̃1, QT

3 Q1) that
help us find the information of the matrix QT

3 .

Modification of the Vector f : The vector f is computed by using the fixed
digest vector d. If the i-th element of d holds a non-zero value, f [i] is assigned
the value of 1; otherwise, it is set to zero. If we modify the i-th value f [i] by
injecting fault, then the (2l − 1 + i)-th leaf node x[2l − 1 + i] of the Reference
Tree will be changed. The effect of this fault will be the same as the above
modification of any leaf node of the Reference Tree x.

From the above, we can observe that the attack surfaces are different as in
the second attack component, we change the value of any f [i], and in the first

ZKFault 149

Fig. 4. Example of Case 3

attack component, we change the value of any x[i]. However, we can say that
modifying the value of any value f [i] is imposing the same effect as modifying
the corresponding leaf node of x[2l − 1 + i]. Therefore, from now onwards, we
only discuss the modification of any node of the Reference Tree x.

3.3 Fault Models

In this section, we describe the fault models that will help us to recover the
secret key. Our attack just requires changing a bit (1 → 0 for LESS). Here we
discussed in detailed how each fault model can be utilize to realize our attack.
Mainly, our fault assumptions can be realized by “skipping one condition check”
or “forcing one data corruption in f or x”. We assume that the faulted location
is arbitrary but known to the attacker.

Skip the Validity Check Condition in Algorithm 4: If we skip the
check “x[i] = 0 and x[Parent(i)] = 1” in Algorithm 4 for a fixed i, then
seed[i] will always contained in TreeNode. Without loss of generality, let
seed[i0], · · · , seed[ir−1] be the leaf nodes of the subtree rooted the node
seed[i] of Seed Tree and x[i0], · · · , x[ir−1] be the corresponding leaf nodes
of the subtree rooted the node x[i] of the Reference Tree. If x[i] = 1, then
there exists the leaf node say x[ij′], where 0 ≤ j′ < r and x[ij′] = 1. This
implies f [ij′ − 2l + 1] = 1 and so, d[ij′ − 2l + 1] must be non-zero. There-
fore, rsp must contain the matrix multiplication QT

d[ij′−2l+1]Qij′−2l+1. Since
d[ij′ − 2l + 1] is non-zero, we are not supposed to have the information about
the ephemeral matrix Q̃ij′−2l+1 in non-faulted case. However, from the seed[i],
we can generate all leaf nodes of the subtree rooted in this node. Now, seed[ij′]
is the ij′ − 2l + 1-th leaf node ESEED[ij′ − 2l + 1] of the Seed Tree, and that
helps us find the ephemeral monomial matrix Q̃ij′−2l+1. So, in this case, we
can find some information of secret monomial matrix QT

d[i′
j−2l+1] from the pair

150 P. Mondal et al.

(Q̃ij′−2l+1, QT
d[i′

j−2l+1]Qij′−2l+1). This is a model that we can use to mount the
attack.

Previously, many works [9,28] have shown that instruction skips can be eas-
ily done with clock glitches, and the fault happens with very high probability.
Mainly, in these works they have skipped the condition check instructions and
store instructions. Recently, Keita et al. in [39] bypassed the validity check in
the decapsulation procedure in post-quantum the key-encapsulation mechanism
Kyber [3]. However, one may argue that skipping the validity check is the most
important part as if we can skip this validity check for i = 0 in line-6 in Algo-
rithm 4, then seed[0] will be revealed. Henceforth all Q̃i’s would have been
revealed. Therefore, one may want to protect this checking at any cost. In fact,
the need to protect this validity check was previously noted by Oder et al. [26]
for different post-quantum schemes (e.g. Kyber). Nevertheless, the data in d
and Reference Tree x can be corrupted by skipping the storing instruction and
forcing the data not to change.

Skip the Store Instruction in Algorithm 5 to Corrupt x: All the nodes of
the Reference Tree x are initialized by zero. If we can skip the store instruction
x[i] = x[2i+1]∨x[2i+2] for any i, then vaule of x[i] will remain zero. However,
if the value of x[i] is supposed to be 1 in the non-faulted case, then x[i] will be
modified after injecting this store instruction fault. As we discussed earlier, we
can find the information of the secret matrix if the fault changes the value of
x[i] from 1 to 0 and x[0] remains 1. A similar instruction skipping attack has
been shown in [28].

Stuck-at-Zero Fault Model to Corrupt x: A possible attack avenue is
exploiting effective faults in the stuck-at model, where an attacker can try to alter
the i-th intermediate value x[i] to a particular known value, e.g., to zero using
stuck-at-zero fault [13,17,20] using voltage glitches or electromagnetic attacks.
The effect of this fault is equivalent to the above “store instruction skipping”
fault. So, this fault will allow us to find the secret matrix.

Rowhammer Attack Model to Corrupt x: Rowhammer [31] is a hardware
bug identified in DRAMS (dynamic random access memory), where repeated
row activations can cause bitflips in adjacent rows. This can also be a possible
attack where bitflips (1 → 0) can be employed to corrupt the data x[i]. Recently,
such an attack on Kyber using rowhammer has been shown in [24].

As we discussed, any one of the above fault models can generate effective
faulted signatures. However, the definition of successful fault always depends on
the fault model. For example, if we work on the first fault model, i.e., “Skip
the validity check condition in Algorithm 4”, then the successful-fault will be:
successfully skipped the checking condition “x[i] = 0 and x[Parent(i)] = 1” for
a known i. But, if we work on the second fault model, then the successful fault
will be: successfully skipped the store instruction “x[i] = x[2i + 1] ∨ x[2i + 2]”
for a known i.

From now on, we will discuss the second fault model to inject a fault, i.e., we
inject a fault to skip the i-th store instruction Ins(i) : “x[i] = x[2i+1]∨x[2i+2]”

ZKFault 151

for a fixed known i. Since all the values of the Reference Tree x are initialized
by zero, therefore for each successful fault, the value of x[i] will always be zero,
where the position of fault location x[i] is known to the attacker. In the practical
setup of this store instruction skip fault model, the following cases may arise:

– Successfully skipped the instruction Ins(i), for the known i and outputs the
signature we call it a successful faulted signature. This fault could be an
effective or ineffective fault.

– Could not skip the instruction Ins(i), for the known fixed i. In this case, we
call the output signature an unsuccessful faulted signature.

In a physical device, faults can be induced with varying success rates. Even if
there is a successful fault, the resulting faulty signature may or may not provide
information about the secret key, as we observed earlier. A successful fault is
called “effective” if it reveals secret key information and “ineffective” if it does
not. More explicitly, we will say that a successful fault is effective if the fault
changes the value of x[i] from 1 to 0, but the value of the root node x[0] remains
unchanged, (i.e., 1). Otherwise, the fault will be ineffective. We must identify
the effective faulted signature from the received signature to find the errorless
secret matrix. In the next Sect. 3.4, we will discuss the effective faulted signature
detection method.

3.4 Effective Fault Detection

Let τ ′ = (salt, cmt, TreeNode′, rsp) be the received signature corresponding
to the message m. We need to detect if the signature is generated from an
“effective” or “ineffective” fault. The injected fault only affects the Reference
Tree x, so the signature components salt, cmt and rsp remain the same with
the corresponding non-faulted signature components. We can compute the fixed
digest vector d corresponding to the signature τ ′ from cmt. From the fixed digest
vector d, we can compute the vector f and the Reference Tree x for the non-
faulted case. However, we can compute the successful faulted Reference Tree x′

from the Reference Tree x by assigning the value of x′[i] = 0 and updating
the ancestors of x′[i] accordingly, i.e., x′ should be the Reference Tree if the
instruction Ins(i) is skipped. Then, we will distinguish the “effective” faulted
signature and “ineffective” faulted signature with the following process:

– Step-1: First, we will check whether x[i] = 0 or not. If x[i] = 0, then this is
already a case of “ineffective fault”, and we reject the signature. Otherwise,
we will go to the next step.

– Step-2: Next, we will check whether x′[0] = 0 or not. If x′[0] = 0, then this is
a case of “ineffective fault”, and we reject the signature. Otherwise, from the
Reference Tree x′, we compute the size of successfully faulted TreeNode′,
say Δexp and the size of received TreeNode′ say Δrec. We compare the
values Δexp with Δrec.

– Step-3: If Δrec �= Δexp, then the fault is unsuccessful, and we reject the
signature. Otherwise, using salt, TreeNode′ and x′ we compute all the Q̃j

152 P. Mondal et al.

where d[j] = 0. We apply the verification using these Q̃j ’s and rsp. If the
verification is successful, then we take the received signature as an effective
faulted signature. Otherwise, we reject the signature.

Note that, in Step-3 of the above process, x[i] is changed from 1 → 0 and
x[0] = 1, but we still consider it as “unsuccessful” fault. This is because we want
our fault detection method to detect whether our fault has been successfully
injected exactly at the i-th location or not. If x[i] changed from 1 → 0, then
there are two cases.

– Case-1: fault was successfully injected at i-th location.
– Case-2: fault was injected at a j-th location for j �= i and it has changed

x[i].

We only consider Case-1 as “successful-fault”, but not Case-2 as the fault is not
injected at the i-th location in that case. In this procedure, we can detect that
the faulted signature that is generated by successfully skipping the instruction
Ins(i) and that leaks the information about the secret matrix. Note that the
targeted faulted location i is arbitrary but known to the attacker. For simplicity,
we will fix the targeted fault position i. We will check whether this fixed i-th
store instruction Ins(i) skipped and that leaks the information about the secret
matrix or not. If this detection method passes, then we will use this signature.
Otherwise, we will again query for another signature.

3.5 Attack Template

In this section, first, we will describe how to obtain the secret monomial matrices
from an effective faulted signature τ = (salt, cmt, TreeNode, rsp) in Algo-
rithm 6. Let x[i] be the node in Reference Tree with height h, and Lx[i] be the set
of all leaf nodes of the subtree rooted at x[i]. We only need the leaf nodes from
Lx[i] that coincide with the first t (the length of the digest d) many leaf nodes of
the full Reference Tree. Without loss of generality, assume that there are v many
such leaves, and let the set of indices of these leaves be I

(i)
leaf = {j1, j2, · · · , jv} .

From this effective faulted signature, all the secret matrices QT
d[j−2l+1] will be

recovered with Algorithm 6, where j ∈ I
(i)
leaf and d[j − 2l + 1] �= 0.

Here, SeedTreeUpdate function takes the TreeNode, salt and digest d and
generates all the ephemeral seeds assuming the modified Reference Tree after
effective fault. Since seed[i] is revealed in TreeNode after effective fault, we
can say that ESEED[j − 2l + 1] for all j ∈ I

(i)
leaf are revealed.

In this attack model, we are able to get into the victim’s device and intro-
duce the fault that causes it to bypass the Ins(i) instruction. The LESS KeyGen
(Algorithm 1) is a one-time operation from where the secret key SK =
(MSSED, gseed) and public key PK = (gseed, G1, · · · , Gs−1) are gener-
ated. But with this private key SK, the LESS Sign (Algorithm 2) can execute
more than once. We follow the following subsequent actions to find the secret
monomial matrices:

ZKFault 153

Algorithm 6. Recover Secret Matrices(τ, PK)
Input: Signature τ = (salt, cmt, T reeNode, rsp), public key PK =

(gseed, G1, · · · , Gs−1).

Output: The columns of secret matrices QT
d [j−2l+1], where j ∈ I

(i)
leaf and d[j−2l+1] �=

0.
1: d ← CSPRNG(cmt, St,w)
2: seed ← SeedTreeUpdate(T reeNode, salt, d)
3: ESEED ← Leaf nodes of seed corresponding to seed[i]
4: G0 ← CSPRNG(gseed, SRREF)
5: for r = 1; r ≤ v; r = r + 1 do
6: if d[jr − 2l + 1] �= 0 and Qd [jr−2l+1] is not recovered then

7: ˜Qjr−2l+1 ← CSPRNG(ESEED[jr − 2l + 1], Mn(q))

8: (Qjr−2l+1, V jr−2l+1) ← PrepareDigestInput(G0, ˜Qjr−2l+1)

9: Q∗ = QT
d [jr−2l+1]Qjr−2l+1 ← ExpandToMonomAction(rsp)

10: Compute QT
d [jr−2l+1] from (Q∗, Qjr−2l+1) � following Section 3.1

– Step-1: We generate a message, signature pair (m, τ) from the victim device.
– Step-2: After receiving the pair (m, τ), we will determine whether or not

τ is an effective faulted signature. Go back to Step-1 if the signature is not
effective. If yes, then go to Step-3.

– Step-3: Using this signature τ , we will run the Recover Secret Matrices
algorithm (Algorithm 6) to determine the hidden monomial matrices.

– Step-4: Next, we will calculate whether or not the whole secret monomial
matrices were obtained. We terminate the process if the secret matrices are
recovered. Otherwise, we repeat the same procedure to obtain the remaining
non-recovered columns.

3.6 Secret Recovery from Single Fault

In this section, we calculate the expected number of secret monomials recovered
from one effective faulted signature where the fault is injected at a node x[i]
(0 ≤ i ≤ 4l − 2). Now, if there are m many non-zero leaves with distinct values
in the subtree rooted at x[i], then we will get exactly m many pairs of the form
(Q̃j , QT

d[j]Qj) i.e. we recover m many secret monomials. In this section, first,
we will estimate the value of m.

Suppose Lx[i] the set of leaf nodes in the subtree rooted at x[i] and let
|Lx[i]| = �. Let W be the random variable representing the number of leaf nodes
in Lx[i] with non-zero value. X be a random variable that represents the number
of distinct non-zero values of the leaf nodes in Lx[i]. Then for any 0 ≤ m ≤ s−1,
we have

Pr[X = m] =
w∑

r=m

Pr[X = m | W = r] · Pr[W = r]

Where w is the weight of d and therefore Lx[i] can only have at most w many
non-zero valued leaf nodes. First, we will calculate Pr[X = m | W = r], which

154 P. Mondal et al.

is the probability that r many non-zero leaves take exactly m many distinct
values. These m distinct values can be chosen from (s − 1) possible values in(
s−1
m

)
ways. Now, we have to assign all these m values to the r many leaf nodes.

We first partition the r locations into m many non-empty subsets, which can be
done in S(r, m) many ways. This S(r, m) is a Stirling number of the second
kind [32]. Now, each of the m many subsets can be assigned a unique non-zero
value, which can be done in m! ways. So, the r many leaf nodes can be assigned
m distinct value in m!

(
s−1
m

)
S(r, m) ways. Therefore

Pr[X = m | W = r] =
m!

(
s−1
m

)
S(r, m)

(s − 1)r

Now, d has weight w and Pr[W = r] is the probability that the � many locations
of d corresponding to the leaf nodes in Lx[i] has exactly r many non-zero values
and the last t − � many locations has w − r many non-zero values. Therefore,

Pr[W = r] =

(
�
r

)(
t−�
w−r

)

(
t
w

)

Now we can calculate Pr[X = m] for all 0 ≤ m ≤ s − 1. However, we are
interested in finding the expected number of secret monomials with one single
fault, which is the expectation of the random variable X.

E [X] =
s−1∑

m=1

m · Pr[X = m]

=
s−1∑

m=1

m

(
w∑

r=m

m!
(
s−1
m

)
S(r, m)

(s − 1)r
·
(

�
r

)(
t−�
w−r

)

(
t
w

)

)

With only one single faulted signature the expected number of secret monomials
that we recover is E [X] but the total number of secret monomials is (s − 1).
Therefore, we need multiple faulted signatures to recover all the secret monomi-
als.

4 Extending Our Attack to CROSS

CROSS uses E
n a commutative group isomorphic to (Fn

z , +), where n, z are
parameters of the signature and G is a subgroup of En. Here e is a long-term
secret vector which is used to generate signatures. Therefore, the attacker can
generate multiple valid signatures using the secret e information. Similar to
the attack on LESS, the target here is to find the information of the secret
vector e. In the Algorithm 7, we can observe that if we have information of one
single pair (e′(i), f (i) = (y(i), σ(i), c

(i)
1)), then we can compute the secret e by

e = σ(i)(e′(i)). Therefore, we aim to find one such pair corresponding to any i
for full key recovery.

ZKFault 155

Algorithm 7. CROSS Sign (Msg, e)

Input: Secret key e ∈ G and message Msg where G ⊂ E
n, H ∈ F

(n−k)×n
p are public key

satisfying s = eHT

Output: Signature τ =
{

Salt, c0, c1, h, SeedP ath, M erkleP roofs,
{
f (i)

}
i/∈J

}

1: Sample MSeed
$←− {0, 1}λ , Salt

$←− {0, 1}2λ

2: Generate Seed = SeedTree(MSeed, Salt)

3: ESEED[1], · · · , ESEED[t] = Leaf nodes of Seed
4: for i = 1, i ≤ t, i = i + 1 do

5: Sample (Seed(u
′), Seed(v

′))
E S E E D [i]←−−−−−−−− {0, 1}2λ

6: Sample u′(i) Seed(u ′)
←−−−−−− F

n
p , e′(i) Seed(e ′)

←−−−−−− G

7: Compute σ(i) ∈ G such that σ(i)(e′(i)) = e

8: Set u(i) = σ(i)(u′(i))
9: Compute s̃(i) = u(i)HT

10: Set c
(i)
0 = Hash(s̃(i), σ(i), Salt, i)

11: Set c
(i)
1 = Hash(u′(i), e′(i), Salt, i)

12: Set T = Merkle Tree(c
(1)
0 , · · · , c

(t)
0)

13: Compute c0 = T .Root()

14: Compute c1 = Hash(c
(1)
1 , · · · , c

(t)
1)

15: Generate (β(1), · · · , β(t)) = GenCh1(c0, c1, Msg, Salt)

16: for i = 1, i ≤ t, i = i + 1 do
17: Compute y(i) = u′(i) + β(i)e′(i)
18: Compute h(i) = Hash(y(i))

19: Compute h = Hash(h(1), · · · , h(t))
20: Generate (b[1], · · · , b[t]) = GenCh2(c0, c1, β(1), · · · , β(t), h, Msg, Salt)

21: Set J = {i : b[i] = 1}
22: Set SeedP ath = publish seeds(MSeed, Salt, J)
23: for i /∈ J do
24: f (i) := (y(i), σ(i), c

(i)
1)

25: Compute M erkleP roofs = T .Proofs({1, · · · , t} \ J)

26: Return τ =
{

Salt, c0, c1, h, SeedP ath, M erkleP roofs,
{
f (i)

}
i/∈J

}

In Algorithm 7, the function publish seeds (line 22) works equivalent to
the function SeedTreePaths (Algorithm 4) used in LESS signature. Using the
digest vector b, the function publish seeds first creates a Reference Tree say
y in a bottom-up approach like LESS signature. The only difference in this
Reference Tree y is that the flag of the published seed is defined as 1 and
unpublished seed notation as 0, whereas in LESS, the authors define the oppo-
site. However, Both use equivalent concepts. Like LESS, we require the modifi-
cation of any node of the Reference Tree from 1(flag of the unpublished seed)
→ 0(flag of the published seed) to get an effective faulted signature. Therefore,
we need the modification from 0 → 1 to get an effective faulted signature. We
can detect the effective faulted signature here using a similar technique that we
used in Sect. 3.4 to detect effective fault for LESS signature.

Let us assume that we apply fault injection to the CROSS sig-
nature of a victim’s device such that the value of y[i] has been

156 P. Mondal et al.

Algorithm 8. Recover Secret CROSS (τ, PK)

Input: τ =

{

Salt, c0, c1, h, SeedP ath, MerkleP roofs,
{

(y(i), σ(i), c
(i)
1)

}

i/∈J

}

Output: The secret vector e.
1: Generate (β(1), · · · , β(t)) = GenCh1(c0, c1, Msg, Salt)
2: Generate (b[1], · · · , b[t]) = GenCh2(c0, c1, β(1), · · · , β(t), h, Msg, Salt)
3: Set J = {i : b[i] = 1}
4: ESEED[j1 − 2l], · · · , ESEED[jv − 2l] ← SeedTreeUpdate(seed[i], Salt, b)
5: for i = j1 − 2l, · · · , jv − 2l : do
6: if i /∈ J then

7: Sample (Seed(u ′), Seed(v ′))
E S E E D [i]←−−−−−−− {0, 1}2λ

8: Sample e′(i) Seed(e ′)←−−−−− G
9: Compute e = σ(i)(e′(i))

10: return e

changed from 0 → 1. Consider an effective faulted signature as τ ={
Salt, c0, c1, h, SeedPath, MerkleProofs,

{
f (i)

}
i/∈J

}
. Since τ is an

effective-faulted signature, therefore we will get the seed seed[i]. All the leaf
nodes of the subtree say Lx[i] = {x[j1], · · · , x[jv]} rooted as seed[i] can be
computed from seed[i]. i.e., ESEED[j1 − 2l], · · · , ESEED[jv − 2l] will be
the corresponding leaf ephemeral seeds. Now, we will find the secret key e using
the Algorithm 8. The function SeedTreeUpdate works the same way we defined
it in Sect. 3.5.

5 Simulation Result

In this section, we discuss the simulation procedure of our fault attack on LESS
and CROSS signatures; i.e., we apply our fault assumption inside the LESS
and CROSS signature algorithms to imitate the corresponding practical attack
scenario. The simulation code is available at GitHub2.

In the previous Sects. 3.6 and 4, we have analyzed the effect of modification
of the values x[i] (for LESS) and y[i] (for CROSS) to 0 and 1 respectively.
For LESS and CROSS, this can be achieved by stuck at zero/stuck at one or
instruction skip fault. So, in the simulation code, we have assumed the values 0
and 1 of the nodes x[i] and y[i] respectively. After receiving this faulted signature
τ , we compute the corresponding secrets of CROSS (secret e) and LESS (secret
monomial matrices) with the help of the respective algorithms Algorithm 6 and
Algorithm 8.

Note that the attack is valid if we target any x[i] (y[i]) for fault injection
in LESS (CROSS) signature, where i is an arbitrary but fixed location. But in
our simulation code we have fixed the location as i = 1. One may change this
location and the simulation code accordingly. However, in that case the results

2 https://github.com/s-adhikary/zkfault simulation.

https://github.com/s-adhikary/zkfault_simulation

ZKFault 157

in Table 2 would change according to our result in Sect. 3.6. We provide the
simulation results for all the versions of LESS and CROSS in Table 2. We have
run the simulation code multiple times to recover all secrets with (multiple)
faulted signatures. We take the average of the number of faulted signatures
required to recover all secrets, which we denote with Navg. We have also included
the average number of secrets recovered from one single fault (E [X]) in the table.

Table 2. Simulation result of full secret monomial matrices recovery of LESS and
CROSS signature [7,34].

Scheme
Security

Level

Parameter

Set

Optim.

Corner

Number

of Secrets
E [X] Navg

LESS [7]

1

LESS-1b - 1 1 1

LESS-1i - 3 2.91 1.05

LESS-1s - 7 5.55 2.09

3
LESS-3b - 1 1 1

LESS-3s - 2 2 1

5
LESS-5b - 1 1 1

LESS-5s - 2 2 1

CROSS [34]
1, 3, & 5

CROSS-R-SDP fast/small 1 1 1

CROSS-R-SDP(G) fast/small 1 1 1

Our analysis is based on the fact that each time we query the faulted sig-
nature oracle, we get an effectively faulted signature. However, in a practical
fault attack, this is not the case. In the real world, there is a probability that
an injected fault is successful, say p1, and also there is a probability that a
successfully injected fault is effective, say p0. Then

Pr[effective fault ∧ successful fault]
= Pr[effective fault | successful fault] · Pr[successful fault]
=p0p1

(5)

Let us consider p = p0p1. Therefore, in a practical scenario to get one faulted
signature, the approximate number of queries to the faulted signature oracle
needed would be Ntrial = 1

p . Moreover, to get Navg many faulted signatures, we

need Ntotal = Navg
p many queries. For example if we consider p = 0.01, then

Ntrial = 100 and consequently, Ntotal = 100 · Navg.

6 Countermeasures

In the previous section, we have seen that the primary attack surface
Reference Tree x is initialized by 0. If we inject fault to skip store instruction

158 P. Mondal et al.

line-5 of Algorithm 5 i.e. x[i] = x[2i+1]∧x[2i+2], then x[i] does not change the
value and stays 0. Hence, one may suggest initializing the Reference Tree with
all 1. The instruction skip fault does not work in this case, but we can apply
bit-flip fault or stuck-at-zero faults and apply the same attack analysis. Since
many practical fault attacks are applicable, countermeasures against one type
of fault may not serve our purpose. Therefore, first, we must identify the main
reason for the existence of the attack vector.

After the digest computation in Algorithm 2, the values of vector d are
checked twice. First, by checking whether the value of each d[i] is zero or not, they
published the component TreeNode. Completing this procedure, again, each
d[i] is checked to publish the component rsp. Therefore, if an attacker injects a
fault at the time of computing TreeNode and somehow succeeds in disclosing
the seed ESEED[i] without altering the vector d, then the information about
the secret matrix QT

d[i] is susceptible to leakage. To mitigate potential attacks,

we must publish either the response Q̃i or QT
d[i]Qi after a single verification of

the value d[i].
In the following sections, we will offer concise explanations for two counter-

measures incorporated within the LESS scheme that protect the scheme up to
one fault.

6.1 Countermeasure with Larger Signature Size

The most straightforward countermeasure would be not using the tree construc-
tion at all. In this version, the preparation of digest d is the same as Algorithm 2.
After the digest preparation, for each 0 ≤ i < t we only check the value of d[i],
and set

rsp[i] =

{
Q̃i if d[i] = 0
QT

d[i]Qi otherwise
.

Then, we cannot get both Q̃i and QT
d[i]Qi for any i and the attack can be pre-

vented. However, in this case, the size of the signature will be |cmt|+wk(log n
+
	log(q − 1)
) + (t − w)λ. This signature size will be larger than the submitted
version of LESS [35].

6.2 Countermeasure with Same Small Signature Size

Here, we introduce another countermeasure that will keep the signature size the
same as the submitted version of LESS [35]. In this countermeasure, our main
target is that after computation of the Reference Tree x, we check the Reference
Tree only once to compute the response for the signature. Note that, according
to the construction of the Reference Tree x, the path from a leaf node to the
root node should be of form 0y1z because if the value of any node on this path
is 1, then all the ancestors of that node will be 1.

After the preparation of the Reference Tree x, we modify the signature gen-
eration method. First, observe that for any leaf node x[2l−1+i] of the Reference

ZKFault 159

Fig. 5. Example for extraction of response rsp, T reeNode according to Algorithm 9

Tree, let the path to the root be x[i0]x[i1] · · · x[ip], where p = 	log2(l)
 + 1 is
the height of the Reference Tree. Here, i0 = 2l − 1 + i and x[ij] is the ancestor
of x[2l − 1 + i] at the height j, this means that x[ip] is the root. The following
is the signature generation process:

– Step-1:We start from the leftmost leaf node.
– Step-2: check the path x[i0]x[i1] · · · x[ip]
– Step-3: If x[ij] = 1 for 0 ≤ j ≤ p, then we store QT

d[i]Qi in rsp and select
the next leaf node as x[2l + i] and goto Step-2, else go to Step-4.

– Step-4: We find x[ih], which is the highest ancestor of x[i0] with the value
zero.

– Step-5: Since x[ih] = 0, all the 2h leaf nodes of the subtree rooted x[ih] must
be zero. We store the seed seed[ih] in TreeNode and we select the next
leaf node as x[2l − 1 + i + 2h] and go to Step-2. If no more leaf nodes are
left, then we stop.

– Step-6: return the pair rsp and TreeNode.

The digest d and the Reference Tree are prepared in the same process here
as it is prepared in Algorithm 2. Only the vectors rsp, TreeNode are prepared
using Algorithm 9. At the end, (cmt, salt, rsp, ,TreeNode) is generated as
the signature.

Example 4. Given a fixed signature digest vector represented as d =
(0, 0, 0, 0, 0, 2, 0, 0). First, we construct the Reference Tree x, which
is illustrated in Fig. 5. Begin by checking leaf nodes from the left side.
First, we take the leftmost leaf node x[7]. The path from x[7] to root is
x[i0]x[i1]x[i2]x[i3]=x[7]x[3]x[1]x[0], and it is valued 0001. In Fig. 5, we can
see that the height of the last ancestor valued 0 is h′ = 3, and the node is
x[1]. We store seed[1] in response TreeNode and select the next leaf node as
x[7 + 2h′−1] = x[11]. Final response will be calculated as rsp = (QT

2 Q12) and
TreeNode = (seed[1], seed[11], seed[6]).

160 P. Mondal et al.

Algorithm 9. LESS Gen rsp update
Input: The fixed weight digest vector d, The secret monomial matrices Qi, ∀i ∈ Zs,

where Q0 = In, The Seed Tree seed, and the partial monomial matrices Qj ,
∀j ∈ Zt.

Output: The response rsp and T reeNode
1: for i = 0; i < t; i = i + 1 do
2: if d[i] = 0 then
3: f [i] = 0
4: else
5: f [i] = 1

6: for i = 0; i < 4l; i = i + 1 do
7: x[i] = 0

8: x ←− compute seeds to publish(f , x)
9: i = 0, j = 0, j′ = 0

10: while i < t do
11: c = 2l − 1 + i, h = 0, h′ = 0
12: while Parent(c) �= 0 do
13: if x[c] = 0 then
14: c′ = c, h′ = h + 1

c = Parent(c), h = h + 1

15: if h′ = 0 then
16: rsp[j′] = CompressMono(QT

d [i]Qi)
17: i = i + 1, j′ = j′ + 1
18: else
19: T reeNode[j] = seed[c′]
20: i = i + 2h′−1, j = j + 1

21: Return rsp, T reeNode

Suppose we inject a fault at the node x[i] and alter its value from 1 to 0.
Then some of its ancestors may change. Let x[i1], x[i2], · · · , x[ih] be the list of
all ancestors of x[i], where x[ij] is ancestor of x[ij−1] for all j ∈ [2, h] and x[ih]
is the root. Suppose x[iy] is the highest ancestor in the list to have the value
zero. Now, consider the leftmost leaf node x[r] of the subtree rooted at x[iy],
then x[iy] is the highest node with value zero in the path from x[r] to root.
Hence, according to Algorithm 9, seed[iy] is appended to TreeNode and all
the leaf nodes in the subtree rooted at x[iy] are skipped.

Observe that the fault at x[i] only affects the subtree rooted at x[iy], the rest
of the Reference Tree is unchanged. The subtree rooted at x[iy] is skipped after
revealing seed[iy], and seed[iy] can only be used to generate the ephemeral
seeds that do not have any information about the secret monomial matrices.
Therefore, the attack will not be possible with just one fault.

We only change the attack surface part to protect the LESS scheme against
our attack. The attack surface of the CROSS signature scheme is similar to
LESS. We can use the proposed countermeasure for CROSS also. We only need
to modify the update method of rsp and TreeNode according to the CROSS
signing algorithm.

ZKFault 161

Cost of the Countermeasure. Here we will compare the cost analysis of our
proposed countermeasure with the original LESS implementation (Algorithm 2).
The Reference Tree generation process in our proposed method is the same as
the original LESS proposal. We have only changed the TreeNode and rsp
generation process but result is same in both cases i.e, for a particular Seed
Tree, Reference Tree pair, our method and original LESS implementation, both
generate the same TreeNode and rsp. First of all, we consider the following
computation costs:

– Ccheck: cost of any condition checking
– Cmono: cost of computation of a monomial multiplication followed by a
CompressMono function and storing the result

– Cseed: cost of storing seeds from Seed Tree condition checking

Also, we fix a Seed Tree and a Reference Tree and we assume that r many seeds
from Seed Tree are to be stored in TreeNode. Assume that the total number
of nodes in the Reference Tree is N .

Cost of LESS Original Implementation (Algorithm 2): As we can see in Algo-
rithm 2, the TreeNode is generated using Algorithm 4. We are going to ignore
the cost of compute seeds to publish function (Algorithm 5), as it has also
been used in our countermeasure. For each node in the Reference Tree, Algo-
rithm 4 checks the node and its parent node which takes 2N · Ccheck compu-
tations. As we have assumed earlier there are r many seeds which are to be
stored in TreeNode, which takes r · Cseed computations. After that, Algo-
rithm 2 checks each value of the vector d which takes t · Ccheck computations
and computes the monomial multiplication and calls the CompressMono function
for each d[i] �= 0, which takes w · Cmono computations. Therefore the total cost
is (2N + t) · Ccheck + r · Cseed + w · Cmono.

Cost of Our Proposed Method (Algorithm 9): In each iteration of the while loop,
we first check the full path from the leaf node to the root, this takes log2 N ·Ccheck

computations. In each iteration, the algorithm can either update TreeNode or
update rsp i.e., the total number of iterations in the while loop is (r + w). The
condition checking takes total (r + w) · log2 N · Ccheck computations. Now the
rsp is updated for w many iterations, which takes total w ·Cmono computations.
Similarly, updating TreeNode takes r·Cseed computations. Therefore, the total
cost is (r + w) · log2 N · Ccheck + r · Cseed + w · Cmono.

Observe that the cost of the countermeasure may vary with the value of r,
which is the number of seeds published from Seed Tree. We have benchmarked
the performance of the LESS-sign algorithm with and without our countermea-
sure for all parameter sets of LESS in Table 3. As we can see, including our
countermeasure does not degrade the performance of the LESS-sign algorithm.

For benchmarking, we have used an HP Elite Tower 600 G9 Desktop with an
Intel Core i7-12700 CPU running at 2.1 GHz and 32 GB physical memory, which
was running Ubuntu 22.04.4 LTS. The test codes were executed on a single core
with Turbo Boost and hyperthreading disabled.

162 P. Mondal et al.

Table 3. LESS-sign performance comparison with our countermeasure against original
LESS implementation.

Security

Level

Parameter

Set

Average cpucycles

(×106 cycles)

Our

Countermeasure

Original

LESS

1

LESS-1b 1162.31 1162.19

LESS-1i 1148.03 1147.94

LESS-1s 931.57 931.72

3
LESS-3b 9563.01 9564.23

LESS-3s 11285.14 11283.65

5
LESS-5b 44031.11 44036.56

LESS-5s 29544.22 29542.31

7 Discussion and Future Direction

In this study, we have assumed a single-fault model where an attacker can only
inject a fault in one single location. The countermeasure we have provided is
based on that assumption. We emphasize the necessity of future investigations
into higher-order fault models, side-channel attacks using power, electromagnetic
radiation [20,28], and combined (side-channel assisted fault attack) attack. This
study is the first research study enhancing the security of the digital signature
scheme LESS and CROSS against a broader spectrum of fault attacks. LESS
has (s−1) secret monomial matrices, and we’ve shown that one pair can recover
some information about one secret matrix. So, we need multiple targeted pairs
to retrieve all secret matrices. This number of required pairs depends on various
parameters. Therefore, we require more than one effective faulted signature for
some parameter sets of LESS. For CROSS, there’s only one secret e for all the
parameter sets. It can be recovered with just one targeted pair.

In this work, we have done a fault analysis of the LESS [35] signature
scheme that has been submitted to NIST. However, the authors of LESS have
updated the scheme in the LESS project’s site [21]. We observe that our men-
tioned attack surface, i.e., the computation of TreeNode by using the function
SeedTreePaths, are present there too. So, our attack is still applicable to their
updated version. Another code-based signature scheme MEDS (Matrix Equiva-
lence Digital Signature) [12] based on the zero-knowledge protocol. Like LESS
and CROSS, the Sign algorithm of MEDS uses a similar tree construction to
reduce the signature size. In this case, the response (Ãi or Q ·Ãi) is constructed
depending on some fixed weight digest vector d, where Q is a secret component.
It involves the same seed tree and Reference Tree to store some seeds corre-
sponding to the response Ãi in a similar manner. So, the same attack model can
also be applied to the MEDS signature scheme. However, we have not completely

ZKFault 163

analyzed how many faulted signatures are needed to find the entire secret. We
left this part for future work.

We have shown a fault detection method where we have fixed a position
x[i] of the Reference Tree and injected fault at that location. The detection
method in Sect. 3.4 can detect a successful and effective fault at the location x[i]
for any chosen i, where 1 ≤ i < 4l − 1. Moreover, this method can determine
the occurrence of an effective fault at any arbitrary location within the reference
tree by applying the detection procedure for each 1 ≤ i < 4l − 1. Given that
l ∈ {128, 512, 1024} (according to Table 1), this approach is computationally
feasible. However, a mathematical analysis for this scenario has not been included
and is left for future work.

Acknowledgements. This work was partially supported by Horizon 2020 ERC
Advanced Grant (101020005 Belfort), CyberSecurity Research Flanders with reference
number VR20192203, BE QCI: Belgian-QCI (3E230370) (see beqci.eu), Intel Corpora-
tion, Secure Implementation of Post-Quantum Cryptosystems (SECPQC) DST-India
and BELSPO. Angshuman Karmakar is funded by FWO (Research Foundation - Flan-
ders) as a junior post-doctoral fellow (contract number 203056/1241722N LV). Puja
Mondal is supported by C3iHub, IIT Kanpur. Supriya Adhikary is supported by the
Prime Minister’s Research Fellowship (PMRF), India.

Supplementary Material

A Comparison of LESS with Other Code-Based
Signature Schemes

Table 4 compares the key sizes and performance of LESS with other code-based
digital signature schemes submitted to NIST’s additional call for digital signa-
tures [25].

B Verification Algorithm of LESS

The verification algorithm in Algorithm 10 takes a message m and signature
τ = (salt, cmt, TreeNode, rsp) and the public key PK as inputs and returns
1, if the τ is a valid signature of the message m otherwise, it will return 0.

164 P. Mondal et al.

Table 4. Comparison of code-based signature schemes in terms of performance and
size.

Category Scheme

Performance

(M Cycle)

Size

(Bytes)

Sign. Verify Signature
Public

Key

Level I

WAVE [36] 1161 205.9 822 3677390

MEDS [12] 518.1 515.6 9896 9923

CROSS [34] 22 10.3 10304 61

LESS [35] 263.6 271.4 5325 98202

Level III

WAVE [36] 3507 464.1 1249 7867598

MEDS [12] 1467 1462 41080 41711

CROSS [34] 46.5 18.3 23407 91

LESS [35] 2446.9 2521.4 14438 70554

Level V

WAVE [36] 7397 813.3 1644 13632308

MEDS [12] 1629.8 1612.6 132528 134180

CROSS [34] 74.8 26.1 43373 121

LESS [35] 10212.6 10458.8 26726 132096

Algorithm 10. LESS Vrfy(m, τ, PK)
Input: A message m, the public key PK and the signature τ = (salt, cmt, T reeNode, rsp).
Output: It will return 1, if (m, τ) is a valid message signature pair; Otherwise, return 0.

1: d′ ← CSPRNG(cmt, St,w)
2: for i = 0; i < t; i = i + 1 do

3: d′[i] = 0? f ′[i] = 0 : f ′[i] = 1

4: ESEED′ ← regenerate leaves(salt, T reeNode, f ′)
5: G0 ← CSPRNG(gseed, SRREF), k = 0

6: for i = 1; i < t; i = i + 1 do
7: if d′[i] = 0 then
8: Q̃′

i ←− CSPRNG(ESEED′[i], Mn)

9: (Q
′
i, V

′
i) ←− PreparedDigestInput(G0, Q̃′

i)
10: else
11: j = d′[i]
12: Gj ← ExpandRREF(PK[j])
13: Q∗ ← ExpandToMonomAction(rsp[k])

14: Compute J ← {αi : Q∗[αi, ∗] = 0}
15: Ĝ ← (GjQ∗ | Gj [∗, J])

16: (Ĝ, pivot column) ← RREF(Ĝ)

17: NP = 0, V
′
i = O

18: for c = 0; c < n; c = c + 1 do
19: if pivot column[c] = 0 then

20: V
′
i ← LexMin(Ĝ, V

′
i, NP, c), NP = NP+ 1

21: V
′
i ← LexSortCol(V

′
i), k = k + 1

22: cmt′ ← H(V
′
0, · · · , V

′
t−1, m, len, salt)

23: cmt = cmt′? Return 1 : Return 0

ZKFault 165

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From Identification to Sig-
natures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and
Forward-Security. In: Knudsen, L.R. (ed.) Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2332, pp. 418–433. Springer (2002).
https://doi.org/10.1007/3-540-46035-7 28,

2. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J., Liu,
Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone,
D.: Status Report on the Third Round of the NIST Post-Quantum Cryptography
Standardization Process. Online. Accessed 26th January, 2024 (2022), https://
nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

3. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS-Kyber Algorithm Specifica-
tions And Supporting Documentation (version 3.02). Online (2021), https://pq-
crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

4. Beckwith, L., Wallace, R., Mohajerani, K., Gaj, K.: A High-Performance Hard-
ware Implementation of the LESS Digital Signature Scheme. In: Johansson, T.,
Smith-Tone, D. (eds.) Post-Quantum Cryptography - 14th International Work-
shop, PQCrypto 2023, College Park, MD, USA, August 16-18, 2023, Proceedings.
Lecture Notes in Computer Science, vol. 14154, pp. 57–90. Springer (2023). https://
doi.org/10.1007/978-3-031-40003-2 3,

5. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The SPHINCS+ Signature Framework. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. p. 2129-2146. CCS ’19,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3319535.3363229,

6. Beullens, W.: Breaking Rainbow Takes a Weekend on a Laptop. Cryptology ePrint
Archive, Paper 2022/214 (2022), https://eprint.iacr.org/2022/214,

7. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is More: Code-Based Sig-
natures Without Syndromes. In: Nitaj, A., Youssef, A. (eds.) Progress in Cryptol-
ogy - AFRICACRYPT 2020, pp. 45–65. Springer International Publishing, Cham
(2020)

8. Breier, J., Hou, X.: How Practical are Fault Injection Attacks, Really? Cryptology
ePrint Archive, Paper 2022/301 (2022), https://eprint.iacr.org/2022/301,

9. Bruinderink, L.G., Pessl, P.: Differential Fault Attacks on Deterministic Lattice
Signatures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 21–43 (2018).
https://doi.org/10.13154/TCHES.V2018.I3.21-43,

10. Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In: Advances
in Cryptology - EUROCRYPT 2023: 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part V. p. 423-447. Springer-Verlag, Berlin, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-30589-4 15,

11. Cho, J., No, J.S., Lee, Y., Koo, Z., Kim, Y.S.: Enhanced pqsigRM: Code-Based Dig-
ital Signature Scheme with Short Signature and Fast Verification for Post-Quantum
Cryptography. Cryptology ePrint Archive, Paper 2022/1493 (2022), https://eprint.
iacr.org/2022/1493,

https://doi.org/10.1007/3-540-46035-7_28
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.1007/978-3-031-40003-2_3
https://doi.org/10.1007/978-3-031-40003-2_3
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/301
https://doi.org/10.13154/TCHES.V2018.I3.21-43
https://doi.org/10.1007/978-3-031-30589-4_15
https://eprint.iacr.org/2022/1493
https://eprint.iacr.org/2022/1493

166 P. Mondal et al.

12. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your MEDS: Digital Signatures from Matrix
Code Equivalence. Cryptology ePrint Archive, Paper 2022/1559 (2022), https://
eprint.iacr.org/2022/1559,

13. Clavier, C.: Secret External Encodings Do Not Prevent Transient Fault Analysis.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September
10-13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4727, pp. 181–
194. Springer (2007).https://doi.org/10.1007/978-3-540-74735-2 13,

14. Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature
Scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) Applied Cryptography
and Network Security, pp. 164–175. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2005)

15. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
CRYSTALS – Dilithium: Digital Signatures from Module Lattices. Cryptology
ePrint Archive, Paper 2017/633 (2017), https://eprint.iacr.org/2017/633,

16. Galbraith, S.D., Petit, C., Silva, J.: Identification Protocols and Signature Schemes
Based on Supersingular Isogeny Problems. In: Takagi, T., Peyrin, T. (eds.)
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I. Lecture Notes in Computer Sci-
ence, vol. 10624, pp. 3–33. Springer (2017). https://doi.org/10.1007/978-3-319-
70694-8 1,

17. Genêt, A., Kannwischer, M.J., Pelletier, H., McLauchlan, A.: Practical Fault Injec-
tion Attacks on SPHINCS. IACR Cryptol. ePrint Arch. p. 674 (2018), https://
eprint.iacr.org/2018/674

18. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and
Reload - A Cache Attack on the BLISS Lattice-Based Signature Scheme. In: Gier-
lichs, B., Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2016, pp. 323–345. Springer, Berlin Heidelberg, Berlin, Heidelberg (2016)

19. Jao, D., Feo, L.D.: Towards Quantum-Resistant Cryptosystems from Supersingu-
lar Elliptic Curve Isogenies. In: PQCrypto. Lecture Notes in Computer Science,
vol. 7071, pp. 19–34. Springer (2011)

20. Kundu, S., Chowdhury, S., Saha, S., Karmakar, A., Mukhopadhyay, D., Ver-
bauwhede, I.: Carry Your Fault: A Fault Propagation Attack on Side-Channel
Protected LWE-based KEM. IACR Cryptol. ePrint Arch. p. 1674 (2023), https://
eprint.iacr.org/2023/1674

21. LESSProjectSite: LESS project (2023), https://www.less-project.com/
22. Meyer, C.: Matrix Analysis and Applied Linear Algebra. Other Titles in Applied

Mathematics, Society for Industrial and Applied Mathematics (2000), https://
books.google.co.in/books?id=HoNgdpJWnWMC

23. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
Advances in Cryptology – CRYPTO ’85 Proceedings, pp. 417–426. Springer, Berlin
Heidelberg, Berlin, Heidelberg (1986)

24. Mondal, P., Kundu, S., Bhattacharya, S., Karmakar, A., Verbauwhede, I.: A practi-
cal key-recovery attack on LWE-based key-encapsulation mechanism schemes using
Rowhammer. CoRR abs/2311.08027 (2023). https://doi.org/10.48550/ARXIV.
2311.08027,

25. NIST: NIST Announces Additional Digital Signature Candidates for the PQC
Standardization Process. Online. Accessed 26th January, 2024 (2023), https://
csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

https://eprint.iacr.org/2022/1559
https://eprint.iacr.org/2022/1559
https://doi.org/10.1007/978-3-540-74735-2_13
https://eprint.iacr.org/2017/633
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://eprint.iacr.org/2018/674
https://eprint.iacr.org/2018/674
https://eprint.iacr.org/2023/1674
https://eprint.iacr.org/2023/1674
https://www.less-project.com/
https://books.google.co.in/books?id=HoNgdpJWnWMC
https://books.google.co.in/books?id=HoNgdpJWnWMC
https://doi.org/10.48550/ARXIV.2311.08027
https://doi.org/10.48550/ARXIV.2311.08027
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

ZKFault 167

26. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-Secure and
Masked Ring-LWE Implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 142–174 (2018). https://doi.org/10.13154/TCHES.V2018.I1.142-174,

27. Persichetti, E., Santini, P.: A New Formulation of the Linear Equivalence Problem
and Shorter LESS Signatures, pp. 351–378 (12 2023). https://doi.org/10.1007/978-
981-99-8739-9 12

28. Pessl, P., Prokop, L.: Fault Attacks on CCA-secure Lattice KEMs. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(2), 37–60 (2021).https://doi.org/10.46586/
TCHES.V2021.I2.37-60,

29. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking
Deterministic Signature Schemes using Fault Attacks. Cryptology ePrint Archive,
Paper 2017/1014 (2017), https://eprint.iacr.org/2017/1014,

30. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003). https://doi.org/10.26421/QIC3.4-3,

31. Qiao, R., Seaborn, M.: A new approach for rowhammer attacks. In: 2016 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). pp.
161–166 (2016). https://doi.org/10.1109/HST.2016.7495576

32. Rennie, B., Dobson, A.: On stirling numbers of the second kind. Jour-
nal of Combinatorial Theory 7(2), 116–121 (1969). https://doi.org/10.
1016/S0021-9800(69)80045-1, https://www.sciencedirect.com/science/article/pii/
S0021980069800451

33. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Commun. ACM 21(2), 120–126 (1978).
https://doi.org/10.1145/359340.359342

34. Schemes, N.P.Q.C.D.S.: CROSS: Codes and Restricted Objects Signature Scheme
- Specification Document (Jan 2022), https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/round-1/spec-files/CROSS-spec-web.pdf

35. Schemes, N.P.Q.C.D.S.: Less: Linear equivalence signature scheme - Specifica-
tion Document (Jan 2022), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-
sig/documents/round-1/spec-files/less-spec-web.pdf

36. Schemes, N.P.Q.C.D.S.: WAVE: Round 1 Submission - Specification Document
(Jan 2022), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/
round-1/spec-files/wave-spec-web.pdf

37. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994. pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700,

38. Sullivan, G.A., Sippe, J., Heninger, N., Wustrow, E.: Open to a fault: On
the passive compromise of TLS keys via transient errors. In: 31st USENIX
Security Symposium (USENIX Security 22). pp. 233–250. USENIX Association,
Boston, MA (Aug 2022), https://www.usenix.org/conference/usenixsecurity22/
presentation/sullivan

39. Xagawa, K., Ito, A., Ueno, R., Takahashi, J., Homma, N.: Fault-Injection Attacks
Against NIST’s Post-Quantum Cryptography Round 3 KEM Candidates. In:
Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2021, pp.
33–61. Springer International Publishing, Cham (2021)

https://doi.org/10.13154/TCHES.V2018.I1.142-174
https://doi.org/10.1007/978-981-99-8739-9_12
https://doi.org/10.1007/978-981-99-8739-9_12
https://doi.org/10.46586/TCHES.V2021.I2.37-60
https://doi.org/10.46586/TCHES.V2021.I2.37-60
https://eprint.iacr.org/2017/1014
https://doi.org/10.26421/QIC3.4-3
https://doi.org/10.1109/HST.2016.7495576
https://doi.org/10.1016/S0021-9800(69)80045-1
https://doi.org/10.1016/S0021-9800(69)80045-1
https://www.sciencedirect.com/science/article/pii/S0021980069800451
https://www.sciencedirect.com/science/article/pii/S0021980069800451
https://doi.org/10.1145/359340.359342
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/CROSS-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/CROSS-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/less-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/less-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://www.usenix.org/conference/usenixsecurity22/presentation/sullivan
https://www.usenix.org/conference/usenixsecurity22/presentation/sullivan

More Vulnerabilities of Linear Structure
Sbox-Based Ciphers Reveal Their

Inability to Resist DFA

Amit Jana(B), Anup Kumar Kundu, and Goutam Paul

Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata,
203 Barrackpore Trunk Road, Kolkata 700108, India
janaamit001@gmail.com, goutam.paul@isical.ac.in

Abstract. At Asiacrypt 2021, Baksi et al. introduced DEFAULT, the
first block cipher designed to resist differential fault attacks (DFA) at
the algorithm level, boasting of 64-bit DFA security. However, during
Eurocrypt 2022, Nageler et al. presented a DFA attack that exposed vul-
nerabilities in the claimed DFA security of DEFAULT, reducing it by up to
20 bits in the case of the simple key schedule and even allowing for unique
key recovery in the presence of rotating keys. In this work, we compute
deterministic differential trails for up to five rounds, injecting around 5
faults into the simple key schedule for key recovery, recovering equiva-
lent keys with just 36 faults in the DEFAULT-LAYER, and introducing
a generic DFA approach suitable for round-independent keys within the
DEFAULT cipher. These results represent the most efficient key recovery
achieved for the DEFAULT cipher under DFA attacks so far. Addition-
ally, we introduce a novel fault attack called the Statistical-Differential
Fault Attack (SDFA), specifically tailored for linear-structured SBox-
based ciphers like DEFAULT. This technique is successfully applied to
BAKSHEESH, resulting in a nearly unique key recovery. Our findings
emphasize the vulnerabilities present in linear-structured SBox-based
ciphers and underscore the challenges in establishing robust DFA pro-
tection for such cipher designs.

Keywords: Differential Fault Attack · Statistical Fault Attack ·
Statistical-Differential Fault Attack · DEFAULT · DFA Security

1 Introduction

The differential fault attack (DFA) is a powerful physical attack that poses a sig-
nificant threat to symmetric key cryptography. Introduced in the field of block
ciphers by Biham and Shamir [10], DFA [23,25,33] has proven to be capable
of compromising the security of many block ciphers that were previously con-
sidered secure against classical attacks. While nonce-based encryption schemes
can automatically prevent DFA attacks by incorporating nonces in encryption
queries, the threat of DFA [19,28] still persists in designs with a parallelism
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 168–203, 2025.
https://doi.org/10.1007/978-981-96-0944-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_6&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_6

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 169

degree greater than 2. Additionally, DFA [17,18,27] can pose a significant risk to
nonce-based designs in the decryption query. In essence, DFA represents a sig-
nificant challenge for cryptographic implementations whenever an attacker can
induce physical faults. In response to this threat, the research community has
focused on proposing countermeasures to enhance the DFA resistance of ciphers.

Countermeasures against fault injection attacks can be classified into two
main categories. The first category focuses on preventing faults from occurring
by utilizing specialized devices. The second category focuses on mitigating the
impact of faults through redundancy or secure protocols. Countermeasures that
mitigate the effects of fault injection attacks utilize redundancy for protection.
These countermeasures can be classified into three categories based on where the
redundancy is introduced: cipher level (no redundant computation), using a sepa-
rate dedicated device, and incorporating redundancy in computation (commonly
achieved through circuit duplication). Additionally, protocol-level techniques can
also be employed to enhance fault protection.

Most of the countermeasures against attacks on cryptographic primitives,
modes of operation, and protocols are focused on implementation-level defenses
without requiring changes to the underlying cryptographic algorithms or pro-
tocols themselves. One effective countermeasure against DFA is to introduce
redundancy into the system so that it can still function even if some faults or
errors are introduced. Another countermeasure is to use error detection and
correction codes. These codes can detect when errors or faults have occurred
and correct them before they affect the output. Recent cryptographic designs
propose primitives with built-in features to enable protected implementations
against DFA attacks. For instance, FRIET [31] and CRAFT [9] are efficient and
provide error detection. DEFAULT [4] is a more radical approach, aiming to pre-
vent DFA attacks through cipher-level design. A brief survey on fault attacks
and their countermeasures in symmetric key cryptography can be found in [3].

DEFAULT is a block cipher design proposed by Baksi et al. at Asiacrypt 2021
protects against DFA attacks at the cipher level. The primary component of
the DFA protection layer in DEFAULT (called the DEFAULT-LAYER) is a weak
class linear structure (LS) based substitution boxes (SBox), which behave like
linear functions in some aspects. The idea behind the DEFAULT design is that
strong non-linear SBoxes are more resistant against classical differential attacks
(DA), but weaker against DFA attacks. Conversely, weaker non-linear SBoxes
are more resistant against DFA attacks but weaker against DA. Simply speaking,
the DEFAULT cipher is a combination of DEFAULT-LAYER (where rounds use
LS SBoxes) and DEFAULT-CORE (where rounds use non-LS SBoxes). To address
this trade-off, DEFAULT maintains the main cipher, which is presumed secure
against classical attacks, and adds two keyed permutations as additional layers
before and after it. These keyed permutations have a unique structure that makes
DFA non-trivial on them, resulting in a DFA-resistant construction. The SBox
in DEFAULT-LAYER features three non-trivial LS elements, resulting in specific
inputs/outputs becoming differentially equivalent, including the associated keys.
As a result, attackers cannot learn more than half of the key bits by attacking the

170 A. Jana et al.

SBox layer. The designers claim that by using DFA, an adversary can only recover
64 bits out of a 128-bit key, leaving a remaining keyspace of 264 candidates that is
difficult to brute-force. For even more security, the design approach can be scaled
for a larger master key size. In their initial design [5], the authors first propose
the simple key schedule function where the master key is used throughout each
round in the cipher. Then in [4] the authors update the simple key schedule by
recommending to use of the rotating key schedule function in the cipher to make
it a more DFA secure cipher.

In [24], the authors initially demonstrate the vulnerability of the simple key
schedule of the DEFAULT cipher to DFA attacks. They highlight that this attack
can retrieve more key information than what the cipher’s designers claimed,
surpassing the 64-bit security level. The authors also present a method to retrieve
the key in the case of a rotating key schedule by exploiting faults to create an
equivalent key and then targeting the DEFAULT-CORE to recover the actual
key. However, their attack on the simple key schedule does not achieve unique
key recovery even with an increased number of injected faults. Moreover, as
described in [12], this work presents a differential fault attack on the DEFAULT
cipher under the simple key schedule, but it is worth noting that this attack is
not applicable to the modified version of the cipher employing a key scheduling
algorithm.

In recent times, Baksi et al. introduced a new lightweight block cipher based
on linear structure (LS SBox) principles, called BAKSHEESH [6]. Similar to the
DEFAULT-LAYER, which incorporates three non-trivial LS elements within its
SBox, this newly introduced design features only one non-trivial LS element,
resulting in a DFA security level of 232. Although the designers have not explic-
itly claimed any DFA security, we find it pertinent to conduct a comprehensive
investigation into its DFA security, given its alignment with the LS SBox-based
design paradigm. To the best of our knowledge, so far there is only a single
analysis using the truncated impossible differential on the cipher [21].

1.1 Our Contributions

In this paper, we make several contributions in the field of fault attacks on
LS SBox-based ciphers: DEFAULT and BAKSHEESH. Firstly, we demonstrate
the vulnerability of the DEFAULT cipher to DFA attacks under bit-flip fault
models, specifically targeting the simple key schedule. Our approach effectively
reduces the keyspace with a minimal number of injected faults, surpassing the
performance of previous attacks. To achieve this, we propose novel techniques to
uniquely compute the differential trail up to five rounds by analyzing the cipher-
text differences. These techniques enable us to filter the intermediate rounds and
further reduce the keyspace.

Furthermore, we extend our analysis to the rotating key schedule and show-
case the efficiency of our approach in reducing the keyspace to a unique solution
with a minimal number of faults. Additionally, we present a general framework
for computing equivalent keys of the DEFAULT-LAYER cipher. By applying this

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 171

framework, we demonstrate the efficacy of DFA attacks on rotating key schedules
with significantly fewer faults.

Moreover, we introduce a new attack called the Statistical-Differential Fault
Attack under the bit-set fault model. This attack efficiently recovers the round
keys of the DEFAULT cipher, even when the keys are independently chosen from
random sources.

Finally, we applied our proposed DFA attack to another linear-structured
SBox-based cipher, BAKSHEESH, efficiently recovering its master key uniquely.
Likewise, under the bit-set fault model, the SDFA attack can be effectively
applied to nearly retrieve its key uniquely.

To summarize our contributions, we provide a concise performance compari-
son between our enhanced attacks and previous attack methods in Table 1. Our
work represents a substantial advancement in the field of fault attacks on LS
SBox-based ciphers, notably the DEFAULT and BAKSHEESH ciphers, by intro-
ducing a highly effective key recovery strategy.

Table 1. Differential Fault Attacks on DEFAULT with Different Key Schedules

Cipher Key Schedule Relevant Works Attack Strategy
Results

References
of Faults Keyspace

DEFAULT

Simple

Nageler et al.
Enc-Dec IC-DFA 16 239 [24, Section 6.1]

Multi-round IC-DFA 16 220 [24, Section 6.2]

This Work

Second-to-Last Round Attack 64 232 Section 3.1.2

Third-to-Last Round Attack 34 1 Section 3.1.3

Fourth-to-Last Round Attack 16 1 Section 3.1.4

Fifth-to-Last Round Attack 5 1 Section 3.1.5

SDFA [64, 128] 1 Section 4.2

Rotating

Nageler et al.

Generic NK-DFA 1728 + x 1 [24, Section 4.3]

Enc-Dec IC-NK-DFA 288 + x 232 [24, Section 5.1]

Multi-round IC-NK-DFA (84 ± 15) + x 1 [24, Section 5.2, 6.3]

This Work

Third-to-Last Round Attack 96 + x 1 Section 3.2.2

Fourth-to-Last Round Attack 48 + x 1 Section 3.2.2

Fifth-to-Last Round Attack 36 + x 1 Section 3.2.2

SDFA [64, 128] 1 Section 4.3

BAKSHEESH Rotating This Work

Second-to-Last Round Attack 40 1 Section 5.1.2

Third-to-Last Round Attack 12 1 Section 5.1.3

SDFA 128 1 Section 5.2

*x represents the number of faults to retrieve the key at the DEFAULT-CORE. We
verified that 32 bit-faults at the second-to-last round in DEFAULT-CORE achieve unique
key recovery.

2 Preliminaries

In this section, we will introduce the notations that will be utilized throughout
the paper. Following that, we will provide descriptions of the DEFAULT and
BAKSHEESH ciphers. Subsequently, we will provide a concise overview of DFA
attacks, followed by an in-depth discussion of the linear structure (LS) SBox, a

172 A. Jana et al.

crucial element in designing a block cipher with DFA protection. The following
notations are used throughout the paper.
1. a ⊕ b denotes the bit-wise o̊f a and b.
2. ∪, ∩ denotes the set union and intersection respectively.
3. Ri denotes the ith round of the corresponding cipher.
4. Ki denotes the ith subkey of the corresponding cipher.
5. + denotes the integer addition.
6. ΔC denotes the ciphertext difference.
7. Ni

j denotes the jth nibble at Ri.

8. Ki
j denotes the jth key-nibble of Ki.

2.1 Description of DEFAULT Cipher

The DEFAULT cipher [4] is a lightweight block cipher with a 128-bit state and key
size. It is designed to resist DFA attacks by limiting the amount of key infor-
mation that can be learned by an attacker. The cipher incorporates two keyed
permutations, known as DEFAULT-LAYER, as additional layers before and after
the main cipher. The DEFAULT cipher consists of two main building blocks:
DEFAULT-LAYER and DEFAULT-CORE. The DEFAULT-LAYER layer protects the
cipher from DFA attacks, while the DEFAULT-CORE layer protects against clas-
sical attacks. In short, the encryption function of the DEFAULT cipher can be
expressed as Enc = EncDEFAULT-LAYER ◦ EncCORE ◦ EncDEFAULT-LAYER.

The DEFAULT cipher employs a total of 80 rounds, with the DEFAULT-LAYER
function being applied 28 times and the DEFAULT-CORE function being applied
24 times. Each round function consists of a structured 4-bit SBox layer, a per-
mutation layer, an add round constant layer, and an add round key layer. The
DEFAULT-LAYER function utilizes a linear structured SBox, while the DEFAULT-
CORE function utilizes a non-linear structured 4-bit SBox. In the following sub-
sections, we will discuss each component of the DEFAULT cipher in detail.

SBoxes. The DEFAULT-LAYER layer of the DEFAULT cipher utilizes a 4-bit Lin-
ear Structured SBox, denoted as S. The SBox consists of four linear structures:
0 → 0, 6 → a, 9 → f , and f → 5. The definition of a linear structure can be
found in Definition 1. Similarly, the DEFAULT-CORE layer uses another SBox,
denoted as Sc. Both the tables and their corresponding DDT’s are given below.

x : 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) : 0 3 7 e d 4 a 9 c f 1 8 b 2 6 5

x : 0 1 2 3 4 5 6 7 8 9 a b c d e f
Sc(x) : 1 9 6 f 7 c 8 2 a e d 0 4 3 b 5

Definition 1 (Linear Structure). For F : Fn
2 → F

n
2 , an element a ∈ F

n
2 is

called a linear structure of F if for some constant c ∈ F
n
2 , F (x) ⊕ F (x ⊕ a) = c

holds ∀x ∈ F
n
2 .

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 173

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16
1 8 8
2 8 8
3 8 8
4 8 8
5 8 8
6 16
7 8 8
8 8 8
9 16
a 8 8
b 8 8
c 8 8
d 8 8
e 8 8
f 16

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16
1 2 2 2 2 2 2 2 2
2 4 4 4 4
3 2 2 2 2 2 2 2 2
4 4 4 4 4
5 2 2 2 2 2 2 2 2
6 4 4 4 4
7 2 2 2 2 2 2 2 2
8 4 4 4 4
9 2 2 2 2 2 2 2 2
a 4 4 8
b 2 2 2 2 2 2 2 2
c 4 4 4 4
d 2 2 2 2 2 2 2 2
e 4 4 8
f 2 2 2 2 2 2 2 2

Permutation Bits. The DEFAULT cipher incorporates the GIFT-128 permuta-
tion (P) in each of its rounds, which is derived from the GIFT [7] cipher. In
the permutation layer of the GIFT cipher, there are two versions: one with 4
Quotient-Remainder groups for the 64-bit version, and another with 8 Quotient-
Remainder groups for the 128-bit version. It is worth noting that these 8
Quotient-Remainder groups do not diffuse over themselves for 2 rounds.

Add Round Constants. For DEFAULT cipher, a round constant of 6-bits are
XORed with the indices 23, 19, 15, 11, 7 and 3 respectively at each of the rounds.
Along with this, the bit index 127 is flipped at each round to modify the state
bits.

Add Round Key. The round key for DEFAULT cipher is 128 bits in length. In
the first preprint version of DEFAULT, a simple key schedule was used where
all the round keys were the same as the master key for each round. However,
in a later version, a stronger key schedule was proposed to enhance security
against DFA attacks. In this updated version, the authors introduced an idealized
key schedule where each round key is independent of the others. Although this
idealized scheme requires 28 × 128 key bits to encrypt 128 bits of state using
the DEFAULT cipher, it is not practical. To address this, the authors employed
an unkeyed function R to generate four different round keys K0, · · · ,K3, where
K0 = K and Ki = R4(Ki−1) for i ∈ 1, 2, 3. These four round keys are then used
periodically for each round to encrypt the plaintext.

2.2 Specification of BAKSHEESH

BAKSHEESH [6] is a lightweight block cipher designed to process 128-bit plain-
texts. It is based on the GIFT-128 [7] cipher, featuring 35 rounds of encryption.

174 A. Jana et al.

Within its design, BAKSHEESH employs a 4-bit substitution-permutation box
(SBox) with a non-linear LS element. The round function of BAKSHEESH com-
prises four operations: SubCells–applying a 4-bit linear structured SBox to the
state, PermBits–permuting the bits of the state (similar to GIFT-128), AddRound-
Constants–̊ing a 6-bit constant and an additional bit to the state (similar to
GIFT-128), and AddRoundKey–̊ing the round key with the state. The SBox and
its DDT are sketched below.

x : 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) : 3 0 6 d b 5 8 e c f 9 2 4 a 7 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16
1 4 4 4 4
2 4 4 4 4
3 4 4 4 4
4 4 4 4 4
5 4 4 4 4
6 4 4 4 4
7 4 4 4 4
8 16
9 4 4 4 4
a 4 4 4 4
b 4 4 4 4
c 4 4 4 4
d 4 4 4 4
e 4 4 4 4
f 4 4 4 4

BAKSHEESH exhibits a single linear structure at 8. Additionally, concerning
the round keys, the first round key matches the master key, and subsequent
round keys are generated with a 1-bit right rotation. More details about the
specification of BAKSHEESH cipher can be found in [6].

2.3 Differential Fault Attack

Differential Fault Attack (DFA) is a type of Differential Cryptanalysis that oper-
ates in the grey-box model. In this attack, the attacker deliberately introduces
faults during the final stages of the cipher to extract the secret component effec-
tively. In contrast, the security of a cipher against Differential Cryptanalysis
in the black-box model depends on the probability of differential trails (fixed
input/output difference) being as low as possible. However, in DFA, the attacker
can introduce differences at the intermediate stages by inducing faults, increas-
ing the trail probability for those rounds significantly. As a result, the attacker
can extract the secret component more efficiently than in Differential Cryptanal-
ysis in the black-box model. Finally, estimating the minimum number of faults
is crucial in DFA to ensure the attack is both efficient and effective, keeping the
search complexity within acceptable limits. To protect ciphers from DFA attacks,

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 175

various state-of-the-art countermeasures have been proposed, including the use
of dedicated devices or shields that prevent any potential sources of faults. Other
countermeasures include the implicit/explicit detection of duplicated computa-
tions and mathematical solutions designed to render DFA ineffective or ineffi-
cient.

2.4 Revisiting Learned Information via the Linear Structure SBox

A linear structure SBox is a class of permutations that exhibit some properties
of linear functions, making them weaker than non-linear permutations in cer-
tain aspects. The SBox S used in DEFAULT-LAYER has four linear structures as
L(S) = {0, 6, 9, f}. According to the DDT of S, the non-trivial linear structures
are 6, 9 and f . Similarly, for the inverse SBox S−1, the set of all linear structures
of S−1 will be L(S−1) = {0, 5, a, f}. In their work [4], the designers demonstrate
that inducing bit flips before the SBox can yield limited information to attack-
ers, reducing key bits from 4 to 2 during encryption faults. However, in [24],
Nageler et al. showed an improved DFA targeting the decryption algorithm, fur-
ther reducing key bits to 1. This reduction to 232 contradicts the initial claim
of 264 key space reduction. Learning key information from a linear structure
SBox is non-trivial, and previous works lack detail on this aspect. This section
revisits how attackers can glean key information from faults injected during both
encryption and decryption queries at the SBox.

Learned Information from S/S−1. Suppose that (x0, x1, x2, x3) and (y0, y1,
y2, y3) are respectively the bit-level input and output of SBox S. Similarly,
(y0, y1, y2, y3) and (x0, x1, x2, x3) are the input and output of S−1. Note that,
the output of S is same as the input to S−1 and vice-versa. Consider a
set A of inputs which satisfy the differential α → β for the SBox S, i.e.,
A = {x : S(x) ⊕ S(x ⊕ α) = β}. Then, for any y ∈ L(S), we have,

S(x⊕y) ⊕ S(x⊕y ⊕α) = (S(x)⊕S(x⊕y))⊕(S(x⊕α)⊕S(x⊕y⊕α))⊕ (S(x)⊕S(x⊕α))

= β. [As, (S(x)⊕S(x⊕y)) = (S(x⊕α)⊕S(x⊕α⊕ y)).]

This result shows that x ∈ A =⇒ x ⊕ y ∈ A, y ∈ L(S). Thus, for any input
x ∈ {0, 1, . . . , f}, the attacker cannot uniquely identify which among {x, x ⊕ 6,
x⊕ 9, x⊕ f} is the actual input to the SBox. Further, this can be partitioned into
four subsets as {{0, 6, 9, f}, {1, 7, 8, e}, {2, 4, b, d}, {3, 5, a, c}} = {B0,B1,B2,B3}.
Similarly, for S−1, the partition will be {{0, 5, a, f}, {1, 4, b, e}, {2, 7, 8, d},
{3, 6, 9, c}} = {D0,D1,D2,D3}. The input bit relations of Bi/Di’s of S/S−1 are
denoted by Beq

i /Deq
i and given in the table below.

Beq
0 Beq

1 Beq
2 Beq

3 Deq
0 Deq

1 Deq
2 Deq

3
3∑

i=0
xi = 0

3∑

i=0
xi = 0

3∑

i=0
xi = 1

3∑

i=0
xi = 1

3∑

i=0
yi = 0

3∑

i=0
yi = 1

3∑

i=0
yi = 1

3∑

i=0
yi = 0

x0 ⊕ x3 = 0 x0 ⊕ x3 = 1 x0 ⊕ x3 = 0 x0 ⊕ x3 = 1 y0 ⊕ y2 = 0 y0 ⊕ y2 = 1 y0 ⊕ y2 = 0 y0 ⊕ y2 = 1
x1 ⊕ x2 = 0 x1 ⊕ x2 = 1 x1 ⊕ x2 = 1 x1 ⊕ x2 = 0 y1 ⊕ y3 = 0 y1 ⊕ y3 = 0 y1 ⊕ y3 = 1 y1 ⊕ y3 = 1

For example, consider the SBox S−1 (for encryption) with a differential
7 → 2. Then, the number of inputs that satisfy 7 → 2 will be D2 ∪ D0 =

176 A. Jana et al.

{0, 5, a, f, 2, 7, 8, d} and hence, the attacker can learn the bit relation of this input
set D2∪D0 as Deq

2 ∩Deq
0 =⇒ y0⊕y2 = 0. Similarly, if the differential 7 → 4 hap-

pens, then the attacker can learn the bit relation as Deq
1 ∩Deq

3 =⇒ y0⊕y2 = 1. In
this way, for any differential α → β of S−1, the attacker can learn the bit rela-
tion of the inputs that satisfy α → β. Conversely, if we consider the SBox
S (for decryption) with differential γ → δ, the attacker can learn the bit
relation from the sets Bi, i ∈ {0, 1, 2, 3}. For example, the inputs to satisfy
the differential 2 → 7 will be B2 ∪ B0 and thus, input bit relation will be
Beq

2 ∩ Beq
0 =⇒ x0 ⊕ x3 = 0. Similarly, for 2 → d, the learned information

will be Beq
1 ∩ Beq

3 =⇒ x0 ⊕ x3 = 1.
Consider an encryption query where a nibble difference is injected at the

last round before the SBox operation. Let (k0, k1, k2, k3) be the key e̊d with the
output of SBox and outputs the ciphertext (ignore the linear layer). Now, for each
SBox, we are going to combine these learned information for the input/output
of S/S−1 with the key to learn the corresponding key relation. For example,
consider the learned information y0 ⊕ y2 = 0 for a given differential 2 → 7 of S
(7 → 2 for S−1). If c be the non-faulty ciphertext, then we have,

c0 ⊕ c2 = (y0 ⊕ y2) ⊕ (k0 ⊕ k2) =⇒ (k0 ⊕ k2) = (c0 ⊕ c2) ⊕ (y0 ⊕ y2) = c0 ⊕ c2.

This relation shows that the attacker can learn the key information from the
ciphertext relation. In the way, for both encryption and decryption, an attacker
can learn key informations for each non-zero differential of S/S−1. In the table
below, we summarize the key bits information for both enc/dec which can be
learned based on the input difference of S/S−1.

Direction Learned expression
0 1 2 3 4 5 6 7 8 9 a b c d e f

Enc (S−1) 1
3∑

i=0
ki k0⊕k2 k1⊕k3 k0⊕k2 k1⊕k3 1

3∑

i=0
ki

3∑

i=0
ki 1 k1⊕k3 k0⊕k2 k1⊕k3 k0⊕k2

3∑

i=0
ki 1

Dec (S) 1
3∑

i=0
ki k0⊕k3 k1⊕k2

3∑

i=0
ki k1⊕k2 1 k0⊕k3 k0⊕k3 1 k1⊕k2

3∑

i=0
ki k1⊕k2 k0⊕k3

3∑

i=0
ki 1

3 Our Improvements of DFA on DEFAULT Cipher

In this work, we focus on improving the previously proposed differential fault
analysis (DFA) attack on the DEFAULT cipher, specifically on both its sim-
ple and rotating key schedules. To enhance this attack, we first introduce a
strategy that allows to uniquely determine the internal differential propagation
through rounds when faults are injected up to the fifth-to-last rounds. We demon-
strate the effectiveness of this method by applying it to the simple key schedule
of the DEFAULT cipher and showing that an attacker can recover the key if
faults are introduced during the third, fourth, or fifth-to-last rounds. Addition-
ally, we improve the DFA attack on the rotating key schedule of the DEFAULT
cipher. Throughout the paper, we use the encryption oracle to inject faults. Over-
all, our work is focused on fully breaking the DFA security of the DEFAULT cipher
under difference-based fault attacks with fewer faults and providing insights into
the challenges of using linear structure (LS) substitution boxes (SBox) in block
ciphers to achieve cipher-level protection.

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 177

Fault Model. In this attack, we consider a fault model where the goal is to
induce a precise single bit-flip faults in the cryptographic state nibble during the
encryption query. For instance, an attacker might deliberately induce a single
bit-flip fault to alter a single bit in the nibble, located just before the input to the
SBox operation, at the ith last round of the state during encryption. Achieving
this level of precision is feasible in practice, as attackers can employ techniques
such as Laser fault injection [2,15,30]. These methods offer high accuracy in
both space and time. Additionally, electromagnetic (EM) fault injection serves
as an alternative method that does not require the de-packaging of the chip.
Practical implementation of precise bit-level fault injections has been demon-
strated through EM fault injection setups, as illustrated in [8,20]. Note that this
fault model is the same as the one used in the previous work [24].

3.1 Attacks on Simple Key Schedule

In their previous work, Nageler et al. [24] expanded their DFA attack by inducing
bit-flip faults across multiple rounds to further reduce the keyspace. Their strat-
egy involved injecting differences at certain rounds and exploring all possible
differential paths through subsequent rounds based on the DDT. By analyzing
the distribution of input/output differences at each SBox in subsequent rounds,
they conducted differential analysis to recover key bits. However, this approach
could not reduce the keyspace beyond 216, despite the potential for inducing
additional faults1. In this work, we delved deeper into this issue and devised a
novel approach to achieve complete key recovery with significantly fewer faults.
Moreover, our proposed attack enables key retrieval with significantly reduced
offline computation time compared to previous approaches.

3.1.1 Faults at the Last Round

In this attack scenario, the attacker needs to inject faults and analyze each of
the 32 Substitution Boxes (SBox) independently. As per the designers’ claim,
injecting faults at each SBox nibble can reduce the search space from 24 to
22 at most, resulting in a total search complexity of 432 = 264. However, in [24],
the authors further reduce the SBox nibble space to 2 by injecting faults at
the decryption algorithm. Specifically, the authors demonstrate how to derive
three linearly independent equations for each nibble of the key by inducing two
and one faults in the encryption and decryption algorithms, respectively. It is
worth noting that computing the table [24, Table 3], which calculates the learned
information involving the key nibbles for encryption and decryption algorithms,

1 In [24], for the basic attack implementation in Section 3.3, the authors inject faults
at the fourth-to-last round in attack r3() phase (see the implementation). Whereas,
in their implementation, for the improved attack in Section 6.2, the authors induce
faults at the fifth-to-last round to significantly reduce the number of faults. As,
DEFAULT-LAYER does not have pre-key whitening, the last round is deterministic
for the key analysis using DFA in the decryption query.

178 A. Jana et al.

is not a straightforward process according to their work. That’s why, we provided
a more detailed explanation for computing this table in Sect. 2.4.

One approach is, to reduce the keyspace to 264 by inducing 2×32 = 64 num-
ber of bit-flip faults at the last round. Thus, based on the information learned
from the table in the previous section, an attacker can learn two bits of informa-
tion for each nibble in the last round of the DEFAULT-LAYER. However, a more
efficient strategy is needed to induce faults further from the last rounds and
deterministically obtain information about the input differences of each SBox
in the last round. This requires developing a strategy that can deterministically
compute the differential path from which the faults are injected. In the upcom-
ing subsections, we will demonstrate that it is possible to uniquely compute the
differential path of the DEFAULT-LAYER up to five rounds. By inducing around
five bit-flip faults at the fifth-to-last round, we estimate that the keyspace can be
reduced to 264 with greater efficiency than the naive approach.

3.1.2 Faults at the Second-to-Last Round

In this attack scenario, we assume that a bit-flip fault is injected at each nibble
during the second-to-last round of the DEFAULT-LAYER. As a result, the fault
propagation can affect at most four nibbles in the final round of the DEFAULT-
LAYER. The DEFAULT-LAYER uses the GIFT-128 bit permutation internally,
which has a useful property known as the Quotient-Remainder group structure.
At round r, the 32 nibbles of a DEFAULT state are denoted as Sr

i , i = 0, . . . , 31
and can be grouped into eight groups Gri = (Sr

4i, S
r
4i+1, S

r
4i+2, S

r
4i+3) for i =

0, . . . , 7. This property states that any group at round r is permuted to a group
of four nibbles at round r + 1 through a 16-bit permutation, i.e.,

Gri
16 bit permutation−−−−−−−−−−−−→ (Sr

i , Sr
i+8, S

r
i+16, S

r
i+24), i = 0, . . . , 7.

The structure of the cipher indicates that a nibble difference at the input of
group Gri in the second-to-last round spreads differences to at most four nibbles:
Sr+1

i , Sr+1
i+8 , Sr+1

i+16, and Sr+1
i+24 in the last round. This observation enables an

attacker to uniquely determine the differential path by injecting bit-flip faults in
the second-to-last round. The reason for this unique trail computation is that the
output difference at the last layer SBox, except at the linear structure points, has
only two possible input differences. An incorrect input difference guess will lead
to a contradiction by activating the SBox in the wrong group in the second-to-
last round. Moreover, this observation allows for the deterministic computation
of the differential paths up to five rounds, which we will discuss in the next
subsections.

Attack Strategey. To attack the cipher in this scenario, a simple approach is to
inject two bit-faults at each nibble in the last round, reducing the keyspace of
each nibble to 22, i.e., the overall keyspace is thus reduced to 264. Then, inject
one fault at each nibble in the second-to-last round, reducing the keyspace to
232. To accomplish this, we first group the 32 nibbles of the state into eight

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 179

groups Gri, each consisting of four nibbles, and consider the combined keyspace
of nibble positions i, i + 8, i + 16, and i + 24 for each group Gri.

For each key in the combined keyspace of Gri, we invert two rounds by con-
sidering the equivalent key classes of individual nibble positions at the second-
to-last round and checking whether they satisfy Gri’s input difference at the
second-to-last round. By doing this, we can determine the internal state dif-
ference between the faulty and non-faulty ciphertexts. It is noteworthy that
injecting faults in more than one nibble within Gri during encryptions at the
second-to-last round can further reduce the keyspace for that group, poten-
tially from 216 to 24. The overall keyspace has now been effectively reduced to
24·8 = 232, considering 8 groups denoted as Gri. Initially, this approach neces-
sitates approximately 2 × 32 + 32 = 96 bit-faults to achieve this reduction in
the keyspace. However, we have enhanced this attack by introducing faults at
the second-to-last round during encryption. Our practical verification shows that
injecting faults at each SBox in the second-to-last round, specifically inducing
faults at the least significant bits of the nibble (i.e., either at index 1 or index
2), notably reduces the keyspace to 232. This is because the output difference
spread more differences if the input difference is either 2 or 4 (please refer to
the DDT table of S in Sect. 2.1). The specific values representing the reduced
keyspace for varying numbers of injected faults can be found in Table 2.

3.1.3 Faults at the Third-to-Last Round

In this section, we focus on the keyspace reduction using DFA for three rounds.
We introduce a fault at the third-to-last round of the cipher, i.e., at round R25

in DEFAULT-LAYER. The attack consists of two phases. In the initial phase,
we inject a bit-flip fault at the input to the SBox of the third-to-last round
and determine the trail of three rounds uniquely. To achieve this, we compute
the input and output differences of every nibble at each round, allowing us
to trace the propagation of differences through the backward propagation of
the cipher. By carefully analyzing the trail, we can establish a deterministic
relationship between the input and the output difference of the SBox, enabling
us to deduce the trail with high confidence. In the second phase, we utilize the
computed trail to reduce the keyspace of the cipher. With knowledge of the
trail, we can target specific nibbles and their corresponding input differences
at the last round. By exploiting these input differences, we can perform DFA
and significantly reduce the keyspace. This reduction is based on the fact that
we now have knowledge of the correlations between the input-output differences
and the key bits, allowing us to make informed guesses and narrow down the
possible key values.

Deterministic Trail Finding. To compute the faulty differential trail, the attacker
first injects faults at the third-to-last round and collects the faulty ciphertexts.
Based on the non-faulty and faulty ciphertexts, the attacker derives the cipher-
text difference and also has prior knowledge about the input difference to the
SBox at the third-to-last round. The steps to compute the unique differential

180 A. Jana et al.

trail are described in Algorithm 1. In the algorithm, the assumption is that after
injecting the faults, the attacker must know both the specific nibble within the
state where the fault was injected and the exact faulty value induced at that
location, to enable precise fault impact analysis.

For DEFAULT-LAYER, the propagation of faults through rounds is depicted
in Fig. 2 using different colors. To better understand the algorithm, consider a
fault injected in the 0th Quotient-Remainder group (specifically the 0th nibble in
R25), which is colored red in the corresponding figure. For a better understanding
of the algorithm, we summarize the steps as follows:

Step 1. In the first step some empty lists are initialized, where Ai
ido stores the

input-output difference at round Ri. Whereas Di
id (resp, Di

od) stores the input
(resp. output) difference from a particular output (resp. input) difference, called
the dummy list.

Step 2–7. At R25, the input difference to the SBox at the nibble position x = 0 is
(δ, 0, . . . , 0), where δ is known to the attacker. So, we initialize A25

ido[0][0] = 0 and
A25

ido[0][x] = 0, x
= 0. At this stage, we do not know the output difference, hence
for the time being, we assume the output difference corresponding to the nibble
position x is 0xf (line no. 5). In the next line, after the permutation layer, the
state difference after the SBox layer ((0xf, 0, . . . , 0)) propagates through linear
mixing (red lines from R25) so that the active SBox in the next round can be
marked (i.e. N26

j , j ∈ {0, 8, 16, 24}).

Step 8–9. In the above steps, we cover one round from top to bottom (i.e. from
R25 to R26). In the steps below, our idea is to go to R26 from the ciphertext dif-
ferences and check whether they map to the sbox positions N26

j , j ∈ {0, 8, 16, 24}
or not. For this, we apply the inverse permutation on the ciphertext differences
and store them in the list A27

iod[1].

Step 10–19. Here we collect all possible input differences from the DDT table
and store it in L3. Now for each difference in L3 we check whether, after applying
the inverse permutation on the difference, the only active SBox positions are
N26

j , j ∈ {0, 8, 16, 24} or not. If it happens, then we assume it as a possible
input difference and hence we store it in the corresponding list A27

iod[0] (line 13–
18). We store the corresponding inverse permutation of the difference values into
the corresponding list (line 19).

Step 20–31. We are in the middle round, i.e., round 26 of the trail. Hence to
get the output difference of round 25, we repeat the same procedure as discussed
in the steps 2–19. This gives us the unique input-output difference trail for the
three rounds of the cipher.

Key Recovery. For each differential trail, we begin by narrowing down the key
nibble spaces associated with active SBox in the final round through a com-
parison of non-faulty and faulty ciphertexts. By introducing two distinct bit
differences at each nibble in the final round, we can efficiently reduce the key
space K27

i for i ∈ {0, · · · , 31} to 22. Next, we focus on each group Gri, where

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 181

Algorithm 1. Deterministic Computation of Three Rounds Differ-
ential Trail

Input: A list of ciphertext difference LΔC , faulty value δ, and faulty nibble position x
Output: Lists of input-output differences A25

iod, A26
iod, & A27

iod at the third-to-last, second-to-
last, and the last round respectively

1: Initialize L1 ← [], A25
iod ← [[], []], A26

iod ← [[], []], A27
iod ← [[], []], D25

od ← [], D26
id ← []

2: A25
iod[0] = [0 for i in range(32)]

3: A25
iod[0][x] = delta

4: D25
od = D26

id = [0 for i in range(32)] � Dummy output state difference list after the SBox layer

5: D25
od[x] = 0xf

6: L1 = P (D25
od)’

7: D26
id = findActiveSBox(L1) � For each non-zero nibble value, this function assign 1 to this

nibble index, otherwise it assign to 0
8: A27

iod[1] = P −1(LΔC)
9: L3 = [] � Third layer/Last round possible input difference list

10: for i = 0 to A27
iod[1] do

11: Append DDT−1[i] to the list L3

12: A27
iod[0] = [0 for i in range(32)]

13: for pos, i in enumerate(L3) do
14: if i �= [0] then dList = [0 for i in range(32)]

15: for dif in i do
16: dList[pos] = dif

17: if list subset(findActiveSBox(P −1(dList)), D26
id) == 1 then

18: A27
iod[0][pos] = dif

19: A26
iod[1] = P −1(A27

iod[0])
20: L2 = [] � Second layer possible input difference list

21: for i in P −1(A27
iod[0]) do

22: Append DDT−1[i] to the list L2

23: A26
iod[0] = [0 for i in range(32)]

24: for pos, i in enumerate(L2) do
25: if i �= [0] then dList = [0 for i in range(32)]

26: for dif in i do
27: dList[pos] = dif

28: if list subset(findActiveSBox(P −1(dList)), D25
od) == 1 then

29: A26
iod[0][pos] = dif

30: A25
iod[1] = P −1(A26

iod[0])

31: return the lists A27
ID, A26

ID and A25
ID

i ∈ {0, · · · , 7}, at the second-to-last round i.e. R26. We combine the keyspaces
from the nibble positions i, i + 8, i + 16, and i + 24 based on the key nibbles of
the last round. For each combined key of size 28, we perform the inverse of one
round and check the corresponding trail list to determine the resulting differen-
tial. At this stage, we use the equivalent key nibble obtained from the reduction
at the last round. If the computed differential matches the observed differential,
we consider the combined key as a potential key combination. This filtering pro-
cess is applied to each group at the second-to-last round by guessing 28 combined
keys and leads to reduce the combined keys to 24 (/25) in the best (/worst) case
scenario. Finally, we create combined keyspaces for each even (/odd) position
based on the key reductions at the second-to-last round. These correspond to the
left (/right) half of the nibbles at the third-to-last round i.e., R25. It is important
to note that faults introduced at the sixteen least (/most) significant nibbles of
the third-to-last round can affect almost all the even (/odd) position nibbles
in the last round. Therefore, in the worst case, filtering the third-to-last round

182 A. Jana et al.

nibble difference requires trying up to (25)4 = 220 keys. This indicates that the
time complexity of this attack is 220 and the memory complexity needs a con-
stant amount of memory. Our practical verification demonstrates that injecting
faults at each SBox in the third-to-last round, involving the flipping of the bit at
either index 1 or index 2, significantly reduces the keyspace to nearly a unique
key. To uniquely recover the key, we verified that 34 bit-flip faults are sufficient.
This involves faults at all 32 nibble positions and repeating faults at the 0th

and 1st nibble positions with a faulty nibble difference value of 4. The specific
values representing the reduced keyspace for varying numbers of injected faults
can be found in Table 2. Using 20, 24, 28 and 34 faults the keyspace reduced to
218, 28, 28 and 1 with 40%, 30%, 30% and 100% frequencies respectively. The
frequencies are calculated over 1000 experiments for this attack part.

Table 2. Keyspace Reduction with Varying Injected Faults in BAKSHEESH and
DEFAULT’s Simple Key Schedule under Differential Fault Attacks

Ciphers Attack Strategy
Results

Number of Faults Reduced Keyspace

DEFAULT

Faults at the Second-to-Last Round

64 232

48 239

32 246

Faults at the Third-to-Last Round

32 20.2

28 27

24 214

Faults at the Fourth-to-Last Round

16 1

12 1

8 27

Faults at the Fifth-to-Last Round

8 1

6 1

5 1

BAKSHEESH

Faults at the Second-to-Last Round

48 1

40 1

32 232

Faults at the Third-to-Last Round

16 1

12 1

10 2

3.1.4 Faults at the Fourth-to-Last Round

Here the attacker can inject bit-flip nibble faults at the fourth-to-last round
of the cipher, specifically at round R24 in DEFAULT-LAYER. The effect of the
nibble faults (in the left half i.e., the first 16 least significant nibbles) or right
half (i.e., the last 16 most significant nibbles) at the SBox input to the fourth-to-
last round can propagate to almost all even or odd nibbles, respectively, at the
second-to-last round. Furthermore, at the last round, the differences in even or
odd nibbles activate all 32 nibbles in the state.

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 183

Deterministic Trail Finding. Assume the initial input difference is given at 0th

nibble of R24. Hence after three rounds (which is R26) that nibble differences
arise at all even positions in the state before the SBox operations. We have
exactly two active even nibbles in each group Gri at this round. Consequently,
the input nibble difference at each SBox in the last round will no longer be a
simple bit difference. Therefore, for each output of SBox at the last round, there
are two possible choices of input differences, which may not be in the form of
single-bit nibble differences.

To determine the output difference of SBoxes in Gri at the second-to-last
round, we exhaustively consider all combined input differences corresponding to
the positions i, i+8, i+16, and i+24 from the last round. We then check whether,
after the bit permutation, these differences only go to the even nibble positions
in Gri, and their corresponding input differences are single-bit differences. This
strategy allows us to uniquely identify the output difference of SBoxes in Gri

at the second-to-last round. The process is described in detail in Algorithm 3
(Appendix A).

Key Recovery. Once unique the trail is computed, we can proceed to reduce
the keyspace by analyzing the last three rounds. First, we iterate exhaustively
through the entire keyspace at the last round for each input-output nibble dif-
ference at the fourth-to-last round. Next, we invert the intermediate rounds by
using the reduced keys at each round and filter out incorrect keys. By repeat-
ing this process for each input-output nibble difference in the last four rounds,
we can significantly reduce the keyspace, approaching a nearly unique solution.
Our practical validation confirms that the introduction of 8 bit-faults in each half
of the SBox (both left and right) in the fourth-to-last round, achieved by flipping
a bit at either index 1 or index 2 (i.e., of faulty value 2 or 4), substantially dimin-
ishes the keyspace, resulting in nearly unique keys. Simply speaking, we need
to inject the minimum number of faults in the fourth-to-last round to ensure
at least two different input-output differences at each SBox in the last round.
This reduces the keyspace to (232)2 = 264. Further, the keyspace is reduced
to 25 per group in the second-to-last round. Consequently, we try 220 keys for
each half (left or right) to filter one SBox in the third-to-last round. Ultimately,
based on difference propagation, the keyspace can be reduced to approximately
220−y(≈ 24), where y is the number of different active SBox in the third-to-last
round’s left/right half. Finally, the filtering in the fourth-to-last round results in
unique key retrieval. Therefore, the time and memory complexity of this attack
will be 220 and a constant amount of memory, respectively. Detailed information
on the reduced keyspace values corresponding to different fault injection counts
is available in Table 2. Using 8, 10, 12 and 16 faults the keyspace reduced to 26.5,
3, 1 and 1 with 40%, 80%, 80% and 100% freequencies respectively. Here also
the frequencies are calculated over 1000 experiments.

184 A. Jana et al.

3.1.5 Faults at the Fifth-to-Last Round

In this section, we discuss how we can deterministically compute the differ-
ential trail when injecting faults during the fifth-to-last round (round R23) in
the DEFAULT-LAYER cipher. These faults can be injected either in the left half
(from nibble positions 0 to 15) or the right half (from positions 16 to 31), affect-
ing either all the even nibble positions or the odd nibble positions in the state at
the third-to-last round. An example of fault propagation resulting from a nibble
fault in the left half is illustrated in Fig. 3 (Appendix A).

Furthermore, the differences in even/odd nibbles at the third-to-last round
activate all the nibbles in the second-to-last round and subsequently in the last
round as well. In this attack scenario, we compute the trail for five rounds
uniquely and then estimate the number of faults required to recover the key.
By doing so, we can significantly reduce the keyspace using a smaller number of
faults compared to our previous approaches.

Deterministic Trail Finding. To compute the trail for five rounds when injecting
faults at the fifth-to-last round, the approach involves inverting two rounds and
then determining the upper three rounds’ trails based on the possible differences
at the third-to-last round. The objective is to check if these trails satisfy the
input difference at the fifth-to-last round. The whole procedure is described
in Algorithm 2 (see Appendix A). If the fault is given in the least (resp. most)
significant 16 nibles then after three rounds the even (resp. odd) nibbles becomes
active. This is shown in the corresponding figure through two different colors.
For a better understanding of the algorithm, we summarize the steps as follows:

Step 1–3. At first, the lists to store the input-output difference for the corre-
sponding round are initialized. Then we have constructed T to store the possible
output difference set after three rounds i.e. R25. [[(T1)8, (T2)8, (T1)8, (T2)8] (resp.
T [1]) denotes the possible input difference after three rounds if the initial input
difference is given in the even (resp. odd) nibbles. Here (Ti)8 means the difference
in the consecutive 8 nibbles are from the set Ti. This can be viewed in Fig. 3 by
red lines for difference in even nibbles and blue for odds.

Step 4–15. Throughout these steps we have taken the all possible input differ-
ences corresponding to each i-th Quotient-Remainder group of the last round
and store it in the corresponding list. Here we will get 28 possible input-output
differences for each Gri as for each output difference there is only two possible
input differences.

Step 16–20. For each of these tuples of the output differences, we invert one
more round and collect possible input differences at the end of R25. At step 20,
it is checked whether the occured difference can appear after three rounds if the
fault is given in the nibble of R23. This leads to the input output difference list
size to approximately 2. In the later step it further filters this to a unique one.

Step 22–23. With this updated list we apply Algorithm 1 and return the trail
list which satisfies totally for five rounds.

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 185

Key Recovery. In this case we also use the same key recovery process as we have
used for four rounds in Sect. 3.1.4. The extra added advantage is that as it’s a five
round trail hence we can dive further into one more round and check the input
output difference. Therefore, the time and memory complexities of this attack
would be same as for the previous fourth-to-last round attack in Sect. 3.1.4.

Our empirical validation strongly supports the notion that introducing a
single bit-fault within each of the 8 groups Gri, i ∈ {0, 1, · · · , 7} of the SBox,
achieved by flipping a bit at either index 1 or index 2, substantially reduces the
keyspace, resulting in unique keys. We verified that inducing five faults at the nib-
ble positions 0, 8, 11, 16, and 24 with a faulty value of 4 is sufficient to uniquely
recover the key. For comprehensive details regarding the reduced keyspace val-
ues associated with varying fault injection counts, we refer to Table 2. Figure 1
shows the distribution of the size of the keyspace after this attack, where the
frequency is calculated over 10,000 experiments.

Fig. 1. Distribution of the Reduced Keyspace for the Fifth-to-Last Round Attack

3.2 Attacks on Rotating Key Schedule

In the study presented in [24], the authors introduce the concept of computing an
equivalent key, which generates the same ciphertext as the original key for a given
plaintext. Building on this notion, the attacker’s strategy involves computing
an equivalent key for the DEFAULT-LAYER layer by injecting faults at various
rounds. Subsequently, the attacker aims to recover the master key by executing
a Differential Fault Analysis (DFA) on the DEFAULT-CORE.

This section begins by explaining how to derive an equivalent key for the
DEFAULT-LAYER. We introduce additional methodologies for calculating an
equivalent key based on specific properties of the linear structured SBox S.
Using this equivalent key, we propose a comprehensive attack strategy based
on our deterministic trail computation approach, facilitating the unique recov-
ery of the DEFAULT cipher’s key for different rounds amidst injected faults.
This method not only boasts efficient offline computation capabilities but also

186 A. Jana et al.

requires significantly fewer faults compared to previous attacks. Additionally,
we present a versatile attack approach applicable in scenarios where the cipher
utilizes multiple round-independent keys.

3.2.1 Exploiting Equivalent Keys

Due to the LS SBox, we know that for any α ∈ L(S) ∃β ∈ L(S−1) such that
S(x ⊕ α) = S(x) ⊕ S(α) = S(x) ⊕ β, ∀x ∈ F4

2 . Let us define L(S, S−1) =
{(α, β) : S(x ⊕ α) = S(x) ⊕ β} = {(0, 0), (6, a), (9, f), (f, 5)}. In another way, we
can say that for any (α, β) ∈ L(S, S−1), Pr[α → β] = 1. Consider a toy cipher
consisting of one DEFAULT-LAYER SBox with a key addition before and after:
y = S(x ⊕ k0) ⊕ k1, where k0, k1 ∈ F4

2 . Due to the LS SBox, we have for any
(α, β) ∈ L(S, S−1),

y = S(x⊕(k0⊕α))⊕(k1⊕β) = S(x⊕k0)⊕β⊕(k1⊕β) = S(x⊕k0)⊕k1,∀x ∈ F4
2 .

This means that if (k0, k1) be the actual key used in the toy cipher, then for any
(α, β) ∈ L(S, S−1), (k̂0, k̂1) = (k0 ⊕ α, k1 ⊕ β) will also be an equivalent key
of the toy cipher, i.e., the number of equivalent keys of this toy cipher will be
22. Similarly, any round function of DEFAULT cipher can be think of parallel
execution of 32 toy ciphers. Let k0 = (k0

0, k
1
0, . . . , k

31
0) and k1 = (k0

1, k
1
1, . . . , k

31
1)

denote the two keys before and after the SBox layer respectively. Then, ∀ lin-
ear structures (αi, βi), i ∈ {0, 1, . . . , 31}, the number of equivalent keys for the
round function of DEFAULT cipher will be 22×32 = 264. The various methods
for generating equivalent keys of the DEFAULT-LAYER are outlined in [24]. The
practical verification to compute the equivalent keys can be found in [1]. Thus,
for the DEFAULT-LAYER with four keys (k0, k1, k2, k3) used in the three round
functions, the number of equivalent keys (k̂0, k̂1, k̂2, k̂3) will be 23×64 = 2192. As
an example, the key k0 = 1a5f01b35ef5deea60361f4df591c654 is equivalent to
the key k̂0 = 7c3967d53893b88c0650792b93f7a032 and hence, generate the same
ciphertext c corresponds to the message m. Since the keyspace of (k0, k1, k2, k3)
used in the DEFAULT-LAYER is 2512 and it has 2192 number of equivalent keys
for any choosen key, we can further divide the keyspace into 2512−192 = 2320

number of different equivalent key classes.

3.2.2 Generalized Attack Strategy

In this approach, we exploit the fact that injecting two faults at each nibble
position in the last round of the encryption process reduces the key nibble space
from 24 to 22. We iteratively select one key nibble from each reduced set of key
nibble values to obtain keys k̂3, k̂2, and k̂1. However, at the fourth-to-last round,
the key nibbles of k0 still have 22 possible choices. To compute k̂0, our strategy
involves introducing additional faults at higher rounds and using the other keys
k̂3, k̂2, and k̂1 in conjunction with the deterministic trail computation up to
the fifth-to-last round. For instance, if we inject 32 faults at each nibble in the
sixth-to-last round of DEFAULT-LAYER, we can trace back from the ciphertext

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 187

difference to the fourth-to-last round output difference by applying the equivalent
round keys k̂3, k̂2, and k̂1. Based on this fourth-to-last round difference, we can
compute the trail for the upper three rounds (from fourth to sixth last rounds)
using Algorithm 1.

In the case of the simple key schedule, we have demonstrated that around 32
faults at each nibble in the third-to-last round are adequate for unique key recov-
ery. Similarly, in the scenario described in the previous section, we can uniquely
retrieve the key k̂0 by injecting a suitable number of faults, such as around 12
or 5 faults at the seventh-to-last or eighth-to-last rounds, and deterministically
computing the upper trails for four or five rounds using Algorithm 3 or Algo-
rithm 2, respectively. To summarize, the first step requires approximately 256
faults to uniquely select k̂3, k̂2, and k̂1 from 264 choices, along with k0 having 264

possibilities. The recovery of k̂0 can be accomplished by injecting just 5 extra
single bit-flip faults at the eight-to-last round. Consequently, around 261 faults
are needed to recover an equivalent key of DEFAULT-LAYER. Once the equiva-
lent key is obtained, the original key can be recovered by injecting faults in the
DEFAULT-CORE.

The aim is to explore alternative strategies that can effectively reduce the
number of faults required, as opposed to the initial approach of injecting two
faults at each nibble in the last four rounds. By leveraging deterministic trail
computations, several strategies can be employed to achieve this reduction. These
strategies are as follows:

3.2.2.1 Retrieving Equivalent Key Using Three Round Trail Computation. It
should be noted that a single bit-flip fault at any nibble can activate at least
two nibbles in the next round. By injecting 32 faults at each nibble in the third-
to-last round, we can generate at least two differences at each nibble in the
second-to-last and last rounds. This allows us to compute k̂3 and k̂2. Then,
by injecting another 32 faults at the fifth-to-last round, we can recover k̂1 and
consider the 264 choices of k0 by computing three-round trails using k̂3 and
k̂2. Finally, inducing another 32 faults at the sixth-to-last round, we obtain an
equivalent key (k̂0, k̂1, k̂2, k̂3). In summary, approximately 96 faults are required
to recover an equivalent key for DEFAULT-LAYER.

3.2.2.2 Retrieving Equivalent Key Using Four Round Trail Computation. By
injecting 32 single bit-flip fauts at each nibbles in the fourth-to-last round, we
can achieve the generation of at least two different input differences at each
nibble in the third-to-last, second-to-last and last rounds which can able to
reduce the key nibble space to 22 individually. This enables the computation of
k̂3, k̂2 and k̂1. Additionally, by introducing 8 faults at the seventh-to-last round,
we can recover the 264 choices of k0 by utilizing four-round trails computed using
k̂3, k̂2 and k̂1. Furthermore, approximately 8 faults at the eighth-to-last round
are sufficient to obtain an equivalent key (k̂0, k̂1, k̂2, k̂3). To summarize, a total of
around 48 faults are required to recover an equivalent key for DEFAULT-LAYER.

188 A. Jana et al.

3.2.2.3 Retrieving Equivalent Key Using Five Round Trail Computation. Like
the previous approach, we inject 32 single bit-flip faults at each nibbles in the
fifth-to-last round. This ensures the generation of at least two different input
differences at each nibble in the fourth-to-last, third-to-last, second-to-last and
last rounds respectively and then compute k̂3, k̂2, k̂1 and 264 choices of k0. More-
over, approximately 4 faults at the tenth-to-last round are sufficient to obtain an
equivalent key (k̂0, k̂1, k̂2, k̂3). As a result, a total of around 36 faults are required
to recover an equivalent key for DEFAULT-LAYER. Using 24, 28 and 36 faults we
get the equivalent key with 40, 80 and 100% freequencies respectively.

3.2.3 Generic Attack Strategy for More Round Keys

In the scenario where an DEFAULT-LAYER encryption consists of r rounds with
r+1 round keys k0, k1, . . . , kr, a simple approach involves injecting two faults at
each nibble in the encryption process for each of the r rounds. This allows us to
compute r equivalent keys: k̂r, k̂r−1, . . . , k1. However, the initial key k0 remains
unknown due to the lack of input knowledge and the unavailability of additional
DEFAULT-LAYER SBox to be faulted.

To recover the unknown key k0, we target the last round of the DEFAULT-
CORE and introduce faults individually to each SBox. This technique enables
the unique retrieval of the key k0. Once an equivalent key is determined, the
original key can be obtained by applying the DFA to the DEFAULT-CORE.

To minimize the number of required faults, an efficient strategy involves
injecting 8 faults at the fifth-to-last round, allowing the unique determination
of k̂r and kr−1. This strategy is repeated iteratively until only three rounds
remain. At this point, injecting 32 faults at the initial round of DEFAULT-LAYER
facilitates the unique recovery of k̂3 and k̂2. Finally, injecting two faults at each
nibble in the initial round yields the unique choice of k̂1. Subsequently, the DFA
is applied to the DEFAULT-CORE to uniquely retrieve k0.

3.3 Experimental Results on DEFAULT Under DFA

In this attack scenario, we have conducted a comprehensive analysis for both the
simple key schedule and the rotating key schedule of DEFAULT. For the simple
key schedule, our estimations indicate that approximately 32, 34, 16, and 5 bit-
faults are required to effectively reduce the keyspaces to 232, 1, 1, and 1, respec-
tively, under a differential fault attack (DFA). These faults are introduced at the
second-to-last, third-to-last, fourth-to-last, and fifth-to-last rounds, respectively.
Likewise, for the rotating key schedule, our estimates suggest that approximately
96, 48, and 36 bit-faults are necessary to recover the equivalent key for the
DEFAULT-LAYER using DFA techniques when the faults are injected at the third-
to-last, fourth-to-last, and fifth-to-last rounds, respectively. We have computed
the equivalent round keys for the DEFAULT-LAYER and determined that around
32 bit-faults at each SBox in the second-to-last round are sufficient to uniquely
recover the key of DEFAULT-CORE. It is important to emphasize that all our

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 189

findings and estimations have undergone rigorous practical experiments to ensure
their validity and reliability. Detailed implementations of these attacks can be
found in [1]. Our experiments were conducted on an Intel R© Coretm i5-8250U
computer. It is worth noting that employing more powerful computing hardware
could potentially yield more accurate fault estimation results.

4 Introducing SDFA: Statistical-Differential Fault Attack
on DEFAULT Cipher

In addition to Difference-based Fault Analysis (DFA [10]), Statistical Fault
Attack (SFA [16]) is another powerful attack in the context of fault attacks and
their analysis. SFA leverages the statistical bias introduced by injected faults and
differs from previous attacks is that it only requires faulty ciphertexts, making it
applicable in various scenarios compared to difference-based fault attacks. While
the designers of the DEFAULT cipher claim that their proposed design can pro-
tect against DFA and any form of difference-based fault attacks, but they do not
assert security against other fault attacks that exploit statistical biases in the
execution. In such scenarios, the designers recommend for the adoption of spe-
cialized countermeasures designed to thwart Statistical Ineffective Fault Analysis
(SIFA) [13,14] and Fault Template Attack (FTA) [11,29]. These countermeasures
are recommended to mitigate the inherent risks associated with these specific
types of attacks.

Although countermeasures against statistical ineffective fault attacks and
fault template attacks can enhance the resilience of a cryptographic system,
the absence of specific countermeasures against difference-based fault attacks
leaves a potential vulnerability to bit-set faults. Bit-set faults involve intentional
manipulations of individual or groups of bits, allowing attackers to strategi-
cally modify intermediate values or ciphertexts. Practical experiments [22,26]
on a microcontroller demonstrated successful induction of bit-set faults using
laser beams, with higher occurrence rates than bit-flip faults. Despite requir-
ing expensive equipment, this method allows for precise fault injection in target
location and timing, as shown in [32]. Without targeted countermeasures against
difference-based fault attacks exploiting the propagation of differences through
the algorithm, bit-set faults pose a potential risk of revealing sensitive informa-
tion or compromising system security.

In this section, we introduce a new fault attack called SDFA, which combines
DFA with SFA by inducing bit-set faults. The SDFA attack enables us to further
reduce the number of faults required to recover the key compared to our proposed
improved attacks for both simple and rotating key schedules. Additionally, we
demonstrate the effectiveness of this attack in retrieving subkeys for rotating
key schedules, even when all the subkeys are generated from a random source.

4.1 Learned Information via SDFA

In Sect. 2.4, we discussed the information learned from DFA and its relation to
input-output differences in an SBox. In this section, we delve deeper into the

190 A. Jana et al.

connection between DFA and SFA when bit-set faults are introduced into the
state. Specifically, we examine the scenario where four bit-set faults are applied
to positions in the last round SBox, resulting in the unique recovery of the key
nibble using SFA. Alternatively, by introducing a bit-set fault in a nibble, we can
narrow down the key nibble space from 24 to 24−t, 1 ≤ t ≤ 2. Our objective is
to combine the power of SFA and DFA to uniquely recover the key nibble with
fewer faults in a nibble.

Consider an SBox with inputs (u0, u1, u2, u3) and outputs (v0, v1, v2, v3).
Given an input-output difference α → β in the SBox, the set of possible output
nibbles that satisfy the given differential can be represented as Di ∪ Dj , where
i, j ∈ {0, 1, 2, 3} (for the definition of Di’s, please refer to Sect. 2.4). Now, let us
assume an attacker injects a bit-set fault at the 0-th bit of the SBox, resulting
in u0 = 1, and the input difference α = 1. Depending on the DDT table, this
leads to either β = 3 or β = 9. Consequently, the set (D) of outputs that satisfy
the differential α → β will be either D = D0 ∪ D3 for β = 3, or D = D1 ∪ D2

for β = 9. Simultaneously, for SFA, the attacker can compute the set of out-
puts I that satisfy ui = 1 by inverting the SBox using the faulty outputs, i.e.,
I = {x : S−1(x) & 2i = 2i}.

To determine the intersecting nibbles between DFA and SFA, our objective is
to identify the common nibble values from each of the four partition sets Di for
DFA. These sets are denoted as Hi and defined as Hi = {x ∈ D : S−1(x) & 2i =
2i}. The table below provides the sets Hi corresponding to different bit-sets at
the ith position. These sets Hi are obtained by identifying the common values
found within the intersecting sets of D for DFA and I for SFA.

Bit-Set H0 H1 H2 H3
u0 = 1 {5, f} {4, e} {2, 8} {3, 9}
u1 = 1 {5, a} {1, e} {7, 8} {6, 9}
u2 = 1 {5, a} {4, b} {2, d} {6, 9}
u3 = 1 {5, f} {1, b} {2, 8} {6, c}

Finally, for each bit-set ui in the SBox, if D = Dp ∪ Dq, p, q ∈ {0, . . . , 3}
represents the set of outputs that satisfy the differential α → β, then the SDFA
(Statistical-Differential Fault Attack) is defined as the set Z of possible outputs
that satisfy the differential α → β, given by Z = D ∩ I = Hp ∪ Hq. An example
of the intersecting outputs obtained by performing SDFA under a bit-set fault
at the second bit position in the SBox is presented in Example 1.

Now consider a toy cipher where given a message m, the ciphertext c is
produced by c = S(m) ⊕ k. From the above example, the attacker can learn the
following two independent equations involving the key bits as follows:

k0 ⊕ k2 = (c0 ⊕ c2) ⊕ (v0 ⊕ v2) = c0 ⊕ c2,

k2 ⊕ k3 = (c2 ⊕ c3) ⊕ (v2 ⊕ v3) = c2 ⊕ c3 ⊕ 1.

Likewise, for any S-box differential α → β involving bit-sets in the SBox, the
attacker can extract two independent equations that involve the key bits, thereby
revealing two bits of information about that key nibble. Table ?? provides a
comprehensive list of possible differentials under nibble bit-sets, along with their

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 191

corresponding independent equations that can be derived through the SDFA
attack. It is important to note that in the case of bit-set faults, if the targeted
bit is already set to 1, no difference will be generated. In such cases, the DFA
attack cannot be performed. However, the SFA attack can still be applied to
reduce the key information by one bit. Therefore, even if bit-set faults fail to
generate a difference, they can still contribute to the reduction of one key bit
information.

Example 1. Let us consider the input-output difference 2 → 7 corresponding to
the bit-set u1 = 1 in an S-box. In this case, the set D of output differences
corresponding to the DFA will be D = D0 ∪ D2 = {0, 5, a, f, 2, 7, 8, d}. Similarly,
for SFA, the set I will be I = {1, 5, 6, 7, 8, 9, a, e}. Therefore, the intersecting
set Z is obtained as Z = D ∩ I = {5, a, 7, 8}. Alternatively, we can compute
H0 = {5, a} and H2 = {7, 8}, which are the sets of output differences in D that
satisfy the condition (S−1(x) & 2i) = 2i. Then, the set Z can be expressed as
Z = H0 ∪ H2 = {5, a, 7, 8}.

4.2 Attack on Simple Key Schedule

We observe that a single bit-set at the SBox can effectively extract at most two
bits of information from the key nibble. Additionally, from the insights provided
in table below, we observe that any two bit-sets at the SBox can reduce at most
four bits of information, i.e., to generate four independent equations involving
the key bits.

Direction
Learned Expression

u0 = 1 u1 = 1 u2 = 1 u3 = 1

1 → 3 1 → 9 2 → 7 2 → d 4 → 7 4 → d 8 → 6 8 → c

Enc (S−1)

3∑

i=0
ki

3∑

i=0
ki k0⊕k2 k0⊕k1 k0⊕k1 k0⊕k2 k0 k0

k1⊕k2⊕k3 k0 k2 ⊕ k3 k1⊕k2⊕k3 k0 ⊕ k2 k0⊕k3 k1⊕k3 k1⊕k3

This enables us to uniquely recover the key nibble. In the worst case, it can
reduce atleast two bits of information for two bit-sets in a nibble.

If our focus is on the last round of the DEFAULT-LAYER, in the best case
scenario we can achieve the unique recovery of each key nibble by injecting 2
faults (active bit-set faults). In the worst case, 4 bit-set faults ensure the unique
key recovery of each key nibbles. This shows that around 64 active bit-set faults
(in the best case) are required to retrieve the key uniquely. Whereas in the worst
case scenario 128 active bit-set faults are sufficient to recover the key. However,
to minimize the number of faults required, the attacker can strategically inject
bit-set faults in the upper rounds.

4.3 Attack on Rotating Key Schedule

The rotating key schedule in DEFAULT-LAYER involves four keys, namely k0, k1,
k2, and k3, which are used for each round in a rotating fashion. The master key k0

serves as the initial key, and the other three keys are derived by applying the four

192 A. Jana et al.

unkeyed round function of DEFAULT-LAYER recursively. From the perspective
of an attacker, if any one of the round keys is successfully recovered, it becomes
possible to derive the remaining three keys using the key schedule function. In
the case of DEFAULT-LAYER, the key k3 is used in the last round. By injecting
approximately three bit-set faults at each nibble in the last round, it is feasible
to effectively retrieve the key k3.

To summarize, a total of around 64 to 128 faults are required to recover
the complete set of keys in DEFAULT-LAYER. This attack strategy leverages the
relationship between the round keys and the rotating key schedule, allowing for
the recovery of the master key and subsequent derivation of the other keys.

4.4 Generic Attack on Truely Independent Random Keys

In the scenario where the round keys in the DEFAULT cipher are genuinely gener-
ated from random sources rather than derived from a master key using recursive
unkeyed round functions, the task of uniquely retrieving all the keys becomes
considerably more challenging. In this case, both our DFA approach and the
strategy presented in [24] face significant challenges in recovering keys uniquely
and may require injecting a substantially larger number of faults compared to
our SDFA approach.

Simply speaking, the SDFA approach involves injecting approximately three
bit-set faults at each round of DEFAULT-LAYER and utilizing these faults to
achieve unique key recovery. Thus, when the round keys are genuinely inde-
pendent and not derived from a master key, this strategy proves to be much
more effective than the DFA strategy. To provide a more concrete perspective,
if DEFAULT employs a total of x (x > 29) truly independent round keys, then
approximately x × y, y ∈ [64, 128] bit-set faults are needed to recover all of
its independent keys. This substantial increase in the number of required faults
underscores the heightened difficulty of retrieving the keys when they are gen-
uinely independent and not derived from a common source.

4.5 Experimental Results on DEFAULT Under SDFA

We have performed an extensive analysis utilizing our novel attack strategy,
SDFA, on both the simple key schedule and the rotating key schedule, considering
the bit-set fault scenario. In the most favorable scenario for both key schedules,
our estimations indicate that 64 active bit-set faults, with two faults introduced
at each SBox, are adequate to uniquely recover the encryption key. Conversely,
in the most challenging scenario, injecting 128 active bit-set faults at each SBox
guarantees the unique key recovery. For complete implementation details of these
attacks, we refer to [1]. The experiment was conducted on an Intel R© Coretm

i5-8250U computer.

5 Attacks on BAKSHEESH

For the BAKSHEESH cipher, despite the absence of any claimed DFA security
by the designer, we conducted a thorough examination of its susceptibility to

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 193

both Differential Fault Analysis (DFA) and Statistical-Differential Fault Analysis
(SDFA) under bit-flip and bit-set fault scenarios, respectively. In this section, we
will begin by outlining the differential fault attack, wherein we introduce faults
at various rounds and determine the minimum number of faults required to
achieve unique key recovery. Subsequently, we will present the SDFA attack and
provide an estimate of the number of faults necessary to successfully retrieve the
key in a unique manner.

5.1 DFA on BAKSHEESH

In this section, we outline our strategy for efficiently determining the differential
trail up to three rounds to facilitate DFA attacks. We explain the trail computa-
tion process, its application in key retrieval via bit-flip faults, and estimate the
fault complexity for key recovery in various rounds.

5.1.1 Faults at the Last Round

In our observations, injecting two faults at each nibble in the last round of
BAKSHEESH yields three bits of information. Additionally, it is worth noting
that the two key values corresponding to any two injected faults at the SBox
are complementary to each other. The initial approach to reduce the keyspace
involves inducing two bit-flip faults at each nibble in the last round before the
SBox operation, individually affecting key nibbles, thus reducing the keyspace to
232 with 64 faults in the last round. However, a more efficient strategy is required,
inducing faults further from the last rounds, and deterministically obtaining
information about the input differences for each SBox in the last round. This
necessitates the development of a deterministic strategy capable of guessing the
differential path from which the faults originate. In the upcoming subsections,
we will demonstrate the feasibility of deterministically computing the differential
path in BAKSHEESH for up to three rounds.

5.1.2 Faults at the Second-to-Last Round

The GIFT-128 permutation structure of the cipher permits a nibble difference at
the input of group Gri in the second-to-last round to induce a bit difference in four
nibbles in the last round. This observation allows an attacker to deterministically
ascertain the differential path by introducing bit-flip faults at the second-to-
last round. Furthermore, this insight enables the deterministic computation of
differential paths for up to three rounds, as discussed in the next subsection.
This is achievable because, for both non-faulty and faulty ciphertexts, the last
round can be inverted by assessing input bit-differences at each nibble using
DDT. The internal state difference can then be calculated by examining input
bit-differences after the inverse operation of the second-to-last round, leveraging
the Quotient-Remainder group structure.

A straightforward approach to attacking the cipher involves injecting two bit-
faults at each nibble in the last round, thereby reducing the keyspace for each

194 A. Jana et al.

nibble to 2, resulting in an overall keyspace of 232. Subsequently, injecting one
fault at each nibble in the second-to-last round uniquely reduces the keyspace.
This naive approach necessitates approximately 96 faults for key recovery. How-
ever, we can enhance this attack by introducing faults at the second-to-last round
during encryption. Our practical validation confirms that the introduction of one
bit-faults at the second bit position in each SBox and two bit-faults at the third
bit position in two different SBox at each group Gri at the second-to-last round,
substantially diminishes the keyspace to nearly unique key. Detailed information
on the reduced keyspace values corresponding to different fault injection counts
is available in Table 2.

5.1.3 Faults at the Third-to-Last Round

In this attack, we introduce bit-faults into a nibble during the third-to-last round
of the cipher. Similar to the previous attack in DEFAULT-LAYER, we follow a
deterministic process to calculate the input and output differences for each nibble
at every round. This allows us to track how differences propagate throughout the
cipher, as illustrated in Fig. 2. Also, the three rounds trail computation is similar
to Algorithm 1. We then leverage the computed trail to reduce the cipher’s
keyspace. By introducing two distinct bit differences in each nibble during the
last round, we effectively reduce the keyspace to 232. Next, our focus narrows
down to nibble positions 0, 1, 2, 3, 8, 9, 10, and 11 during the second-to-last
round. We filter these nibble positions by iteratively inverting two rounds relative
to combining the keyspaces from nibble positions 0, 1, 2, 3, 8, 9, 10, 11, 16,
17, 18, 19, 24, 25, 26, and 27, all based on the key nibbles of the last round.
Similarly, we filter nibble positions 20, 21, 22, 23, 28, 29, 30, and 31 by inverting
two rounds with respect to combining the keyspaces from nibble positions 4, 5,
6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, and 31, again based on the key
nibbles of the last round. We subsequently perform further filtering on remaining
nibble differences at the second-to-last round, considering the reduced keyspace
for all 32 key nibble positions. Finally, we conduct additional filtering on nibble
differences at the third-to-last round based on the further reduced keyspace. Our
practical verification demonstrates that introducing two bit-faults at the third
bit position in two different SBox within each group Gri during the third-to-last
round significantly reduces the keyspace to a unique key. Comprehensive details
regarding the reduced keyspace values for various fault injection counts can be
found in Table 2.

5.2 SDFA on BAKSHEESH

The SBox employed in the BAKSHEESH cipher features a single non-zero LS
element, denoted as 8. In the context of DFA, the key nibbles can be effec-
tively reduced to one bit by introducing a minimum of two faults in each nibble.
Notably, only introducing any two out of the three possible input differences (1,
2, and 4) at each SBox is sufficient to reduce the key nibbles to 2, given that 8
is a LS point.

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 195

Regarding SFA, our observations indicate that performing four SFA opera-
tions using bit-set faults can reduce the key nibbles to a minimum of 2. We have
verified that introducing bit-set faults at each position within the SBox nibbles,
with one active fault at the first three positions, is capable of uniquely reducing
the key nibble space. Therefore, approximately 128 bit-set faults are sufficient
for a nearly unique key recovery.

5.3 Experimental Results on BAKSHEESH

In this attack scenario, we have applied both our DFA and SDFA attack tech-
niques to BAKSHEESH, achieving successful key recovery. In the DFA approach,
our estimations suggest that approximately 48 and 16 bit-faults are needed to
reduce the keyspaces to 20.2 and 1, respectively. These faults are strategically
introduced at the second-to-last and third-to-last rounds. When it comes to the
SDFA approach, our most favorable estimations indicate that 96 active bit-set
faults, with three faults introduced at each SBox, are sufficient for a unique key
recovery. In the worst-case scenario, injecting 128 active bit-set faults at each
SBox guarantees a unique key recovery. For detailed implementations of these
attacks, we refer to [1]. The experiments were performed on an Intel R© Coretm

i5-8250U computer. It is important to mention that employing more power-
ful computing hardware could potentially lead to more precise fault estimation
results.

6 Discussion

This work presents enhanced DFA attacks on both LS SBox-based ciphers,
DEFAULT and BAKSHEESH. The DEFAULT-LAYER SBox incorporates three
non-trivial LS elements, while BAKSHEESH has only one non-trivial LS element.

One of the work related to this, is done by Dey et al. [12]. Here the authors
inject faults across multiple rounds, namely, in the last and the second-to-last
rounds, and use a nibble-based fault model. They inject 64 random nibble faults
in the last round to reduce the keyspace to at least 264. Further reduction of the
keyspace to 216 is possible only by injecting additional 48 faults in the second-to-
last round, yielding a total of 112 faults for a two-round attack. In contrast, our
new approach extends the number of rounds, significantly reducing the number of
faults compared to [12]. Moreover, their work is on the older version of DEFAULT
and does not work on newer versions of the cipher, while ours is applicable to
the latest version with rotating key-schedule as well.

Nageler et al. [24] presents another interesting strategy to reduce the keyspace
and mount an attack on 3 rounds of DEFAULT. They utilise a top-to-bottom app-
roach for constructing a collection of possible intermediate state difference lists
while simultaneously calculating their probabilities. However, these probabilities
are not directly exploited in the key recovery analysis, which slows down the rate
of keyspace reduction across rounds. Our approach, on the other hand, adopts a

196 A. Jana et al.

bottom-top methodology. The linear layer in DEFAULT is a bit-based permuta-
tion from GIFT, allowing for deterministic capture of difference propagation when
a fault is injected in the third-to-last encryption round. By computing the differ-
ential trail deterministically up to 3 rounds and extending it to 5 rounds through
guess-and-determine strategy, we find that each active S-box has a unique input-
output difference at all intermediate rounds, yielding a more efficient keyspace
reduction. Consequently, our approach requires fewer faults to achieve unique
key recovery and to bring the keyspace below a specified threshold. Though our
work uses the same fault model as [24], our 3 round attack remains effective
under random nibble faults also, both in position and value.

Moreover, the work [24] recovers around 112 key bits with 16 faults. When we
use their algorithm to increase the number of faults, we find that their method
does not recover beyond 112 key bits. On the other hand, using our technique
with only 5 faults, we could reduce the keyspace to identity.

We also study the trade-off between the number of faults and keyspace reduc-
tion and compare the corresponding theory with experiments. We find that with
4 and 3 faults, the keyspace size reduces to approximately 21 and 28 respec-
tively. One single bit input-difference at the fifth-to-last round of DEFAULT
SBox can propagate to the output-differences with of hamming weight (HW)
2 or 3. Assuming an output-difference with HW(2), we get approximately 16
input-output differences using each of the 4 faults, i.e., 64 in total, thereby
reducing keyspace to 264. In practice, each nibble may not always get at least
2 distinct input-output differences, and thus the keyspace may not be reduced
exactly to 264, but only approximately. Proceeding further, if we combine this
with the distinguishers of the lower rounds, the final keyspace reduces to 212

theoretically. However, in practice, we observe 21 possibly owing to some out-
put differences having larger hamming weights. With less faults, the product
keyspace of 4 remainder groups in the last round becomes much larger, leading
to infeasible time complexity.

7 Conclusion

In light of the practical significance of Differential Fault Analysis (DFA) style
attacks, the development of effective cipher protection strategies holds substan-
tial relevance. Over recent years, various approaches and strategies have been
explored to mitigate such vulnerabilities. Notably, the authors of the DEFAULT
cipher have introduced a compelling design strategy aimed at intrinsically con-
straining the extent of information accessible to potential attackers. The design-
ers claimed its DFA security to be 264 under any difference-based fault analysis.

In this study, we present an enhanced DFA on the DEFAULT cipher, enabling
the effective and unique retrieval of the encryption key. Our approach involves
constructing deterministic differential trails spanning up to five rounds and
applying DFA by injecting faults at various rounds while quantifying the required
number of faults. Specifically, for the simple key schedule, we demonstrate
that approximately 5 bit-flip faults are sufficient to uniquely recover the key

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 197

of DEFAULT. In contrast, for systems utilizing rotating keys, we show that
approximately 36 bit-flip faults are required to recover the equivalent key of
DEFAULT-LAYER. Remarkably, our attack achieves key recovery with a signifi-
cantly reduced number of faults compared to previous methods.

When we inject faults at the sixth-to-last round to extend our trail compu-
tation techniques to one more round, the differential trails found are not unique.
This might slow down the key recovery due to multiple input-output differences
at an SBox in the intermediate rounds. The detailed investigation of deeper
rounds and keyspace reduction may be an interesting future work.

Furthermore, we introduce a novel fault attack technique known as the
Statistical-Differential Fault Attack (SDFA), which combines elements of both
Statistical Fault Analysis (SFA) and DFA. In this attack, we demonstrate that
at most 128 bit-set faults are sufficient to recover the key for both the key sched-
ule configurations of the DEFAULT cipher. This attack highlights its efficacy in
recovering encryption keys, not only for systems employing rotating keys but
also for ciphers utilizing entirely round-independent keys.

Finally, we apply our proposed DFA attack to another linear-structured SBox-
based cipher, BAKSHEESH, and efficiently recovered its master key uniquely. We
show that approximately 16 bit-faults are required to achieve unique key recovery
for BAKSHEESH. Similarly, under the bit-set fault model, the SDFA attack can
be effectively applied to nearly retrieve its key uniquely by inducing 128 bit-set
faults in the worst case.

In conclusion, our work makes significant contributions to the field of fault
attacks by presenting enhanced DFA techniques, extending their applicability to
rotating and round-independent keys, and introducing the novel SDFA approach
to combine the advantages of both DFA and SFA. Our findings underscore the
difficulty in achieving DFA protection for linear-structured SBox-based ciphers.
In principle, our SDFA can also be applied to any non-linear SBox-based ciphers,
which may be an interesting future work.

198 A. Jana et al.

A Appendix

Algorithm 2. Deterministic Computation of Five Rounds Differen-
tial Trail

Input: A list of ciphertext difference LΔC

Output: Lists of input-output differences A23
ID, A24

ID, A25
ID, A26

ID, & A27
ID

1: L1 ← [], L2 ← [], A23
ID ← [[], A24

ID ← [[], []], A25
ID ← [[], []], A26

ID ← [[], []], A27
ID ← [[], []]

2: T1 = [0, 1, 4, 5], T2 = [0, 2, 8, 10]
3: T = [[(T1)

8, (T2)
8, (T1)

8, (T2)
8], [(T2)

8, (T1)
8, (T2)

8, (T1)
8]] � Input nibble differences at the

second-to-last round correspond to faults at the left/right half
4: L1 = LΔC

5: L1 = P −1(L1) � Invert through bit-permutation layer
6: for i = 0 to 31 do � At the round R27

7: A27
ID [1][i] = L1[i]

8: for j = 0 to 1 do � For each fault at the left/right half in the fifth-to-last round
9: for i = 0 to 8 do � For each group Gri at R26

10: for (Δ0, Δ1, Δ2, Δ3) ∈ S−1(L1[i])×S−1(L1[i+8])×S−1(L1[i+16])×S−1(L1[i+24])
at round R27 do

11: L1[i] = Δ0, L1[i + 8] = Δ1, L1[i + 16] = Δ2, L1[i + 24] = Δ3
12: L1[j] = 0, j /∈ {i, i + 8, i + 16, i + 24}
13: A27

ID[0] = L1

14: L1 = P −1(L1)
15: A26

ID[1] = L1

16: for (Δ0, Δ1, Δ2, Δ3) ∈ S−1(L1[0+α])×S−1(L1[1+α])×S−1(L1[2+α])×S−1(L1[3+
α]) at round R26 do � α ← 4 ∗ i, here (Δ0, Δ1, Δ2, Δ3) denotes the difference in i-th quotient
group

17: L2[α] = Δ0, L2[1 + α] = Δ1, L2[2 + α] = Δ2, L2[3 + α] = Δ3
18: L2[j] = 0, j /∈ {α, 1 + α, 2 + α, 3 + α}
19: A26

ID[0] = L2
20: if (Δ0 ∈ T [j][α]) & (Δ1 ∈ T [j][1+α]) & (Δ2 ∈ T [j][2+α]) & (Δ3 ∈ T [j][3+α])

then
21: LΔC = L2

22: Compute the trail for other three rounds using Algorithm 1 and get A25
ID, A24

ID, and A23
ID

23: return the lists A27
ID, A26

ID, A25
ID, A24

ID and A23
ID

Algorithm 3. Deterministic Computation of Four Rounds Differen-
tial Trail

Input: A list of ciphertext difference LΔC

Output: Lists of input-output differences A24
ID , A25

ID, A26
ID, & A27

ID

1: Initialize L1 ← [], A24
ID ← [[], []], A25

ID ← [[], []], A26
ID ← [[], []], A27

ID ← [[], []]
2: L1 = LΔC

3: L1 = P −1(L1) � Invert through bit-permutation layer
4: for i = 0 to 31 do � At the round R27

5: A27
ID [1][i] = L1[i]

6: for i = 0 to 8 do � For each group Gri at R26

7: for (Δ0, Δ1, Δ2, Δ3) ∈ S−1(L1[i]) × S−1(L1[i + 8]) × S−1(L1[i + 16]) × S−1(L1[i + 24])
at round R27 do

8: L1[i] = Δ0, L1[i + 8] = Δ1, L1[i + 16] = Δ2, L1[i + 24] = Δ3
9: L1[j] = 0, j /∈ {i, i + 8, i + 16, i + 24}

10: L1 = P −1(L1)
11: if L1[j] = 0, ∀j ∈ {0. . . . , 31} \ {α, α + 1, α + 2, α + 3} then � α ← 4 ∗ i
12: if j ∈ {0, 1} then � j = 0/1 → injected faults at the left/right half of R24

13: if S−1(L1[α + j]) /∈ S or S−1(L1[α + j + 2]) /∈ S then � S ← {1, 2, 4, 8}
14: Break the for loop

15: A27
ID[0][i] = Δ0, A27

ID[0][i + 8] = Δ1, A27
ID[0][i + 16] = Δ2, A27

ID[0][i + 24] = Δ3
16: LΔC [i] = Δ0, LΔC [i + 8] = Δ1, LΔC [i + 16] = Δ2, LΔC [i + 24] = Δ3

17: Compute the trail for other three rounds using Algorithm 1 and get A26
ID, A25

ID and A24
ID

18: return the lists A27
ID, A26

ID, A25
ID and A24

ID

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 199

Fig. 2. Fault Propagation for Three Rounds

Fig. 3. Fault Propagation for Five Rounds

200 A. Jana et al.

References

1. Attack Verification of DEFAULT and BAKSHEESH. https://github.com/
anup557/sdfa

2. Agoyan, M., Dutertre, J., Mirbaha, A., Naccache, D., Ribotta, A., Tria, A.: How
to flip a bit? In: 16th IEEE International On-Line Testing Symposium (IOLTS
2010), 5-7 July, 2010, Corfu, Greece. pp. 235–239. IEEE Computer Society (2010),
https://doi.org/10.1109/IOLTS.2010.5560194

3. Baksi, A., Bhasin, S., Breier, J., Jap, D., Saha, D.: A survey on fault attacks
on symmetric key cryptosystems. ACM Comput. Surv. 55(4), 86:1–86:34 (2023).
https://doi.org/10.1145/3530054

4. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T., Sarkar, S., Sim, S.M.:
DEFAULT: cipher level resistance against differential fault attack. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2021 - 27th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6-10, 2021, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 13091, pp. 124–156. Springer (2021). https://doi.org/10.
1007/978-3-030-92075-3 5

5. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T., Sarkar, S., Sim, S.M.:
DEFAULT: cipher level resistance against differential fault attack. IACR Cryptol.
ePrint Arch. p. 712 (2021), https://eprint.iacr.org/archive/2021/712/1622193888.
pdf

6. Baksi, A., Breier, J., Chattopadhyay, A., Gerlich, T., Guilley, S., Gupta, N., Hu,
K., Isobe, T., Jati, A., Jedlicka, P., Kim, H., Liu, F., Martinasek, Z., Sakamoto,
K., Seo, H., Shiba, R., Shrivastwa, R.R.: BAKSHEESH: similar yet different from
GIFT. IACR Cryptol. ePrint Arch. p. 750 (2023), https://eprint.iacr.org/2023/
750

7. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10529, pp. 321–345. Springer
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

8. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.: Fault attack
on AES with single-bit induced faults. In: Sixth International Conference on Infor-
mation Assurance and Security, IAS 2010, Atlanta, GA, USA, August 23-25, 2010.
pp. 167–172. IEEE (2010). https://doi.org/10.1109/ISIAS.2010.5604061

9. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019). https://doi.org/10.13154/tosc.v2019.i1.5-
45

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Jr., B.S.K. (ed.) Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1294, pp. 513–525. Springer
(1997). https://doi.org/10.1007/BFb0052259

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002).
https://doi.org/10.1007/3-540-36400-5 3

https://github.com/anup557/sdfa
https://github.com/anup557/sdfa
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1145/3530054
https://doi.org/10.1007/978-3-030-92075-3_5
https://doi.org/10.1007/978-3-030-92075-3_5
https://eprint.iacr.org/archive/2021/712/1622193888.pdf
https://eprint.iacr.org/archive/2021/712/1622193888.pdf
https://eprint.iacr.org/2023/750
https://eprint.iacr.org/2023/750
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1109/ISIAS.2010.5604061
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-36400-5_3

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 201

12. Dey, C., Pandey, S.K., Roy, T., Sarkar, S.: Differential fault attack on DEFAULT.
IACR Cryptol. ePrint Arch. p. 1392 (2021), https://eprint.iacr.org/2021/1392

13. Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures. In:
Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 11273, pp. 315–342. Springer
(2018). https://doi.org/10.1007/978-3-030-03329-3 11

14. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018). https://doi.org/
10.13154/tches.v2018.i3.547-572

15. Dutertre, J., Mirbaha, A., Naccache, D., Ribotta, A., Tria, A., Vaschalde, T.: Fault
round modification analysis of the advanced encryption standard. In: 2012 IEEE
International Symposium on Hardware-Oriented Security and Trust, HOST 2012,
San Francisco, CA, USA, June 3-4, 2012. pp. 140–145. IEEE Computer Society
(2012). https://doi.org/10.1109/HST.2012.6224334

16. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Fischer, W., Schmidt, J. (eds.) 2013 Workshop on Fault Diag-
nosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013. pp.
108–118. IEEE Computer Society (2013). https://doi.org/10.1109/FDTC.2013.18,

17. Jana, A.: Differential fault attack on feistel-based sponge AE schemes. J. Hardw.
Syst. Secur. 6(1-2), 1–16 (2022). https://doi.org/10.1007/s41635-022-00124-w

18. Jana, A., Paul, G.: Differential fault attack on photon-beetle. In: Chang, C.,
Rührmair, U., Mukhopadhyay, D., Forte, D. (eds.) Proceedings of the 2022 Work-
shop on Attacks and Solutions in Hardware Security, ASHES 2022, Los Angeles,
CA, USA, 11 November 2022. pp. 25–34. ACM (2022). https://doi.org/10.1145/
3560834.3563824,

19. Jana, A., Saha, D., Paul, G.: Differential fault analysis of NORX. In: Chang,
C., Rührmair, U., Katzenbeisser, S., Schaumont, P. (eds.) Proceedings of the
4th ACM Workshop on Attacks and Solutions in Hardware Security Workshop,
ASHES@CCS 2020, Virtual Event, USA, November 13, 2020. pp. 67–79. ACM
(2020). https://doi.org/10.1145/3411504.3421213

20. Kim, Y., Daly, R., Kim, J.S., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: An experimental study
of DRAM disturbance errors. In: ACM/IEEE 41st International Symposium on
Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014.
pp. 361–372. IEEE Computer Society (2014). https://doi.org/10.1109/ISCA.2014.
6853210,

21. Kundu, A.K., Ghosh, S., Aikata, A., Saha, D.: Tofa: Towards fault analysis of
gift and gift-like ciphers leveraging truncated impossible differentials [unpublished
manuscript] (2022)

22. Menu, A., Dutertre, J., Rigaud, J., Colombier, B., Moëllic, P., Danger, J.: Single-
bit laser fault model in NOR flash memories: Analysis and exploitation. In:
17th Workshop on Fault Detection and Tolerance in Cryptography, FDTC 2020,
Milan, Italy, September 13, 2020. pp. 41–48. IEEE (2020). https://doi.org/10.1109/
FDTC51366.2020.00013,

23. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differ-
ential fault attack against AES cryptosystem. In: Goubin, L., Matsui, M. (eds.)

https://eprint.iacr.org/2021/1392
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.13154/tches.v2018.i3.547-572
https://doi.org/10.13154/tches.v2018.i3.547-572
https://doi.org/10.1109/HST.2012.6224334
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1007/s41635-022-00124-w
https://doi.org/10.1145/3560834.3563824
https://doi.org/10.1145/3560834.3563824
https://doi.org/10.1145/3411504.3421213
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/FDTC51366.2020.00013
https://doi.org/10.1109/FDTC51366.2020.00013

202 A. Jana et al.

Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International
Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings. Lecture Notes
in Computer Science, vol. 4249, pp. 91–100. Springer (2006), https://doi.org/10.
1007/11894063 8

24. Nageler, M., Dobraunig, C., Eichlseder, M.: Information-combining differential
fault attacks on DEFAULT. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May
30 - June 3, 2022, Proceedings, Part III. Lecture Notes in Computer Science, vol.
13277, pp. 168–191. Springer (2022). https://doi.org/10.1007/978-3-031-07082-2 7

25. Piret, G., Quisquater, J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2003, 5th
International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings.
Lecture Notes in Computer Science, vol. 2779, pp. 77–88. Springer (2003), https://
doi.org/10.1007/978-3-540-45238-6 7

26. Roscian, C., Sarafianos, A., Dutertre, J., Tria, A.: Fault model analysis of laser-
induced faults in SRAM memory cells. In: Fischer, W., Schmidt, J. (eds.) 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, CA,
USA, August 20, 2013. pp. 89–98. IEEE Computer Society (2013). https://doi.
org/10.1109/FDTC.2013.17,

27. Saha, D., Chowdhury, D.R.: Scope: On the side channel vulnerability of releas-
ing unverified plaintexts. In: Dunkelman, O., Keliher, L. (eds.) Selected Areas in
Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB, Canada,
August 12-14, 2015, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 9566, pp. 417–438. Springer (2015). https://doi.org/10.1007/978-3-319-31301-
6 24

28. Saha, D., Chowdhury, D.R.: Encounter: On breaking the nonce barrier in differ-
ential fault analysis with a case-study on PAEQ. In: Gierlichs, B., Poschmann,
A.Y. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceed-
ings. Lecture Notes in Computer Science, vol. 9813, pp. 581–601. Springer (2016).
https://doi.org/10.1007/978-3-662-53140-2 28

29. Saha, S., Bag, A., Roy, D.B., Patranabis, S., Mukhopadhyay, D.: Fault template
attacks on block ciphers exploiting fault propagation. In: Canteaut, A., Ishai, Y.
(eds.) Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I. Lecture Notes in Computer Sci-
ence, vol. 12105, pp. 612–643. Springer (2020). https://doi.org/10.1007/978-3-030-
45721-1 22

30. Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise laser fault injections into
90 nm and 45 nm sram-cells. In: Homma, N., Medwed, M. (eds.) Smart Card
Research and Advanced Applications - 14th International Conference, CARDIS
2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers. Lecture
Notes in Computer Science, vol. 9514, pp. 193–205. Springer (2015). https://doi.
org/10.1007/978-3-319-31271-2 12

31. Simon, T., Batina, L., Daemen, J., Grosso, V., Massolino, P.M.C., Papagiannopou-
los, K., Regazzoni, F., Samwel, N.: Friet: An authenticated encryption scheme with
built-in fault detection. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the Theory

https://doi.org/10.1007/11894063_8
https://doi.org/10.1007/11894063_8
https://doi.org/10.1007/978-3-031-07082-2_7
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1007/978-3-319-31301-6_24
https://doi.org/10.1007/978-3-319-31301-6_24
https://doi.org/10.1007/978-3-662-53140-2_28
https://doi.org/10.1007/978-3-030-45721-1_22
https://doi.org/10.1007/978-3-030-45721-1_22
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1007/978-3-319-31271-2_12

More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal 203

and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12105, pp. 581–611.
Springer (2020). https://doi.org/10.1007/978-3-030-45721-1 21

32. Skorobogatov, S.: Optical fault masking attacks. In: Breveglieri, L., Joye, M.,
Koren, I., Naccache, D., Verbauwhede, I. (eds.) 2010 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2010, Santa Barbara, California, USA, 21
August 2010. pp. 23–29. IEEE Computer Society (2010). https://doi.org/10.1109/
FDTC.2010.18,

33. Tunstall, M., Mukhopadhyay, D.: Differential fault analysis of the advanced encryp-
tion standard using a single fault. IACR Cryptol. ePrint Arch. p. 575 (2009),
http://eprint.iacr.org/2009/575

https://doi.org/10.1007/978-3-030-45721-1_21
https://doi.org/10.1109/FDTC.2010.18
https://doi.org/10.1109/FDTC.2010.18
http://eprint.iacr.org/2009/575

Cryptanalysis on Various Problems

Hard-Label Cryptanalytic Extraction of
Neural Network Models

Yi Chen1 , Xiaoyang Dong2,5 , Jian Guo3 , Yantian Shen4 ,
Anyu Wang1,5 , and Xiaoyun Wang1,5,6(B)

1 Institute for Advanced Study, Tsinghua University, Beijing, China
chenyi2023@mail.tsinghua.edu.cn, {anyuwang,xiaoyunwang}@tsinghua.edu.cn
2 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University,

Beijing, China
xiaoyangdong@tsinghua.edu.cn

3 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore
guojian@ntu.edu.sg

4 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

shenyt22@mails.tsinghua.edu.cn
5 Zhongguancun Laboratory, Beijing, China

6 Shandong Key Laboratory of Artificial Intelligence Security, Shandong, China

Abstract. The machine learning problem of extracting neural network
parameters has been proposed for nearly three decades. Functionally
equivalent extraction is a crucial goal for research on this problem. When
the adversary has access to the raw output of neural networks, vari-
ous attacks, including those presented at CRYPTO 2020 and EURO-
CRYPT 2024, have successfully achieved this goal. However, this goal is
not achieved when neural networks operate under a hard-label setting
where the raw output is inaccessible.

In this paper, we propose the first attack that theoretically achieves
functionally equivalent extraction under the hard-label setting, which
applies to ReLU neural networks. The effectiveness of our attack is val-
idated through practical experiments on a wide range of ReLU neural
networks, including neural networks trained on two real benchmarking
datasets (MNIST, CIFAR10) widely used in computer vision. For a neu-
ral network consisting of 105 parameters, our attack only requires several
hours on a single core.

Keywords: Cryptanalysis · ReLu Neural Networks · Functionally
Equivalent Extraction · Hard-Label

1 Introduction

Extracting all the parameters (including weights and biases) of a neural network
(called victim model) is a long-standing open problem which is first proposed by

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 207–236, 2025.
https://doi.org/10.1007/978-981-96-0944-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_7&domain=pdf
http://orcid.org/0000-0002-4727-4530
http://orcid.org/0000-0002-3444-6030
http://orcid.org/0000-0001-8847-6748
http://orcid.org/0000-0001-6714-3557
http://orcid.org/0000-0002-1086-0288
http://orcid.org/0000-0002-7846-269X
https://doi.org/10.1007/978-981-96-0944-4_7

208 Y. Chen et al.

cryptographers and mathematicians in the early nineties of the last century [2,
7], and has been widely studied by research groups from both industry and
academia [1,3,4,11,14,16,18,20].

In previous research [3,4,11,14,16,18,20], one of the most common attack
scenarios is as follows. The victim model (denoted by fθ where θ denotes the
parameters) is made available as an Oracle O, then the adversary generates
inputs x to query O and collects the feedback ζ to extract the parameters.
This is similar to a cryptanalysis problem: θ is considered the secret key, and
the adversary tries to recover the secret key θ, given the pairs (x, ζ) [4]. If fθ

contains m parameters (64-bit floating-point numbers), then the secret key θ
contains 64 × m bits, and the computation complexity of brute force searching
is 264×m.

Consider that there may be isomorphisms for neural networks, e.g., permu-
tation and scaling for ReLU neural networks [18]. An important concept named
functionally equivalent extraction is summarized and proposed in [11].

Functionally Equivalent Extraction. Denote by X the input space of the
victim model fθ. Functionally equivalent extraction aims at generating a model
f

̂θ (i.e., the extracted model), such that fθ(x) = f
̂θ(x) holds for all x ∈ X ,

where fθ(x) and f
̂θ(x) are, respectively, the raw output of the victim model and

the extracted model [11]. Such extracted model f
̂θ is called the functionally

equivalent model of fθ (also say that fθ and f
̂θ are isomorphic [18]). Since f

̂θ
behaves the same as fθ, the adversary can explore the properties of fθ by taking
f

̂θ as a perfect substitute1.
Functionally equivalent extraction is hard [11]. Consider the isomorphisms

(permutation and scaling) introduced in [18]. Scaling can change parameters and
permutation does not. For a ReLU neural network fθ that contains m parameters
(64-bit floating-point numbers) and n neurons, from the perspective of the above
cryptanalysis problem, even though scaling can be applied to each neuron once,
the adversary still needs to recover 64 × (m − n) secret key bits. Note that the
case of m � n is common for neural networks. For example, for the ReLU neural
networks extracted by Carlini et al. at CRYPTO 2020 [4], the pairs (m,n) are
(25120, 32), (100480, 128), (210, 20), (420, 40), and (4020, 60). Besides, even if
we only recover a few bits (instead of 64 bits) of each parameter, the number of
secret key bits to be recovered is still large, particularly in the case of large m.

When a functionally equivalent model f
̂θ is obtained, the adversary can

do more damage (e.g., adversarial attack [5]) or steal user privacy (e.g., property
inference attack [9]). Thus, even though the cost is expensive, the adversary has
the motivation to achieve functionally equivalent extraction.

Hard-Label Setting. According to the taxonomy in [11], when the Oracle is
queried, there are 5 types of feedback given by the Oracle: (1) label (the most
likely class label, also called hard-label), (2) label and score (the most-likely class

1 Due to the isomorphisms introduced in [18], the parameters ̂θ of the extracted model
may be different from that θ of the victim model, but it does not matter as long as
f

̂θ is the functionally equivalent model of fθ.

Hard-Label Cryptanalytic Extraction of Neural Network Models 209

label and its probability score), (3) top-k scores, (4) all the label scores, (5) the
raw output (i.e., fθ(x)). When the Oracle only returns the hard-label, we say
that the victim model fθ (i.e., neural networks in this paper) works under the
hard-label setting [8].

To the best of our knowledge, there are no functionally equivalent extrac-
tion attacks that are based on the first four types of feedback so far. From the
perspective of cryptanalysis, the raw output fθ(x) is equivalent to the complete
ciphertext corresponding to the plaintext (i.e., the query x). The other four types
of feedback only reveal some properties of the ciphertext (raw output fθ(x)). For
example, when fθ(x) ∈ R, the hard-label only tells whether fθ(x) > 0 holds or
not [8]. Among the five types of feedback, the raw output leaks the most infor-
mation, while the hard-label (i.e., the first type of feedback) leaks the least [11].

Assuming that the feedback of the Oracle is the raw output, Jagielski et al.
propose the first functionally equivalent extraction attack against ReLU neu-
ral networks with one hidden layer [11], which is extended to deeper neural
networks in [18]. At CRYPTO 2020, Carlini et al. propose a differential extrac-
tion attack [4] that requires fewer queries than the attack in [18]. However, the
differential extraction attack requires an exponential amount of time, which is
addressed by Canales-Mart́ınez et al. at EUROCRYPT 2024 [3]. Note that the
extraction attacks in [3,4,18] are also based on the assumption that the feedback
is the raw output. Due to the dependence on the raw output, all the authors
in [3,4,11,18], state that the hard-label setting (i.e., the feedback is the first type)
is a defense against functionally equivalent extraction.

The above backgrounds lead to the question not studied before

Is it possible to achieve functionally equivalent extraction against
neural network models under the hard-label setting?

1.1 Our Results and Techniques

Results. We have addressed this question head-on in this paper. In total, the
answer is yes, and we propose the first functionally equivalent extraction attack
against ReLU neural networks under the hard-label setting. Here, the definition
of functionally equivalent extraction proposed in [4] is extended reasonably.

Definition 1. (Extended Functionally Equivalent Extraction) The goal
of the extended functionally equivalent extraction is to generate a model f

̂θ (i.e.,
the extracted model), such that f

̂θ(x) = c × fθ(x) holds for all x ∈ X , where
c > 0 is a fixed constant, fθ(x) and f

̂θ(x) are, respectively, the raw output of the
victim model and the extracted model. The extracted model f

̂θ is the functionally
equivalent model of the victim model fθ.

Since f
̂θ(x) = c× fθ(x) holds for all x ∈ X , i.e., f

̂θ is a simple scalar product
of fθ, the adversary still can explore the properties of the victim model fθ by
taking f

̂θ as a perfect substitute. This is why we propose this extended definition.
From the perspective of cryptanalysis, this extended definition allows the adver-
sary not to guess the 64 bits of the constant c. To evaluate the efficacy of our

210 Y. Chen et al.

model extraction attacks, and quantify the degree to which a model extraction
attack has succeeded in practice, we generalize the metric named (ε, δ)-functional
equivalence proposed in [4].

Definition 2. (Extended (ε, δ)-Functional Equivalence) Two models f
̂θ

and fθ are (ε, δ)-functional equivalent on S if there exists a fixed constant c > 0
such that

Prx∈S
[∣∣f

̂θ(x) − c × fθ(x)
∣
∣ � ε

]
� 1 − δ

In this paper, we propose two model extraction attacks, one of which applies
to 0-deep neural networks, and the other one applies to k-deep neural networks.
The former attack is the basis of the latter attack. Our model extraction attacks
theoretically achieve functionally equivalent extraction described in Definition 1,
where the constant c > 0 is determined by the model parameter θ.

We have also performed numerous experiments on both untrained and trained
neural networks, for verifying the effectiveness of our model extraction attacks in
practice. The untrained neural networks are obtained by randomly generating
model parameters. To fully verify our attacks, we also adopt two real bench-
marking image datasets (i.e., MNIST and CIFAR10) widely used in computer
vision, and train many classifiers (i.e., trained neural networks) as the victim
model. Our model extraction attacks show good performances in experiments.
The complete experiment results refer to Tables 1 and 2 in Sect. 7. The number
of parameters of neural networks in our experiments is up to 105, but the run-
time of the proposed extraction attack on a single core is within several hours.
Our experiment code is uploaded to GitHub (https://github.com/AI-Lab-Y/
NN cryptanalytic extraction).

The analysis of the attack complexity is presented in Appendix B. For the
extraction attack on k-deep neural networks, its query complexity is about
O
(
d0 × 2n × log

1
ε
2

)
, where d0 and n are, respectively, the input dimension (i.e.,

the size of x) and the number of neurons, ε is a precision chosen by the adversary.
The computation complexity is about O

(
n × 2n2+n+k

)
, where n is the number

of neurons and k is the number of hidden layers. The computation complexity
of our attack is much lower than that of brute-force searching.

Techniques. By introducing two new concepts, namely model activation pat-
tern and model signature, we obtained some findings as follows. A ReLU neural
network is composed of a certain number of affine transformations corresponding
to model activation patterns. Each affine transformation leaks partial informa-
tion about neural network parameters, which is determined by the corresponding
model activation pattern. Most importantly, for a neural network that contains
n neurons, n + 1 special model activation patterns will leak all the information
about the neural network parameters.

Inspired by the above findings, we design a series of methods to find decision
boundary points, recover the corresponding affine transformations, and further
extract the neural network parameters. These methods compose the complete
model extraction attacks.

https://github.com/AI-Lab-Y/NN_cryptanalytic_extraction
https://github.com/AI-Lab-Y/NN_cryptanalytic_extraction

Hard-Label Cryptanalytic Extraction of Neural Network Models 211

Organization. The basic notations, threat model, attack goal and assumptions
are introduced in Sect. 2. Section 3 introduces some auxiliary concepts. Then
we introduce the overview of our model extraction attacks, the idealized model
extraction attacks, and some refinements in practice in the following three sec-
tions respectively. Experiments are introduced in Sect. 7. At last, we present
more discussions about our work and conclude this paper.

2 Preliminaries

2.1 Basic Definitions and Notations

This section presents some necessary definitions and notations.

Definition 3. (k-Deep Neural Network [4]) A k-deep neural network fθ(x)
is a function parameterized by θ that takes inputs from an input space X and
returns values in an output space Y. The function f : X → Y is composed of
alternating linear layers fi and a non-linear activation function σ:

f = fk+1 ◦ σ ◦ · · · ◦ σ ◦ f2 ◦ σ ◦ f1. (1)

In this paper, we exclusively study neural networks over X = R
d0 and

Y = R
dk+1 , where d0 and dk+1 are positive integers. As in [3,4], we only

consider neural networks using the ReLU [15] activation function, given by
σ : x �→ max(x, 0).

Definition 4. (Fully Connected Layer [4]) The i-th fully connected layer of
a neural network is a function fi : Rdi−1 → R

di given by the affine transformation

fi(x) = A(i)x + b(i). (2)

where A(i) ∈ R
di×di−1 is a di×di−1 weight matrix, b(i) ∈ R

di is a di-dimensional
bias vector.

Definition 5. (Neuron [4]) A neuron is a function determined by the corre-
sponding weight matrix, bias vector, and activation function. Formally, the j-th
neuron of layer i is the function η given by

η(x) = σ
(
A

(i)
j x + b

(i)
j

)
, (3)

where A
(i)
j and b

(i)
j denote, respectively, the j-th row of A(i) and j-th coordinate

of b(i). In a k-deep neural network, there are a total of
∑k

i=1 di neurons.

Definition 6. (Neuron State [3]) Let V(η;x) denote the value that neuron η
takes with x ∈ X before applying σ. If V(η;x) > 0, then η is active, i.e., the
neuron state is active. Otherwise, the neuron state is inactive2. The state of the
j-th neuron in layer i on input x is denoted by P(i)

j (x) ∈ F2. If P(i)
j (x) = 1, the

neuron is active. If P(i)
j (x) = 0, the neuron is inactive.

2 In [3,4], the authors defined one more neuron state, namely critical, i.e., V(η; x) = 0,
which is a special inactive state since the output of neuron η is 0.

212 Y. Chen et al.

Definition 7. (Neural Network Architecture [4]) The architecture of a
fully connected neural network captures the structure of fθ: (a) the number of
layers, (b) the dimension di of each layer i = 0, · · · , k +1. We say that d0 is the
dimension of the input to the neural network, and dk+1 denotes the number of
outputs of the neural network.

Definition 8. (Neural Network Parameters [4]) The parameters θ of a k-
deep neural network fθ are the concrete assignments to the weights A(i) and
biases b(i) for i ∈ {1, 2, · · · , k + 1}.

When neural networks work under the hard-label setting, the raw output
fθ(x) is processed before being returned [8]. This paper considers the most com-
mon processing. The raw output fθ(x) ∈ R

dk+1 is first transformed into a cat-
egory probability vector P ∈ R

dk+1 by applying the Sigmoid (when dk+1 = 1)
or Softmax (when dk+1 > 1) function to fθ(x) [6]. Then, the category with
the largest probability is returned as a hard-label. Definition 9 summarizes the
hard-label and corresponding decision conditions on the raw output fθ(x).

Definition 9. (Hard-Label) Consider a k-deep neural network f : X → Y
where Y ∈ R

dk+1 . The hard-label (denoted by z) is related to the outputs fθ(x).
When dk+1 = 1, the hard-label z (fθ(x)) is computed as

z (fθ(x)) =
{

1, if fθ(x) > 0,
0, if fθ(x) � 0.

(4)

When dk+1 > 1, the output fθ(x) is a dk+1-dimensional vector. The hard-label
z (fθ(x)) is the coordinate of the maximum of fθ(x).3

2.2 Adversarial Goals and Assumptions

There are two parties in a model extraction attack: the oracle O who possesses
the neural network fθ(x), and the adversary who generates queries x to the Ora-
cle. Under the hard-label setting, the Oracle O returns the hard-label z (fθ(x))
in Definition 9.

Definition 10. (Model Parameter Extraction Attack) A model parame-
ter extraction attack receives Oracle access to a parameterized function fθ (i.e.,
a k-deep neural network in our paper) and the architecture of fθ, and returns a
set of parameters θ̂ with the goal that f

̂θ(x) is as similar as possible to c × fθ(x)
where c > 0 is a fixed constant.

In this paper, we use the ̂ symbol to indicate an extracted parameter. For
example, θ is the parameters of the victim model fθ, and θ̂ stands for the param-
eters of the extracted model f

̂θ.

Assumptions. We make the following assumptions of the Oracle O and the
capabilities of the attacker:
3 If there are ties, i.e., multiple items of fθ(x) share the same maximum, the hard-label

is the smallest one of the coordinates of these items.

Hard-Label Cryptanalytic Extraction of Neural Network Models 213

– Architecture knowledge. We require knowledge of the neural network
architecture.

– Full-domain inputs. We can feed arbitrary inputs from X = R
d0 .

– Precise computations. fθ is specified and evaluated using 64-bit floating-
point arithmetic.

– Scalar outputs. The output dimensionality is 1, i.e., Y = R.4

– ReLU Activations. All activation functions (σ’s) are the ReLU function.

Compared with the work in [4], we remove the assumption of requiring the
raw output fθ(x) of the neural network. Now, after querying the Oracle O, the
attacker obtains the hard-label z (fθ(x)). In other words, the attacker only knows
whether fθ(x) > 0 holds or not.

3 Auxiliary Concepts

To help understand our attacks, this paper proposes some auxiliary concepts.

3.1 Model Activation Pattern

To describe all the neuron states, we introduce a new concept named Model
Activation Pattern.

Definition 11. (Model Activation Pattern) Consider a k-deep neural net-
work fθ with n =

∑k
i=1 di neurons. The model activation pattern of fθ over an

input x ∈ X is a global description of the n neuron states, and is denoted by
P(x) = (P(1)(x), · · · ,P(k)(x)) where P(i)(x) ∈ F

di
2 is the concatenation of di

neuron states (i.e., P(i)
j (x), i ∈ {1, · · · , di}) in layer i.

In the rest of this paper, the notations P(i)
j (x), P(i)(x), and P(x) are sim-

plified as P(i)
j , P(i), and P respectively, when the meaning is clear in context.

Besides, P(i) ∈ F
di
2 is represented by a di-bit integer. For example, P(i) = 2j−1

means that only the j-th neuron in layer i is active, and P(i) = 2di −1 means that
all the di neurons are active.

When the model activation pattern is known, one can precisely determine
which neural network parameters influence the output fθ(x). Consider the j-th
neuron η in layer i. Due to the ReLU activation function, if the neuron state
is inactive, neuron η does not influence the output fθ(x). As a result, all the
weights A

(i+1)
?,j and A

(i)
j,? (i.e., the elements of the j-th column of A(i+1), and the

j-th row of A(i) respectively) and the bias b
(i)
j do not affect the output fθ(x).

4 This assumption is fundamental to our work. Our attack only applies to the case of
scalar outputs.

214 Y. Chen et al.

Special ‘neuron’. For the convenience of introducing model extraction attacks
later, we regard the input x ∈ R

d0 and the output fθ(x) ∈ R as, respectively, d0
and 1 special ‘neurons’ that are always active. So we adopt two extra notations
P(0) = 2d0 − 1 and P(k+1) = 21 − 1 = 1, for describing the states of the special
d0 + 1 ‘neurons’. But if not necessary, we will omit the two notations.

3.2 Model Signature

Consider a k-deep neural network fθ. For an input x ∈ X , fθ can be described
as an affine transformation

fθ(x) = A(k+1) · · ·
(
I
(2)
P
(
A(2)

(
I
(1)
P
(
A(1)x + b(1)

))
+ b(2)

))
· · · + b(k+1)

= A(k+1)I
(k)
P A(k) · · · I(2)P A(2)I

(1)
P A(1)x + BP = ΓPx + BP ,

(5)

where P is the model activation pattern over x, ΓP ∈ R
d0 , and BP ∈ R. Here,

I
(i)
P ∈ R

di×di are 0-1 diagonal matrices with a 0 on the diagonal’s j-th entry
when the neuron state P(i)

j is 0, and 1 when P(i)
j = 1.

The affine transformation is denoted by a tuple (ΓP , BP). Except for P, the
value of the tuple (ΓP , BP) is only determined by the neural network parameters,
i.e., A(i) and b(i), i ∈ {1, · · · , k + 1}. Once the value of any neural network
parameters is changed, the value of the tuple (ΓP , BP) corresponding to some
P’s will change too5. Therefore, we regard the set of all the possible tuples
(ΓP , BP) as a unique model signature of the neural network.

Definition 12. (Model Signature) For a k-deep neural network fθ(x), the
model signature denoted by Sθ is the set of affine transformations

Sθ = {(ΓP , BP) for all the P’s}.

In [3], Canales-Mart́ınez et al. use the term ‘signature’ to describe the weights
related to a neuron, which is different from the model signature. Except for
the model signature, we propose another important concept, namely normalized
model signature.

Definition 13. (Normalized Model Signature) Consider a victim model
fθ and its model signature Sθ = {(ΓP , BP) for all the P’s} . Denote by ΓP,j the
j-th element of ΓP for j ∈ {1, · · · , d0}. Divide the set of P’s into two subsets
Q1 and Q2. For each P ∈ Q1, ΓP,j = 0 for j ∈ {1, · · · , d0}. For each P ∈ Q2,
there is at least one non-zero element in ΓP , without loss of generality, assume
that ΓP,1 �= 0. Let SN

θ be the following set

SN
θ =

{
(ΓP , BP) for P ∈ Q1,

(
ΓP

|ΓP,1| ,
BP

|ΓP,1|
)

for P ∈ Q2

}
.

The set SN
θ is the normalized model signature of fθ.

5 We do not consider the case of some neurons being always inactive, since such neurons
are redundant and usually deleted by various network pruning methods (e.g., [10])
before the neural network is deployed as a prediction service.

Hard-Label Cryptanalytic Extraction of Neural Network Models 215

Shortly, the difference between the normalized model signature SN
θ and the

initial model signature Sθ is as follows. For each P ∈ Q2, i.e., there is at least one
non-zero element in ΓP (without loss of generality, assume that the first element
is non-zero, i.e.,ΓP,1 �= 0), we transform the parameter tuple into

(
ΓP

|ΓP,1| ,
BP

|ΓP,1|
)
.

In our attacks, the normalized model signature plays two important roles.
First, the recovery of all the weights A(i) relies on the subset Q2. Second, our
attacks will produce many extracted models during the attack process while at
most only one is the functionally equivalent model of fθ, and the normalized
model signature is used to filter functionally inequivalent models.

3.3 Decision Boundary Point

Our attacks exploit a special class of inputs named Decision Boundary Points.

Definition 14. (Decision Boundary Point) Consider a neural network fθ.
If an input x makes fθ(x) = 0 hold, x is a decision boundary point.

The extraction attacks presented at CRYPTO 2020 [4] and EUROCRYPT
2024 [3] exploit a class of inputs, namely critical points. Figure 1 shows the
difference between critical points and decision boundary points.

Fig. 1. Left: the critical point x = [x1, x2, x3]
� makes the output of one neuron (e.g.,

the solid black circle) 0. Right: the decision boundary point x′ = [x′
1, x

′
2, x

′
3]

� makes
the output of the neural network 0.

Critical points leak information on the neuron states, i.e., whether the output
of a neuron is 0, which is the core reason why the differential extraction attack
can efficiently extract model parameters [4]. As a comparison, decision boundary
points do not leak information on the neuron states.

Finding critical points relies on computing partial derivatives based on the
raw output fθ(x), refer to the work in [3,4]. Thus, under the hard-label setting,
we can not exploit critical points.

4 Overview of Our Cryptanalytic Extraction Attacks

Under the hard-label setting, i.e., the Oracle returns the most likely class
z (fθ(x)) instead of the raw output fθ(x), only decision boundary points x

216 Y. Chen et al.

will leak the value of fθ(x), since fθ(x) = 0. Motivated by this truth, our crypt-
analytic extraction attacks focus on decision boundary points.

Attack Process. At a high level, the complete attack contains five steps.

· Step 1: collect decision boundary points. The algorithm for finding
decision boundary points will be introduced in Sect. 6.1. Suppose that M
decision boundary points are collected.

· Step 2: recover the normalized model signature. Recover the tuples
(ΓP , BP) corresponding to the M decision boundary points. After filtering
duplicate tuples, regard the set of the remaining tuples as the (partial) nor-
malized model signature SN

θ . Suppose that the size of Q2 is N , refer to
Definition 13. It means that there are N decision boundary points that can
be used to recover weights A(i).

· Step 3: recover weights layer by layer. Suppose that there are n =∑k
i=1 di neurons in the neural network. Randomly choose n + 1 out of N

decision boundary points each time, assign a specific model activation pat-
tern P to each selected decision boundary point, and recover the weights
A(1), · · · , A(k+1).

· Step 4: recover all the biases. Based on recovered weights, recover all
the biases b(i), i ∈ {1, · · · , k + 1} simultaneously.

· Step 5: filter functionally inequivalent models. As long as N � n + 1
holds, we will obtain many extracted models, but it is expected that at most
only one is the functionally equivalent model. Thus, we filter functionally
inequivalent models in this step.

Some functionally inequivalent models may not be filtered. For each surviving
extracted model, we test the Prediction Matching Ratio (PMR, introduced in
Sect. 6.3) over randomly generated inputs, and take the one with the highest
PMR as the final candidate.

In Step 2, we recover the tuple (ΓP , BP) by the extraction attack on 0-deep
neural networks. In Step 3, for layer i > 1, the weight vector A

(i)
j of the j-th

neuron (j ∈ {1, · · · , di}) is recovered by solving a system of linear equations.
For layer 1, except for selecting d1 decision boundary points, the recovery of
the weights A(1) does not use any extra techniques. In Step 4, all the biases are
recovered by solving a system of linear equations.

5 Idealized Hard-Label Model Extraction Attack

This section introduces (0, 0)-functionally equivalent model extraction attacks
under the hard-label setting, which assumes infinite precision arithmetic and
recovers the functionally equivalent model. We first introduce the 0-deep neural
network extraction attack, which is used in the k-deep neural network extraction
attack to recover the normalized model signature.

Note that this section only (partially) involves Steps 2, 3, and 4 introduced
in Sect. 4. In the next section, we introduce the remaining steps and refine the
idealized attacks to work with finite precision.

Hard-Label Cryptanalytic Extraction of Neural Network Models 217

5.1 Zero-Deep Neural Network Extraction

According to Definition 3, zero-deep neural networks are affine functions fθ(x) ≡
A(1) · x + b(1) where A(1) ∈ R

d0 , and b(1) ∈ R. Let A(1) = [w(1)
1 , · · · , w

(1)
d0

], and
x = [x1, x2, · · · , xd0]

�. The model signature is Sθ =
(
A(1), b(1)

)
.

Our extraction attack is based on a decision boundary point x (i.e., fθ(x) =
0), and composed of 3 steps: (1) recover weight signs, i.e., the sign of w

(1)
i ; (2)

recover weights w
(1)
i ; (3) recover bias b(1).

Recover Weight Signs. Denote by ei ∈ R
d0 the basis vector where only the

i-th element is 1 and other elements are 0.
Let the decision boundary point x move along the direction ei, i ∈

{1, · · · , d0}, and the moving stride is s ∈ R where |s| > 0. Query the Oracle and
obtain the hard-label z (f(x + sei)), then the sign of w

(1)
i is

sign(w(1)
i) =

{
1, if s > 0 and z (fθ(x + sei)) = 1,

−1, if s < 0 and z (fθ(x + sei)) = 1. (6)

When z (f(x + sei)) = 1, we have f(x + sei) > 0, i.e., w
(1)
i × s > 0. Thus, the

sign of w1
i is the same as that of s. If z (f(x + sei)) = 0 always holds, no matter

if s is positive or negative, then we have w
(1)
i = 0.

Recover Weights. Without loss of generality, assume that w
(1)
1 �= 0.

At first, let the decision boundary point x move along e1 with a moving stride
s1, such that the hard-label of the new point x+s1e1 is 1, i.e., z (f(x + s1e1)) = 1.
Then, let the new point x + s1e1 move along ei with a moving stride si where
i �= 1 and w

(1)
i �= 0 , such that x + s1e1 + siei is a decision boundary point too.

As a result, we have
s1w

(1)
1 + siw

(1)
i = 0, (7)

and obtain the weight ratio w
(1)
i

w
(1)
1

. Since the signs of w
(1)
i are known, the final

extracted weights are

Â(1) =

⎡

⎣ w
(1)
1∣

∣
∣w(1)

1

∣
∣
∣
,

w
(1)
2∣

∣
∣w(1)

1

∣
∣
∣
, · · · ,

w
(1)
d0∣

∣
∣w(1)

1

∣
∣
∣

⎤

⎦ . (8)

Recover Bias. The extracted bias is b̂(1) = −Â(1) · x = b(1)
∣

∣

∣w
(1)
1

∣

∣

∣

.

Thus, the model signature of f
̂θ is S

̂θ =
(

A(1)
∣

∣

∣w
(1)
1

∣

∣

∣

, b(1)
∣

∣

∣w
(1)
1

∣

∣

∣

)
, and f

̂θ(x) = f(x)
∣

∣

∣w
(1)
1

∣

∣

∣

.

Remark 1. In [14], the authors propose different methods to extract the param-
eters of linear functions fθ(x) = A(1) · x. Since this paper mainly focuses on
the extraction attack on k-deep neural networks, we do not deeply compare our
attack with the methods in [14].

218 Y. Chen et al.

5.2 k-Deep Neural Network Extraction

Basing the 0-deep neural network extraction attack, we develop an extraction
attack on k-deep neural networks. Recall that, the expression of k-deep neural
networks is

fθ(x) = A(k+1) · · ·
(
I
(2)
P
(
A(2)

(
I
(1)
P
(
A(1)x + b(1)

))
+ b(2)

))
· · · + b(k+1)

= ΓPx + BP
(9)

where the model activation pattern is P =
(P(0),P(1), · · · ,P(k),P(k+1)

)
and

ΓP = A(k+1)I
(k)
P A(k) · · · I(2)P A(2)I

(1)
P A(1). (10)

Notations. Our attack recovers weights layer by layer. Assuming that the weights
of the first i − 1 layers have been recovered and we are trying to recover A(i)

where i ∈ {1, · · · , k + 1}, we describe k-deep neural networks as:

fθ(x) = ΓPx + BP = G(i)A(i)C(i−1)x + BP , (11)

where G(i) ∈ R
di and C(i−1) ∈ R

di−1×d0 are, respectively, related to the unre-
covered part (excluding A(i)) and recovered part of the neural network fθ.

The values of G(i) and C(i−1) are

G(i) =
{

A(k+1)I
(k)
P A(k) · · · I(i+1)

P A(i+1)I
(i)
P , if i ∈ {1, · · · , k}

1, if i = k + 1

C(i−1) =
{

I, if i = 1
I
(i−1)
P A(i−1) · · · I(1)P A(1), if i ∈ {2, · · · , k + 1}

(12)

where C(0) = I ∈ R
d0×d0 is a diagonal matrix with a 1 on each diagonal entry.

Core Idea of Recovering Weights Layer by Layer. To better grasp the
attack details presented later, we first introduce the core idea of recovering
weights layer by layer. Assuming that the extracted weights of the first i − 1
layers are known, i.e., Â(1), · · · , Â(i−1) are known, we try to recover the weights
in layer i.

To obtain the weight vector Â
(i)
j of the j-th neuron (denoted by η

(i)
j) in

layer i ∈ {1, · · · , k + 1}6, we exploit a decision boundary point with the model
activation pattern P =

(P(0),P(1), · · · ,P(k),P(k+1)
)

where

P(i−1) = 2di−1 − 1, P(i) = 2j−1. (13)

It means that, in layer i, only the j-th neuron is active, and all the di−1 neurons
in layer i−1 are active. Figure 2 shows a schematic diagram under this scenario.

Since P(i) = 2j−1, all the k − i layers starting from layer i+1 collapse into a
direct connection from η

(i)
j to the output fθ(x). The weight of this connection is

6 When i = k + 1, it means that we are trying to recover the weights A(k+1).

Hard-Label Cryptanalytic Extraction of Neural Network Models 219

Fig. 2. The core idea of recovering the weight vector of the j-th neuron in layer i. Let
x = [x1, · · · , xd0]

� be a decision boundary point with P(i−1) = 2di−1 − 1, P(i) = 2j−1,
i.e., in layer i, only the j-th neuron (the red hollow circle) is active, and in layer i−1, all
the neurons are active. The first i−1 layers have been extracted, and collapse into one
layer. All the layers starting from layer i + 1 collapse into a direct connection between
the j-th neuron in layer i and the final output.

G(i)
j , i.e., the j-th element of G(i) (see Eq. (12)). The expression (see Eq. (11))

of the k-deep neural network further becomes

fθ(x) = ΓP · x + BP = G(i)
j A

(i)
j · C(i−1) · x + BP ,

where G(i)
j ∈ R and A

(i)
j · C(i−1) ∈ R

d0 .
In Step 2 (see Sect. 4), applying the extraction attack on zero-deep neural

networks, we can obtain the tuple
(

ΓP
|ΓP,1| ,

BP
|ΓP,1|

)
where

ΓP = G(i)
j A

(i)
j · C(i−1), ΓP,v = G(i)

j A
(i)
j · C

(i−1)
?,v . (14)

Here the symbol C
(i−1)
?,v stands for the v-th column vector of C(i−1).

According to Eq. (14), the value of each element of ΓP
|ΓP,1| is not related

to the absolute value of G(i)
j , i.e., the unrecovered part does not affect the

affine transformation. Then, basing the vector ΓP
|ΓP,1| and the extracted weights

Â(1), · · · , Â(i−1), we build a system of linear equations and solve it to obtain
Â

(i)
j . Next, we introduce more attack details.

Recover Weights in Layer 1. To recover the weight vector of the j-th neuron
in layer 1, we exploit the model activation pattern P where

P(1) = 2j−1; P(i) = 2di − 1, for i ∈ {0, 2, 3, · · · , k + 1}. (15)

It means that, in layer 1, only the j-th neuron is active, and all the neurons in
other layers are active.

Under this model activation pattern, according to Eq. (12), we have

G(1) = A(k+1)A(k) · · · A(2)I
(1)
P . (16)

220 Y. Chen et al.

Now, the expression of the k-deep neural network is

fθ(x) = G(1)
j

(
A

(1)
j x + b

(1)
j

)
+ B(P(2),··· ,P(k)) = G(1)

j A
(1)
j x + BP (17)

where A
(1)
j =

[
w

(1)
j,1 , · · · , w

(1)
j,d0

]
, G(1)

j ∈ R is the j-th element of G(1). As for

B(P(2),··· ,P(k)) ∈ R, it is a constant determined by
(P(2), · · · ,P(k)

)
. In other

words, when P(1) changes, the value of B(P(2),··· ,P(k)) does not change.
Recall that, in Step 2, we have recovered the following weight vector

ΓP
|ΓP,1| =

⎡

⎣ G(1)
j w

(1)
j,1∣

∣
∣G(1)

j w
(1)
j,1

∣
∣
∣
, · · · ,

G(1)
j w

(1)
j,d0∣

∣
∣G(1)

j w
(1)
j,1

∣
∣
∣

⎤

⎦ , j ∈ {1, · · · , d1}. (18)

In this step, our target is to obtain Â
(1)
j where

Â
(1)
j =

[
ŵ1

j,1, · · · , ŵ1
j,d0

]
=

[
w1

j,1∣
∣w1

j,1

∣
∣ , · · · ,

w1
j,d0∣
∣w1

j,1

∣
∣

]

, j ∈ {1, · · · , d1}. (19)

Therefore, we need to determine d1 signs, i.e., the signs of G(1)
j for P(1) = 2j−1

where j ∈ {1, · · · , d1}.
Since A

(1)
j x + b

(1)
j > 0, we know that G(1)

j × B(P(2),··· ,P(k)) < 0 holds for
j ∈ {1, · · · , d1}, which tells us that the above d1 signs are the same. Thus, by
guessing 1 sign, i.e., the sign of G(1)

j for P(1) ∈ {21−1, · · · , 2d1−1}, we obtain d1
weight vectors presented in Eq. (19).

Recover Weights in Layer i (i > 1). To recover the weight vector of the j-th
neuron in layer i, we exploit the model activation pattern P where

P(i) = 2j−1; P(q) = 2dq − 1, for q ∈ {0, · · · , i − 1, i + 1, · · · , k + 1}. (20)

It means that, in layer i, only the j-th neuron is active, and all the neurons in
other layers are active.

Under this model activation pattern, according to Eq. (12), we have

G(i) =
{

A(k+1)A(k) · · · A(i+2)A(i+1)I
(i)
P , if i ∈ {2, · · · , k},

1, if i = k + 1,

C(i−1) = A(i−1)A(i−2) · · · A(1), if i ∈ {2, · · · , k + 1}.

(21)

Now, the expression of k-deep neural networks becomes

fθ(x) = G(i)
j

(
A

(i)
j C(i−1)x + B(P(1),··· ,P(i))

)
+ B(P(i+1),··· ,P(k))

= G(i)
j A

(i)
j C(i−1)x + BP ,

(22)

Hard-Label Cryptanalytic Extraction of Neural Network Models 221

where A
(i)
j =

[
w

(i)
j,1, · · · , w

(i)
j,di−1

]
, G(i)

j ∈ R and C(i−1) ∈ R
di−1×d0 . Besides,

B(P(i+1),··· ,P(k)) ∈ R is not related to
(P(1), · · · ,P(i)

)
, and only determined by

(P(i+1), · · · ,P(k)
)
, i.e., B(P(i+1),··· ,P(k)) is the same constant for j ∈ {1, · · · , di}.

Let us further rewrite fθ(x) in Eq. (22) as

fθ(x) = G(i)
j

⎛

⎝

⎛

⎝
di−1∑

v=1

w
(i)
j,vC

(i−1)
v,1

⎞

⎠x1 + · · · +

⎛

⎝
di−1∑

v=1

w
(i)
j,vC

(i−1)
v,d0

⎞

⎠xd0

⎞

⎠+BP (23)

where C
(i−1)
v,u ∈ R is the u-th element of the v-th row vector of C(i−1).

In Step 2, using the zero-deep neural network extraction attack, we have
recovered the following di weight vectors (j ∈ {1, · · · , di})

ΓP
|ΓP,1| =

⎡

⎣
G(i)

j

(∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

)

∣
∣
∣G(i)

j

(∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

)∣∣
∣
, · · · ,

G(i)
j

(∑di−1
v=1 w

(i)
j,vC

(i−1)
v,d0

)

∣
∣
∣G(i)

j

(∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

)∣∣
∣

⎤

⎦ . (24)

In this step, our target is to obtain the weight vector Â
(i)
j =

[
ŵ

(i)
j,1, · · · , ŵ

(i)
j,di−1

]
.

It is clear that we need to guess the sign of G(i)
j for j ∈ {1, · · · , di}. Again,

all the di signs are the same. Consider the expression in Eq. (22). Since the j-th
neuron is active, its output exceeds 0, i.e.,

A
(i)
j C(i−1)x + B(P(1),··· ,P(i)) > 0, j ∈ {1, · · · , di}.

Then G(i)
j × B(P(i+1),··· ,P(k)) < 0 holds for j ∈ {1, · · · , di}. At the same time,

since B(P(i+1),··· ,P(k)) is a constant, all the di signs are the same. Therefore, by

guessing one sign, i.e., the sign of G(i)
j , based on Eq. (24), we obtain

⎡

⎣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1∣

∣
∣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣
∣
∣
, · · · ,

∑di−1
v=1 w

(i)
j,vC

(i−1)
v,d0∣

∣
∣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣
∣
∣

⎤

⎦ , j ∈ {1, · · · , di}. (25)

Note that Ĉ
(i−1)
v,u can be obtained using Eq. (21), since Â(1), · · · , Â(i−1) are

known. Then, basing the vector in Eq. (25), we build a system of linear equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑di−1
v=1 ŵ

(i)
j,vĈ

(i−1)
v,1 =

∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

∣

∣

∣

∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

∣

∣

∣

,

...
∑di−1

v=1 ŵ
(i)
j,vĈ

(i−1)
v,d0

=
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,d0

∣

∣

∣

∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

∣

∣

∣

,

(26)

222 Y. Chen et al.

When d0 � di−1
7, we obtain Â

(i)
j =

[
ŵ

(i)
j,1, · · · , ŵ

(i)
j,di−1

]
by solving the above

system of linear equations. Lemma 1 summarizes the expression of extracted
weight vectors Â

(i)
j , j ∈ {1, · · · , di}, i ∈ {2, · · · , k + 1}.

Lemma 1. Based on the system of linear equations presented in Eq. (26), for
i ∈ {2, · · · , k + 1} and j ∈ {1, · · · , di}, the extracted weight vector Â

(i)
j =[

ŵ
(i)
j,1, · · · , ŵ

(i)
j,di−1

]
is

Â
(i)
j =

⎡

⎣
w

(i)
j,1 ×

∣
∣
∣
∑di−2

v=1 w
(i−1)
1,v C

(i−2)
v,1

∣
∣
∣

∣
∣
∣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣
∣
∣

, · · · ,
w

(i)
j,di−1

×
∣
∣
∣
∑di−2

v=1 w
(i−1)
di−1,vC

(i−2)
v,1

∣
∣
∣

∣
∣
∣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣
∣
∣

⎤

⎦ ,

(27)

where C
(q)
v,1 = A

(q)
v A(q−1) · · · A(2)

[
A

(1)
1,1, · · · , A

(1)
d1,1

]�
.

Proof. The proof refers to Appendix A.

In Lemma 1, for the consistency of the mathematical symbols, the weights
A(k+1) are denoted by [w(k+1)

1,1 , · · · , w
(k+1)
1,dk

] instead of [w(k+1)
1 , · · · , w

(k+1)
dk

].

Recover All the Biases. Since Â(i) for i ∈ {1, · · · , k+1} have been obtained,
we can extract all the biases by solving a system of linear equations.

Concretely, for the
∑k

i=1 di + 1 decision boundary points, f
̂θ(x) = 0 should

hold. Thus, we build a system of linear equations: f
̂θ(x) = 0 where the expression

of f
̂θ(x) refers to Eq. (9). Combining with Lemma 1, by solving the above system,

we will obtain
⎧
⎪⎪⎨

⎪⎪⎩

b̂(i) =

[
b
(i)
1

∣

∣

∣

∑di−1
v=1 w

(i)
1,vC

(i−1)
v,1

∣

∣

∣

, · · · ,
b
(i)
di

∣

∣

∣

∑di−1
v=1 w

(i)
di,vC

(i−1)
v,1

∣

∣

∣

]

, i ∈ {1, · · · , k}

b̂(k+1) = b(k+1)
∣

∣

∣

∑dk
v=1 w

(k+1)
v C

(k)
v,1

∣

∣

∣

.

(28)

Based on the extracted neural network parameters (see Eq. (19), Eq. (27),
and Eq. (28)), the model signature of the extracted model f

̂θ is

S
̂θ =

⎧
⎨

⎩
(Γ̂P , B̂P) =

⎛

⎝ ΓP∣
∣
∣
∑dk

v=1 w
(k+1)
v C

(k)
v,1

∣
∣
∣
,

BP∣
∣
∣
∑dk

v=1 w
(k+1)
v C

(k)
v,1

∣
∣
∣

⎞

⎠ for all the P ′s

⎫
⎬

⎭
.

Consider the j-th neuron η in layer i. For an input x ∈ X , denote by h(η;x)
the output of the neuron of the victim model. Based on the extracted neural
network parameters (see Eq. (19), Eq. (27), and Eq. (28)), the output of the
neuron of the extracted model is h(η;x)

∣

∣

∣

∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

∣

∣

∣

. At the same time, all the

7 The case of d0 � di−1 is common in various applications, particularly in computer
vision [9,13,17], since the dimensions of images or videos are often large.

Hard-Label Cryptanalytic Extraction of Neural Network Models 223

weights w
(i+1)
?,j in layer i + 1 are increased by a factor of

∣
∣
∣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣
∣
∣.

Thus, for the victim model and extracted model, the j-th neuron in layer i has
the same influence on all the neurons in layer i + 1. As a result, for any x ∈ X ,
the model activation pattern of the victim model is the same as that of the
extracted model. Combining with S

̂θ, for all x ∈ X , we have

f
̂θ(x) =

1∣
∣
∣
∑dk

v=1 w
(k+1)
v C

(k)
v,1

∣
∣
∣

× fθ(x). (29)

In Appendix C, we apply the extraction attack on 1-deep neural networks
and directly present the extracted model, which helps further understand our
attack.

Remark 2. Except for the n + 1 model activation patterns as shown in Eq. (15)
and Eq. (20), the adversary could choose a new set of n + 1 model activation
patterns. The reason is as follows. Consider the recovery of the weight vector of
the j-th neuron in layer i, and look at Fig. 2 again. Our attack only requires
that: (1) in layer i, only the j-th neuron is active; (2) in layer i − 1, all the di−1

neurons are active. The neuron states in other layers do not affect the attack.
Thus, there are more options for the n + 1 model activation patterns, and the
rationale does not change.

Discussion on The Computation Complexity. Once n + 1 decision boundary
points and k sign guesses are selected, to obtain an extracted model, we just
need to solve n + 2 − d1 systems of linear equations. However, since the model
activation pattern of a decision boundary point is unknown, we have to traverse
all the possible combinations of n + 1 decision boundary points (see Step 3
in Sect. 4), which is the bottleneck of the total computation complexity. The
complete analysis of the attack complexity is presented in Appendix B.

6 Instantiating the Extraction Attack in Practice

Recall that, the complete extraction attack contains 5 steps introduced in Sect. 4.
To obtain a functionally equivalent model, the adversary also needs three aux-
iliary techniques: finding decision boundary points (related to Steps 1 and 2),
filtering duplicate affine transformations (related to Step 2), and filtering func-
tionally inequivalent models (related to Step 5).

The idealized extraction attack introduced in Sect. 5 relies on decision bound-
ary points x that make fθ(x) = 0 strictly hold. This section will propose a binary
searching method to find decision boundary points under the hard-label setting.
Under finite precision, it is hard to find decision boundary points x that make
fθ(x) = 0 strictly hold. Therefore, the proposed method returns input points x
close to the decision hyperplane as decision boundary points. As a result, the
remaining two techniques need to consider the influence of finite precision. This
ensures our model extraction attacks work in practice, for producing a (ε, 0)-
functionally equivalent model.

224 Y. Chen et al.

6.1 Finding Decision Boundary Points

Let us see how to find decision boundary points under the hard-label setting.
Figure 3 shows a schematic diagram in a 2-dimensional input space.

Fig. 3. A schematic diagram of finding decision boundary points. The blue solid line
stands for the decision hyperplane composed of decision boundary points. The red
dashed line stands for a direction vector Δ ∈ R

d0 . The starting point x ∈ R
d0 (i.e.,

the solid black circle) moves along the direction Δ, and arrives at x + s × Δ (i.e., the
hollow black circle) where s ∈ R is the moving stride.

We first randomly pick a starting point x ∈ R
d0 and non-zero direction vector

Δ ∈ R
d0 . Then let the starting point move along the direction Δ or the opposite

direction −Δ. It is expected that the starting point will eventually cross the
decision hyperplane in one direction, as long as Δ and −Δ are not parallel to
the decision hyperplane.

Denote by s ∈ R the moving stride of the starting point, which means that the
starting point arrives at x+s×Δ. After querying the Oracle with x and x+s×Δ,
if z (fθ(x)) �= z (fθ(x + s × Δ)) (i.e., the two labels are different), we know that
the starting point has crossed the decision hyperplane when the moving stride is
s. Now, the core of finding decision boundary points is to determine a suitable
moving stride s, such that the starting point reaches the decision hyperplane,
i.e., fθ(x + s × Δ) = 0 holds.

This task is done by binary search. Concretely, randomly choose two different
moving strides sslow and sfast at first, such that

z (fθ(x + sslow × Δ)) = z (fθ(x)) ,

z (fθ(x + sslow × Δ)) �= z (fθ(x + sfast × Δ)) .
(30)

Then, without changing the conditions presented in Eq. (30), we dynami-
cally adjust sslow and sfast until their absolute difference is close to 0, i.e.,
|sslow − sfast| < ε where ε is a precision defined by the adversary. Finally, return
x + sslow × Δ as a decision boundary point.

Since the precision ε is finite, x + sslow × Δ is not strictly at the decision
boundary, which will inevitably introduce minor errors (equivalent to noises)
into the extracted model. If ε decreases, then x + sslow × Δ will be closer to the
decision boundary, which is helpful to the model extraction attack, refers to the
experiment results in Sect. 7.

Hard-Label Cryptanalytic Extraction of Neural Network Models 225

6.2 Filtering Duplicate Affine Transformations

For a k-deep neural network fθ consisting of n =
∑k

i=1 di neurons, the idealized
extraction attack exploits special n + 1 model activation patterns.

To ensure that the required n+1 model activation patterns occur with a prob-
ability as high as possible, in Step 1 introduced in Sect. 4, we collect M decision
boundary points where M � n+1, e.g., M = cn2n and cn is a small factor. As a
result, there are many collected decision boundary points with duplicate model
activation patterns. Therefore, in Step 2, after recovering the parameter tuple
(ΓP , BP) (i.e., the affine transformation) corresponding to each decision bound-
ary point, we need to filter the decision boundary points with duplicate affine
transformations, since their model activation patterns should be the same. When
filtering duplicate affine transformations, we consider two possible cases.

Filtering Correctly Recovered Affine Transformations. In the first case,
assume that two affine transformations are both correctly recovered.

However, recovering affine transformations (i.e., 0-deep neural network
extraction attack) relies on finding decision boundary points, which introduces
minor errors. This is equivalent to adding noises to the recovered affine trans-
formations, i.e., the tuples (ΓP , BP). To check whether two noisy affine trans-
formations are the same, we adopt the checking rule below.

Comparing two vectors. Consider two vectors with the same dimension, e.g.,
V 1 ∈ R

d, V 2 ∈ R
d. Set a small threshold ϕ. If the following d inequations hold

simultaneously ∣
∣V 1

j − V 2
j

∣
∣ < ϕ, j ∈ {1, · · · d} (31)

where V 1
j and V 2

j are, respectively, the j-th element of V 1 and V 2, the two
vectors are considered to be the same.

Filtering Wrongly Recovered Affine Transformations. In the second
case, assume that one affine transformation is correctly recovered and another
one is partially recovered.

For the extraction attack on k-deep neural networks, when recovering the
affine transformation corresponding to an input by the 0-deep neural network
extraction attack (see Sect. 5.1), the process of binary search should not change
the model activation pattern. Otherwise, the affine transformation may be
wrongly recovered. Recall that, in the 0-deep neural network extraction attack,
the d0 elements of ΓP are recovered one by one independently. Thus, the wrong
recovery of one element of ΓP does not influence the recovery of other elements.

As a result, we have to consider the case that one transformation is partially
recovered. In this case, the filtering method is as follows. Consider two vectors
V 1 ∈ R

d and V 2 ∈ R
d. If

∣
∣V 1

j − V 2
j

∣
∣ < ϕ holds for at least (d − dϕ) j’s where

j ∈ {1, · · · , d} and dϕ ∈ N is a threshold, the two vectors are considered to
be the same. Suppose that the occurrence frequencies of V 1 and V 2 are o1 and
o2 respectively, we regard V 1 as the correctly recovered affine transformation if
o1 � o2, and vice versa.

226 Y. Chen et al.

6.3 Filtering Functionally Inequivalent Extracted Models

Consider k-deep neural networks consisting of n =
∑k

i=1 di neurons. As intro-
duced in Sect. 4, each time we randomly choose n + 1 out of N collected deci-
sion boundary points to generate an extracted model. Moreover, according to
Sect. 5.2, in the extraction attack, we need to guess k signs, i.e., the sign of
G(i)

j , i ∈ {1, · · · , k}.
When the model activation patterns of the selected n + 1 decision boundary

points are not those required in the extraction attack, or at least one of the
k sign guesses is wrong, the resulting extracted model f

̂θ is not a functionally
equivalent model of the victim model fθ. Thus, we will get many functionally
inequivalent extracted models.

Besides, due to the minor errors introduced by the finite precision used in
finding decision boundary points, the parameters of the extracted model may
be slightly different from the theoretical values (see Eq. (19), Eq. (27), and
Eq. (28)). This subsection introduces three methods to filter functionally inequiv-
alent extracted models, one of which considers the negative influence of finite
precision together.

Filtering by the Normalized Model Signature. Before introducing the
filtering method, we discuss how many possible model activation patterns there
are at most for a k-deep neural network. Lemma 2 answers this question.

Lemma 2. For a k-deep neural network consisting of n =
∑k

i=1 di neurons, the
upper bound of the number of possible model activation patterns is

H =

(
k∏

i=1

(2di − 1)

)

+
k∑

i=2

⎛

⎝
i−1∏

j=1

(2dj − 1)

⎞

⎠, (32)

where di is the number of neurons in layer i.

Proof. If all the di neurons in layer i are inactive, i.e., the outputs of these neu-
rons are 0, then the neuron states of all the

∑k
j=i+1 dj neurons in the last k − i

layers are deterministic. In this case, the number of possible model activation
patterns is decided by the first i− 1 layers, i.e., the maximum is

∏i−1
j=1 (2dj − 1).

If there is at least one active neuron in each layer, then there are at most∏k
i=1 (2di − 1) possible model activation patterns.

After all the weights Â(i) and biases b̂(i), i ∈ {1, · · · , k + 1} are obtained, we
assume that all the H model activation patterns are possible, and compute the
resulting normalized model signature SN

̂θ
. Denote by SN

θ the normalized model
signature recovered in Step 2 (see Sect. 4). If SN

θ is not a subset of SN
̂θ

, we regard
f

̂θ as a functionally inequivalent model.
Due to the minor errors caused by finite precision, i.e., the slight difference

between the extracted parameters θ̂ and the theoretical values (see Eq. (19),
Eq. (27), and Eq. (28)), when checking whether a tuple (ΓP , BP) ∈ SN

θ is equal

Hard-Label Cryptanalytic Extraction of Neural Network Models 227

to a tuple
(
Γ̂P , B̂P

)
∈ SN

̂θ
or not, we adopt the checking rule presented in

Sect. 6.2, refers to Eq. (31).
Besides, the filtering method in Sect. 6.2 does not ensure that all the wrongly

recovered affine transformations are filtered. To avoid the functionally equivalent
model being filtered, we adopt a flexible method.

Recall that, in Step 1, we collect a sufficient number of decision boundary
points. For each tuple (ΓP , BP) ∈ SN

θ , denote by mP the frequency that the tuple
occurs in the collected decision boundary points. Suppose that the number of
mP where mP > 1 is Nvalid. Then when at least 0.95 × Nvalid tuples (ΓP , BP) ∈
SN

θ are in the set SN
̂θ

, the extracted model f
̂θ is regarded as a candidate of the

functionally equivalent model. Here, We call the ratio 0.95 × Nvalid

|SN
θ | the adaptive

threshold.

Filtering by Weight Signs. After Â(i), b̂(i) for i ∈ {1, · · · , k+1} are obtained,
we compute the matrices Ĝ(i) and check whether the k signs, i.e., the sign of
Ĝ(i)

j , i ∈ {1, · · · , k} are consistent with the k guesses. If at least one sign is not
consistent with the guess, the extracted model is not the functionally equivalent
model.

Interestingly, except for handling wrong sign guesses, this method also shows
high filtering effectiveness when the model activation patterns of the selected
n+1 decision boundary points are not those required by our extraction attacks.
This is not strange, since our extraction attack is designed for a specific set of
model activation patterns. For wrong model activation patterns, whether the
sign of Ĝ(i)

j , i ∈ {1, · · · , k} is 1 or −1 is a random event.

Filtering by Prediction Matching Ratio. The above two filtering methods
are effective, but we find that some functionally inequivalent models still escape
from the filtering. Therefore, the third method is designed to perform the last
filtering on extracted models surviving from the above two filtering methods.
This method is based on the prediction matching ratio.

Prediction Matching Ratio. Randomly generate N1 inputs, query the extracted
model f

̂θ and the victim model fθ. Suppose that the two models return the
same hard-label for N2 out of N1 inputs. The ratio N2

N1
is called the prediction

matching ratio.
According to Definition 1 and Definition 2, for a functionally equivalent

model, the prediction matching ratio should be high, or even close to 100%.
Note that many random inputs x and corresponding hard-label z (fθ(x)) are
collected during the attack process (see Steps 1 and 2 in Sect. 4). Thus, we can
exploit these inputs.

228 Y. Chen et al.

7 Experiments

Our model extraction attacks are evaluated on both untrained and trained neural
networks. Concretely, we first perform experiments on untrained neural networks
with diverse architectures and randomly generated parameters. Then, based on
two typical benchmarking image datasets (i.e., MNIST, CIFAR10) in visual deep
learning, we train a series of neural networks as classifiers and evaluate the model
extraction attacks on these trained neural networks.

For convenience, denote by ‘d0-d1-· · · -dk+1’ the victim model, where di is
the dimension of each layer. For example, the symbol 1000-1 stands for a 0-deep
neural network with an input dimension of 1000 and an output dimension of 1.

Partial Universal Experiment Settings. Some settings are used in all the follow-
ing experiments. For k-deep neural network extraction attacks, in Step 1, we
randomly generate 8 × 2n pairs of starting point and moving direction, where
n =

∑k
i=1 di is the number of neurons. The prediction matching ratio is esti-

mated over 106 random inputs.

7.1 Computing (ε, 0)-Functional Equivalence

To quantify the degree to which a model extraction attack has succeeded,
the method (i.e., error bounds propagation [4]) proposed by Carlini et al. is
adopted to compute (ε, 0)-functional equivalence.

Error bounds propagation. To compute (ε, 0)-functional equivalence of the
extracted neural network f

̂θ, one just needs to compare the extracted parame-
ters (weights Â(i) and biases b̂(i)) to the real parameters (weights A(i) and biases
b(i)) and analytically derive an upper bound on the error when performing infer-
ence [4].

Before comparing the neural network parameters, one must ‘align’ them [4].
This involves two operations: (1) adjusting the order of the neurons in the net-
work, i.e., the order of the rows or columns of A(i) and b(i), (2) adjusting the
values of A(i) and b(i) to the theoretical one (see Eq. (19), Eq. (27), and Eq. (28))
obtained by the idealized model extraction attacks. This gives an aligned Ã(i)

and b̃(i) from which one can analytically derive upper bounds on the error. Other
details (e.g., propagating error bounds layer-by-layer) are the same as that intro-
duced in [4], and not introduced again in this paper.

7.2 Experiments on Untrained Neural Networks

Table 1 summarizes the experimental results on different untrained neural net-
works which demonstrates the effectiveness of our model extraction attacks.

According to Appendix B, the computation complexity of our model extrac-
tion attack is about O

(
n × 2n2+n+k

)
, where n is the number of neurons. Thus,

we limit the number of neurons, which does not influence the verification of our

Hard-Label Cryptanalytic Extraction of Neural Network Models 229

Table 1. Experiment results on untrained k-deep neural networks.

Architecture Parameters ε PMR Queries (ε, 0) max|θ − ̂θ|
512-2-1 1029 10−12 100% 219.35 2−12.21 2−16.88

10−14 100% 219.59 2−19.84 2−24.62

2048-4-1 8201 10−12 99.98% 223.32 2−3.77 2−10.44

10−14 100% 223.51 2−13.70 2−17.75

25120-4-1 100489 10−14 99.98% 226.42 2−2.99 2−14.67

10−16 100% 226.67 2−13.01 2−23.19

50240-2-1 100485 10−14 99.99% 225.85 2−7.20 2−15.58

10−16 100% 226.31 2−14.44 2−22.67

32-2-2-1 75 10−12 100% 217.32 2−10.99 2−14.78

10−14 100% 217.56 2−18.21 2−20.61

512-2-2-1 1035 10−12 99.99% 221.39 2−10.34 2−14.01

10−14 100% 221.59 2−14.17 2−17.29

1024-2-2-1 2059 10−12 99.99% 222.38 2−6.10 2−13.77

10−14 100% 222.49 2−14.16 2−20.38

ε: the precision used to find decision boundary points.

max|θ − ̂θ|: the maximum extraction error of model parameters.

PMR: prediction matching ratio.

model extraction attack. Note that the number of parameters is not limited. All
the attacks can be finished within several hours on a single core.

The results in Table 1 also support our argument in Remark 2. For the 2-
deep neural networks (e.g., 32-2-2-1), when recovering the weights in layer 1, we
require that only one neuron in layer 2 is active, instead of all the 2 neurons
being active. Our extraction attacks also achieve good performance.

The Influence of the Precision ε. A smaller ε will make the returned point
x + sslow × Δ (see Sect. 6.1) closer to the decision boundary, which helps reduce
the extraction error of affine transformations. As a result, the model extraction
attack is expected to perform better. For example, for the 1-deep neural network
2048-4-1, when ε decreases from 10−12 to 10−14, the value ε (respectively, max|θ−
θ̂|) decreases from 2−3.77 to 2−13.70 (respectively, from 2−10.44 to 2−17.75), which
is a significant improvement.

At the same time, using a smaller precision ε does not increase the attack com-
plexity significantly. According to Appendix B, the query complexity is about
O
(
d0 × 2n × log

1
ε
2

)
. Thus, decreasing ε has little influence on the query complex-

ity. Look at the neural network 2048-4-1 again. When ε decreases from 10−12

to 10−14, the number of queries only increases from 223.32 to 223.51. Besides,
when n (i.e., the number of neurons) is large, ε almost does not influence the
computation complexity, since ε only influences Steps 1 and 2 (see Sect. 4),

230 Y. Chen et al.

while the computation complexity is mainly determined by other steps (refer to
Appendix B). When n is small, the practical runtime is determined by the query
complexity, then decreasing ε also has little influence on the runtime.

Choosing an appropriate ε is simple. In our experiments, we find that a
smaller ε should be used, when the prediction matching ratio estimated over 106

random inputs is not 100%, and the gap (e.g., 0.02%, see the third or fifth row)
is not negligible.

7.3 Experiments on Trained Neural Networks

The MNIST and CIFAR10 Dataset. MNIST (respectively, CIFAR10) is
one typical benchmarking dataset used in visual deep learning. It contains ten-
class handwriting number gray images [12] (resp., real object images in a realistic
environment [19]). Each of the ten classes, i.e., ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’,
‘8’, and ‘9’ (resp., airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck), contains 28 × 28 pixel gray images (resp., 32 × 32 pixel RGB images),
totaling 60000 (resp., 50000) training and 10000 (resp. 10000) testing images.

Neural Network Training Pipelines. When classifying different classes of
objects, the decision boundary of trained neural networks will be different. To
fully verify our model extraction attack, for MNIST (respectively, CIFAR10),
we divide the ten classes into five groups and build a binary classification neural
network for each group. All the neural networks share the same architecture
d0-2-1, where d0 = 28 × 28 for MNIST (respectively, 32 × 32 × 3 for CIFAR10).
On the MNIST and CIFAR10 datasets, we perform a standard rescaling of the
pixel values from 0 · · · 255 to 0 · · · 1. For the model training, we choose typical
settings (the loss is the cross-entropy loss; the optimizer is standard stochastic
gradient descent; batch size 128). The first four columns of Table 2 summarize
a detailed description of the neural networks to be attacked in this section.

Experiment Results. The last four columns of Table 2 summarize the exper-
iment results. Our extraction attack still achieves good performance when an
appropriate precision ε is used, which further verifies its effectiveness.

The experimental results presented in Table 1 and Table 2 show that the
attack performance (i.e., the value of ε and max|θ− θ̂|) is related to the precision
ε and the properties of the decision boundary. However, we do not find a clear
quantitative relationship between the attack performance and the precision ε
(or some unknown properties of the decision boundary). Considering that the
unknown quantitative relationships do not influence the verification of the model
extraction attack, we leave the problem of exploring the unknown relationships
as a future work.

Hard-Label Cryptanalytic Extraction of Neural Network Models 231

Table 2. Experiment results on neural networks trained on MNIST or CIFAR10.

task architecture accuracy parameters ε Queries (ε, 0) max|θ − ̂θ|
‘0’ vs ‘1’ 784-2-1 0.9035 1573 10−12 220.11 2−16.39 2−17.85

10−14 220.32 2−20.56 2−22.81

‘2’ vs ‘3’ 784-2-1 0.8497 1573 10−12 220.11 2−7.00 2−7.80

10−14 220.32 2−14.32 2−15.06

‘4’ vs ‘5’ 784-2-1 0.8570 1573 10−12 220.02 2−8.47 2−8.82

10−14 220.32 2−15.62 2−15.81

‘6’ vs ‘7’ 784-2-1 0.9290 1573 10−12 220.11 2−7.02 2−7.93

10−14 220.32 2−12.00 2−12.91

‘8’ vs ‘9’ 784-2-1 0.9501 1573 10−12 220.11 2−10.58 2−11.62

10−14 220.32 2−19.63 2−21.72

airplane vs 3072-2-1 0.8120 6149 10−12 222.08 2−4.84 2−7.48

automobile 10−14 222.29 2−12.41 2−15.20

bird vs cat 3072-2-1 0.6890 6149 10−12 222.07 2−8.37 2−9.80

10−14 222.29 2−12.27 2−14.73

deer vs dog 3072-2-1 0.6870 6149 10−12 222.01 2−9.55 2−13.25

10−14 222.22 2−13.19 2−15.82

frog vs horse 3072-2-1 0.8405 6149 10−12 222.08 2−9.56 2−10.71

10−14 222.29 2−13.58 2−15.58

ship vs truck 3072-2-1 0.7995 6149 10−12 222.08 2−8.63 2−8.90

10−14 222.29 2−12.95 2−13.02

max|θ − ̂θ|: the maximum extraction error of model parameters.

accuracy: classification accuracy of the victim model fθ.

for saving space, prediction matching ratios are not listed.

8 Conclusion

In this paper, we have studied the model extraction attack against neural net-
work models under the hard-label setting, i.e., the adversary only has access to
the most likely class label corresponding to the raw output of neural network
models. We propose new model extraction attacks that theoretically achieve
functionally equivalent extraction. Practical experiments on numerous neural
network models have verified the effectiveness of the proposed model extraction
attacks. To the best of our knowledge, this is the first time to prove with practi-
cal experiments that it is possible to achieve functionally equivalent extraction
against neural network models under the hard-label setting.

The future work will mainly focus on the following aspects:

– The (computation and query) complexity of our model extraction attack
remains high, which limits the application to neural networks with a large
number of neurons. Reducing the complexity is an important problem.

232 Y. Chen et al.

– In this paper, to recover the weight vector of the j-th neuron in layer i, we
require that in layer i, only the j-th neuron is active. However, such a model
activation pattern may not occur in some cases. Then how to recover the
weight vector of this neuron based on other model activation patterns would
be a vital step towards better generality.

– Explore possible quantitative relationships between the precision ε (or some
unknown properties of the decision boundary) and ε (or max|θ − θ̂|).

– Extend the extraction attack to the case of vector outputs, i.e., the output
dimensionality exceeds 1.

– Develop extraction attacks against other kinds of neural network models.

Acknowledgments. We would like to thank Adi Shamir for his guidance. We
would like to thank the anonymous reviewers for their detailed and helpful com-
ments. This work was supported by the National Key R&D Program of China
(2018YFA0704701, 2020YFA0309705), Shandong Key Research and Development Pro-
gram (2020ZLYS09), the Major Scientific and Technological Innovation Project of
Shandong, China (2019JZZY010133), the Major Program of Guangdong Basic and
Applied Research (2019B030302008), the Tsinghua University Dushi Program, and the
Ministry of Education in Singapore under Grant RG93/23. Y. Chen was also supported
by the Shuimu Tsinghua Scholar Program.

A Proof of Lemma 1

We prove Lemma 1 by Mathematical Induction.

Proof. When i = 2, according to Lemma 1, the extracted weight vector Â
(2)
j , j ∈

{1, · · · , d2} should be

Â
(2)
j =

⎡

⎣
w

(2)
j,1 ×

∣
∣
∣
∑d0

v=1 w
(1)
1,vC

(0)
v,1

∣
∣
∣

∣
∣
∣
∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣
∣
∣

, · · · ,
w

(2)
j,d1

×
∣
∣
∣
∑d0

v=1 w
(1)
d1,vC

(0)
v,1

∣
∣
∣

∣
∣
∣
∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣
∣
∣

⎤

⎦

=

⎡

⎣
w

(2)
j,1 ×

∣
∣
∣w(1)

1,1

∣
∣
∣

∣
∣
∣
∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣
∣
∣
, · · · ,

w
(2)
j,d1

×
∣
∣
∣w(1)

d1,1

∣
∣
∣

∣
∣
∣
∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣
∣
∣

⎤

⎦ .

(33)

Note that C
(0)
1,1 = 1 and C

(0)
v,1 = 0 for v ∈ {2, · · · , d0} .

Besides, we have

C(1) = I
(1)
P A(1) = A(1) =

[
A

(1)
1 , · · · , A

(1)
d0

]
,

Ĉ(1) = I
(1)
P Â(1) = Â(1) =

⎡

⎣ A
(1)
1∣

∣
∣w(1)

1,1

∣
∣
∣
, · · · ,

A
(1)
d0∣

∣
∣w(1)

d0,1

∣
∣
∣

⎤

⎦ .
(34)

where A
(1)
v =

[
w

(1)
v,1, · · · , w

(1)
v,d0

]
, C

(1)
v,u = w

(1)
v,u and Ĉ

(1)
v,u = w(1)

v,u
∣

∣

∣w
(1)
v,1

∣

∣

∣

.

Hard-Label Cryptanalytic Extraction of Neural Network Models 233

Look at the system of linear equations presented in Eq. (26). Now, the system
of linear equations is transformed into

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑d1
v=1 ŵ

(2)
j,v Ĉ

(1)
v,1 =

∑d1
v=1 w

(2)
j,vC

(1)
v,1

∣

∣

∣

∑d1
v=1 w

(2)
j,vC

(1)
v,1

∣

∣

∣

...
∑d1

v=1 ŵ
(2)
j,v Ĉ

(1)
v,d0

=
∑d1

v=1 w
(2)
j,vC

(1)
v,d0

∣

∣

∣

∑d1
v=1 w

(2)
j,vC

(1)
v,1

∣

∣

∣

(35)

when d0 � d1, by solving the system, it is expected to obtain

Â
(2)
j =

⎡

⎣
w

(2)
j,1

∣
∣
∣w(1)

1,1

∣
∣
∣

∣
∣
∣
∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣
∣
∣
, · · · ,

w
(2)
j,d1

∣
∣
∣w(1)

d1,1

∣
∣
∣

∣
∣
∣
∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣
∣
∣
,

⎤

⎦ , (36)

which is consistent with the expected value in Eq. (33).
Next, consider the recovery of the weight vector of the j-th neuron in layer

i, and assume that the weights Â(1), · · · , Â(i−1) as shown in Lemma 1 have been
obtained. As a result, we have

C
(i−2)
j = A

(i−2)
j A(i−3) · · · A(1), C

(i−1)
j = A

(i−1)
j A(i−2) · · · A(1),

Ĉ
(i−2)
j = Â

(i−2)
j Â(i−3) · · · Â(1) =

C
(i−2)
v∣

∣
∣
∑di−3

v=1 w
(i−2)
j,v C

(i−3)
v,1

∣
∣
∣
,

Ĉ
(i−1)
j = Â

(i−1)
j Â(i−2) · · · Â(1) =

C
(i−1)
v∣

∣
∣
∑di−2

v=1 w
(i−1)
j,v C

(i−2)
v,1

∣
∣
∣
.

(37)

Now, the system of linear equations in Eq. (26) is transformed into

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑di−1
u=1 ŵ

(i)
j,u

C
(i−1)
u,1

∣

∣

∣

∑di−2
v=1 w

(i−1)
u,v C

(i−2)
v,1

∣

∣

∣

=
∑di−1

u=1 w
(i)
j,uC

(i−1)
u,1

∣

∣

∣

∑di−1
u=1 w

(i)
j,uC

(i−1)
u,1

∣

∣

∣

...
∑di−1

u=1 ŵ
(i)
j,u

C
(i−1)
u,d0

∣

∣

∣

∑di−2
v=1 w

(i−1)
u,v C

(i−2)
v,1

∣

∣

∣

=
∑di−1

u=1 w
(i)
j,uC

(i−1)
u,d0

∣

∣

∣

∑di−1
u=1 w

(i)
j,uC

(i−1)
u,1

∣

∣

∣

(38)

When d0 � di−1, by solving this system, it is expected to obtain

Â
(i)
j =

[
ŵ

(i)
j,1, · · · , ŵ

(i)
j,di−1

]

=

⎡

⎣
w

(i)
j,1 ×

∣
∣
∣
∑di−2

v=1 w
(i−1)
1,v C

(i−2)
v,1

∣
∣
∣

∣
∣
∣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣
∣
∣

, · · · ,
w

(i)
j,di−1

×
∣
∣
∣
∑di−2

v=1 w
(i−1)
di−1,vC

(i−2)
v,1

∣
∣
∣

∣
∣
∣
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣
∣
∣

⎤

⎦ ,

which is consistent with the expected value in Eq. (27).

234 Y. Chen et al.

B Complexity of Hard-Label Model Extraction Attacks

For the k-deep neural network extraction attack, its complexity is composed of
two parts: Oracle query complexity and computation complexity. Suppose that
the number of neurons is n =

∑k
i=1 di. Its input size, i.e., the size of x is d0.

And k is the number of hidden layers. The precision adopted by binary search
is ε (refer to Sect. 6.1).

Oracle Query Complexity. For the k-deep neural network extraction attack,
we only query the Oracle in Steps 1 and 2 (see Sect. 4).

In Step 1, if cn ×2n decision boundary points are collected, then the number
of queries to the Oracle is cε × cn × 2n, where cε is a factor determined by the
precision ε, and cn is a small factor defined by the attacker. In Step 2, for each
decision boundary point x collected in Step 1, to recover the corresponding affine
transformation (i.e., ΓP and BP), we need to collect another d0 − 1 decision
boundary points. Therefore, the times of querying the Oracle in this step is
cε ×cn ×2n × (d0 −1). Based on the above analysis, the Oracle query complexity
of our k-deep neural network extraction attack is cε×cn×2n×d0. Note that cε is
proportional to log

1
ε
2 . Thus, the query complexity is about O

(
d0 × 2n × log

1
ε
2

)
.

Computation Complexity. For the k-deep neural network extraction attack,
when n is large, most computations are occupied by recovering neural network
parameters, i.e., Steps 3 and 4 (see Sect. 4). Suppose that there are N � cn ×
2n decision boundary points used to recover neural network parameters after
filtering duplicate affine transformations in Step 2.

In Step 3, to recover the weight vector of the j-th neuron in layer i where
i ∈ {2, · · · , k+1}, we need to solve a system of linear equations. For convenience,
let us ignore the difference in the sizes of the different systems of linear equations.
Then, to recover all the weights A(i), a total of n + 1 − d1 =

∑k+1
i=2 di systems

of linear equations need to be solved. In Step 4, to recover all the biases b(1),
only one system of linear equations needs to be solved. Therefore, to obtain an
extracted model, we need to solve n + 2 − d1 systems of linear equations.

There are two loops in the extraction attack. First, we need to select n + 1
out of N decision boundary points each time. More concretely, to recover the
weights A(i) in layer i, we choose di decision boundary points. Then the number
(denoted by l1) of possible cases is

l1 =
(

N
d1

)× (N−d1
d2

)× · · · × (N−∑k−1
i=1 di

dk

)× (N−n
1

) ≈ Nn+1, for N � n.

Second, we need to guess k signs when recovering all the weights, i.e., there are
2k cases.

Thus, the computation complexity is about O (l1 × 2k × (n + 2 − d1)
)
. When

an appropriate precision ε (i.e., ε is small) is adopted, we have N ≈ H < 2n,
where H is the number of possible model activation patterns (refer to Lemma 2).
Then, we further have

l1 × 2k × (n + 2 − d1) ≈ Nn+1 × 2k × n ≈ n × 2n(n+1)+k. (39)

Hard-Label Cryptanalytic Extraction of Neural Network Models 235

Thus, the computation complexity is about O
(
n × 2n2+n+k

)
.

C Extraction on 1-Deep Neural Networks

The parameters of the extracted 1-deep neural network are as follows.

Â
(1)
i =

[
ŵ

(1)
i,1 , · · · , ŵ

(1)
i,d0

]
=

⎡

⎣ w
(1)
i,1∣

∣
∣w(1)

i,1

∣
∣
∣
, · · · ,

w
(1)
i,d0∣

∣
∣w(1)

i,1

∣
∣
∣

⎤

⎦ , i ∈ {1, · · · , d1},

b̂(1) = [̂b(1)1 , · · · , b̂
(1)
d1

] =

⎡

⎣ b
(1)
1∣

∣
∣w(1)

1,1

∣
∣
∣
, · · · ,

b
(1)
d1∣

∣
∣w(1)

d1,1

∣
∣
∣

⎤

⎦ ,

Â(2) =
[
ŵ

(2)
1 , · · · , ŵ

(2)
d1

]
=

⎡

⎣
w

(2)
1

∣
∣
∣w(1)

1,1

∣
∣
∣

∣
∣
∣
∑d1

i=1 w
(2)
i w

(1)
i,1

∣
∣
∣
, · · · ,

w
(2)
d1

∣
∣
∣w(1)

d1,1

∣
∣
∣

∣
∣
∣
∑d1

i=1 w
(2)
i w

(1)
i,1

∣
∣
∣

⎤

⎦ ,

b̂(2) =
b(2)∣

∣
∣
∑d1

i=1 w
(2)
i w

(1)
i,1

∣
∣
∣
.

(40)

Figure 4 shows a diagram of a victim model (2-2-1) and the extracted model.

Fig. 4. Left: the victim model fθ. Right: the extracted model f
̂θ.

References

1. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: Heninger, N.,
Traynor, P. (eds.) USENIX Security 2019. pp. 515–532. USENIX Association

2. Blum, A., Rivest, R.L.: Training a 3-node neural network is np-complete. In: Han-
son, S.J., Remmele, W., Rivest, R.L. (eds.) Machine Learning: From Theory to
Applications - Cooperative Research at Siemens and MIT. LNCS, vol. 661, pp.
9–28. Springer (1993)

236 Y. Chen et al.

3. Canales Martinez, I.A., Chávez-Saab, J., Hambitzer, A., Rodŕıguez-Henŕıquez,
F., Satpute, N., Shamir, A.: Polynomial time cryptanalytic extraction of neural
network models. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024. LNCS,
vol. 14653, pp. 3–33. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
58734-4 1

4. Carlini, N., Jagielski, M., Mironov, I.: Cryptanalytic extraction of neural network
models. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172,
pp. 189–218. Springer

5. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: SP 2017. pp. 39–57. IEEE Computer Society

6. Dubey, S.R., Singh, S.K., Chaudhuri, B.B.: Activation functions in deep learning:
A comprehensive survey and benchmark. Neurocomputing 503, 92–108 (2022)

7. Fefferman, C.: Reconstructing a neural net from its output. Revista Matematica
Iberoamericana 10, 507–555 (1994)

8. Galstyan, A., Cohen, P.R.: Empirical comparison of ”hard” and ”soft” label prop-
agation for relational classification. In: Blockeel, H., Ramon, J., Shavlik, J.W.,
Tadepalli, P. (eds.) ILP 2007. LNCS, vol. 4894, pp. 98–111. Springer

9. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference
attacks on fully connected neural networks using permutation invariant represen-
tations. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) CCS 2018. pp.
619–633. ACM

10. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R. (eds.) NeurIPS 2015. pp. 1135–1143

11. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accuracy
and high fidelity extraction of neural networks. In: Capkun, S., Roesner, F. (eds.)
USENIX Security 2020. pp. 1345–1362. USENIX Association

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Long, C., Collins, R., Swears, E., Hoogs, A.: Deep neural networks in fully con-
nected CRF for image labeling with social network metadata. In: WACV 2019. pp.
1607–1615. IEEE

14. Lowd, D., Meek, C.: Adversarial learning. In: Grossman, R., Bayardo, R.J., Ben-
nett, K.P. (eds.) SIGKDD 2005. pp. 641–647. ACM

15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Fürnkranz, J., Joachims, T. (eds.) ICML, 2010. pp. 807–814. Omni-
press

16. Oliynyk, D., Mayer, R., Rauber, A.: I know what you trained last summer: A
survey on stealing machine learning models and defences. ACM Comput. Surv.
55(14s), 324:1–324:41 (2023)

17. Perazzi, F., Wang, O., Gross, M.H., Sorkine-Hornung, A.: Fully connected object
proposals for video segmentation. In: ICCV 2015. pp. 3227–3234. IEEE Computer
Society

18. Rolnick, D., Kording, K.P.: Reverse-engineering deep relu networks. In: ICML 2020.
Proceedings of Machine Learning Research, vol. 119, pp. 8178–8187. PMLR

19. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set
for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 30(11), 1958–1970 (2008)

20. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction apis. In: Holz, T., Savage, S. (eds.) USENIX Security
2016. pp. 601–618. USENIX Association

https://doi.org/10.1007/978-3-031-58734-4_1
https://doi.org/10.1007/978-3-031-58734-4_1

Analysis on Sliced Garbling via Algebraic
Approach

Taechan Kim(B)

Seoul, Korea

tckim1458@gmail.com

Abstract. Recent improvements to garbled circuits are mainly focused
on reducing their size. The state-of-the-art construction of Rosulek and
Roy (Crypto 2021) requires 1.5κ bits for garbling AND gates in the free-
XOR setting. This is below the previously proven lower bound 2κ in the
linear garbling model of Zahur, Rosulek, and Evans (Eurocrypt 2015).
Recently, Ashur, Hazay, and Satish (eprint 2024/389) proposed a scheme
that requires 4/3κ + O(1) bits for garbling AND gates. Precisely they
extended the idea of slicing introduced by Rosulek and Roy to garble
3-input gates of the form g(u, v, w) := u(v +w). By setting w = 0, it can
be used to garble AND gates with the improved communication costs.
However, in this paper, we observe that the scheme proposed by Ashur,
Hazy, and Satish leaks information on the permute bits, thereby allowing
the evaluator to reveal information on the private inputs. To be precise,
we show that in their garbling scheme, the evaluator can compute the
bits α and β + γ, where α, β, and γ are the private permute bits of the
input labels A, B, and C, respectively.

1 Introduction

Garbled Circuits (GC) are one of major techniques for secure two-party com-
putation, which allows two mistrusting parties to jointly compute functions on
their private inputs while revealing only the outputs of the functions and noth-
ing else. Since their concept was first introduced by Yao [16], one line of recent
research [4,7,11–15,17] has been dedicated to reducing the size of the garbled
circuit ciphertexts that should be sent from one party, the garbler, to the other
party, the evaluator.

The current state-of-the-art construction for garbled circuits is due to
Rosulek and Roy [15] (dubbed as RR21 throughout the paper), where they
consider a gate-by-gate garbling of Boolean circuits expressed using XOR and
AND gates. In their scheme, the size of the garbled AND gates is 1.5κ bits (κ
is the security parameter), while no communication is required for XOR gates.

In this work, we present an attack on a new garbling scheme proposed by Ashur, Hazay,
and Satish [1]. Concurrently to our work, we noticed that Fan, Lu, and Zhou [6] also
described an attack on their scheme.
T. Kim—Independent Researcher.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 237–265, 2025.
https://doi.org/10.1007/978-981-96-0944-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_8&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_8

238 T. Kim

Their result surpassed the previous lower bound (2κ bits for AND gates with
free-XOR) for the size of garbled circuits, which is obtained in a model called
linear garbling defined by Zahur, Rosulek, and Evans [17]. Their optimization
was made possible by a new technique, called slicing-and-dicing, that is beyond
the definition of the linear garbling model.

Following to the previous works, Ashur, Hazay, and Satish [1] recently pro-
posed a garbling scheme that garbles AND gates requiring communication costs
of only 4/3κ + O(1) bits, thus improving upon the previous state-of-the-art
construction. Their core idea is to extend the slicing-and-dicing technique by
Rosulek and Roy. Precisely, they suggested to garble 3-input gates of the form
g(u, v, w) := u(v + w) (where the function is defined over the binary field F2)
instead of directly garbling AND gates. They also suggested to slice the input
labels into 3 pieces, whereas the RR21 construction uses 2-sliced input labels.
By setting w = 0 in g(u, v, w), one can use their garbling scheme to garble AND
gates.

Our Contributions. However, in this paper, we show that their garbling scheme
leaks private information on inputs, thereby jeopardizing the security guarantee
that should be satisfied in the garbling scheme. Precisely, we prove that the
evaluator can compute the bits α and β + γ, where α, β, and γ are private
permute bits of the input labels A, B, and C, respectively.1 The permute bits
are used to mask the private inputs u, v, and w of the gate g, thus it should
not be revealed to the evaluator to satisfy the privacy property of the garbling
scheme.

Previous Works. Before describing our techniques, we briefly review prior
approaches. Since its introduction by Yao [16], the core idea behind garbled
circuits has centered on encoding the truth table of a function. For a function
g : {0, 1}n → {0, 1}, the truth table contains N = 2n rows. Each i-th input is
assigned an input label, represented as a κ-bit string, depending on the input’s
truth value. Likewise, the output is assigned either an output label. The gar-
bling of g is performed by encrypting the output label corresponding to the value
v = g(u1, . . . , un), using the n input labels corresponding to ui’s as encryption
keys. This naive approach results in a garbled function of size Nκ bits.

To fix idea, let us focus on garbling 2-input gates where each input wire has
labels (A0, A1) and (B0, B1). From now on we assume the point-and-permute
technique [4] is applied with the free-XOR setting. Precisely, let Aα and Bβ

be the labels corresponding to the logical value 0 on the respective input wire,
where the masking bits α and β (a.k.a. the permute bits) are secretly known
by the garbler. Equivalently, Au+α and Bv+β correspond to the values u and v
respectively, where the addition of the subscripts is over F2. In the point-and-
permute technique, if the evaluator holds one of {A0, A1} and {B0, B1}, say Ax

1 Each of the input labels is a κ-bit string that is assigned to each of the inputs of the
gate depending on their logical values. The input labels A, B, and C correspond to
the input u, v, and w, respectively.

Analysis on Sliced Garbling via Algebraic Approach 239

and By, then she would know their subscripts x and y (a.k.a. color bits and they
are typically given as the least significant bit of labels). Here, we see that only
the masked bits x = u + α and y = v + β are revealed to the evaluator and
the truth values u and v are still hidden as the random mask α and β are only
known by the garbler.

When garbling a Boolean circuit, a common technique is to decompose the
circuit into a series of AND and XOR gates and apply a gate-by-gate garbling
method. With the free-XOR technique [12], all wire labels share a global offset Δ,
meaning A0 +A1 = B0 +B1 = Δ, allowing XOR gates to be garbled for free. So,
recent optimizations have focused on reducing the size of the ciphertexts required
for garbling AND gates. Yao’s original circuit requires 4κ bits per AND gate, but
this was later reduced to 2κ bits using the half-gate garbling technique [17]. The
current state-of-the-art achieves a size of 1.5κ + O(1) bits, as shown by Rosulek
and Roy [15].

A key observation in [15] is that the encoded truth table can be viewed as
a system of linear equations. To illustrate, consider Yao’s garbled circuit under
the free-XOR setting. The encoded truth table for an AND gate, consisting of
four rows, is represented as follows:

C = G0,0 + H(A0, B0)
C = G0,1 + H(A0, B1)
C = G1,0 + H(A1, B0)

C + Δ = G1,1 + H(A1, B1),

where Gi,j are the four ciphertexts corresponding to combinations of input labels
(Ai, Bj), C is the output label corresponding to the truth value 0, and we assume
the permute bits (α, β) = (1, 1). This can be rearranged into a system of four
linear equations:

⎡
⎢⎢⎣

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

C
G0,0

G0,1

G1,0

G1,1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦Δ.

Here, given the input labels and the global offset, the garbler solves for the
variables on the left-hand side. Notably, the matrix on the right-hand side has
rank 4, and the number of ciphertexts required is determined by this rank. While
the example suggests that four ciphertexts are necessary, one of the ciphertexts
can be set as a zero string using a row-reduction technique [4]. This shows that
4 degrees of freedom are used to set the output label and three ciphertexts on
the left-hand side.

In the half-gate garbling technique, random oracle queries take the form of
H(Ai) and H(Bj) instead of H(Ai, Bj), which results in a lower-rank garbling
equation and, therefore, fewer ciphertexts.

In summary, constructing an improved garbled circuit involves finding appro-
priate linear equations of lower rank using the input labels and the global offset.

240 T. Kim

To further reduce ciphertext size, Rosulek and Roy [15] introduced new types
of random oracle queries, such as H(Ai + Bj), alongside the existing H(Ai) and
H(Bj) queries. Additionally, they split the output labels into two parts and con-
sidered eight (i.e., 2 × 4) linear equations, where each row represents the left
or right half of the output labels based on the four possible input label combi-
nations. This approach allowed to obtain smaller ciphertexts, but required an
exhaustive search to finalize the garbling equation.

The recent approach by [1] builds on this idea of a linear algebraic represen-
tation of garbling equations. They extended the techniques from [15] to 3-input
gates and demonstrated how to garble a gate of the form g(u, v, w) := u(v + w).
While they explained how to apply the linear algebraic approach to this gate,
an explicit formula has not yet been provided.

More details can be found in the subsequent sections.

Our Techniques. Previous works, such as [1,15], viewed garbling schemes as
systems of linear equations. The core idea of this paper is based on a novel
observation by [2], which reformulates these linear systems in garbling schemes
as algebraic equations. In this approach, the color bits x and y are treated as
variables in F2, and the garbling equation is expressed as polynomials over F2κ ,
with x and y as variables.

Let us revisit Yao’s circuit as a concrete example. Using the algebraic frame-
work of [2], the system of linear equations can be reformulated as follows:

C + (x + 1)(y + 1)G0,0 + (x + 1)yG0,1 + x(y + 1)G1,0 + xyG1,1

= (x + 1)(y + 1)H0,0 + (x + 1)yH0,1 + x(y + 1)H1,0 + xyH1,1 + (x + α)(y + β)Δ,

where Hi,j := H(Ai, Bj). This shows that the garbling equation in Yao’s circuit
can be represented using quadratic polynomials, with coefficients on the right-
hand side determined by the input labels and the global offset.

More generally, previous garbling schemes can be expressed in the following
form:

C + g(x + α, y + β)Δ = F(x, y),

where F is a function that takes the color bits x and y as inputs and g is a target
function to be garbled.

This simple reformulation allows garbling schemes to be represented in a
more compact and elegant form, making it easier to identify a suitable function
F that yields a correct garbling scheme. A major challenge in the constructions
of [15] and [1] was to find the control matrices required to complete the function
F for a valid garbling scheme.

While the work of [2] primarily focuses on garbling 2-input AND gates, we
observe that this algebraic perspective can be extended to garbling gadgets with
an arbitrary number of inputs and degrees. This representation allows us to
derive an explicit formula for the garbling equation in the construction by Ashur
et al. Once this formula is established, it becomes evident that this construction
leaks the permute bits.

Analysis on Sliced Garbling via Algebraic Approach 241

As a side result, we derive an impossibility result, showing that garbling
gates of degree greater than 2 is not feasible if the only allowed queries to the
oracle are restricted to linear functions of the input labels. This result aligns
with Theorem 3 from Ashur et al. [1]. For gates of degree 2, we provide sufficient
conditions under which our attack can succeed. This also offers guidance on how
not to design garbling schemes to reduce communication costs.

Limitations. We remark that our analysis primarily considers garbling schemes
within the linear garbling model, as defined by [17]. In essence, this model per-
mits only linear operations and queries to the random oracle. While the state-
of-the-art construction [15] slightly deviates from the original definition of the
linear garbling model, it still adheres to the principle of using only linear opera-
tions and random oracle queries, with the exception that wire labels are split into
two parts, each obtained through linear operations and random oracle queries.
In our analysis, we extend this by allowing wire labels to be split into multi-
ple parts, though they are still derived exclusively through linear operations and
random oracle queries. Additionally, we assume, as in previous approaches [1,15],
that inputs to the random oracle are formed as linear combinations of the input
labels. We exclude non-linear queries, as they appear to increase the number of
ciphertexts due to the higher degree in the garbling equation.

It is also important to note that our focus does not extend to constructions
that operate outside the linear garbling model. For example, we do not consider
constructions based on one-hot garbling [8,9] or those relying on DCR assump-
tions [3].

Concurrent Works. Concurrently to our work, Fan, Lu, and Zhou [6] also
described an attack on the scheme by Ashur, Hazay, and Satish [1]. In their
work, they described how the permute bit α can be revealed using the linear-
algebraic representation of garbling schemes when the evaluator’s color bits are
(0, 0, 0). On the other hand, with our algebraic approach, we can provide more
general results: we show that the evaluator can reveal not only the permute bit
α, but also the value β + γ, regardless of the evaluator’s given color bits.

2 Preliminaries

Throughout the paper, we will work over finite fields K of characteristic 2 and
the bivariate polynomial ring K[x, y]. We write x + y/xy for Boolean operations
XOR/AND of x, y ∈ F2, respectively. We denote a vector and its entries as−→v = (v1, . . . , vn). Matrices are written in the bold capital characters such as M.

2.1 Garbling Schemes

We use the garbling scheme abstraction introduced by Bellare, Hoang, and Rog-
away [5]. In particular, as in [17], we concentrate on garbling circuits rather than
garbling any form of computation. A garbling scheme consists of the following
algorithms:

242 T. Kim

• Gb: On input 1κ and a Boolean circuit f , outputs (F, e, d), where F is a
garbled circuit, e is encoding information, d is decoding information.

• En: On input (e, x), where e is as above and x is an input suitable for f ,
outputs a garbled input X.

• Ev: On input (F,X), outputs a garbled output Y .
• De: On input (d, Y), returns an output y.

Correctness. A garbling scheme defined as above is correct, if (F, e, d) ←
Gb(1κ, f), De(d,Ev(F,En(e, x))) = f(x) holds all but negligible probability.

Privacy. Informally, we say a garbling scheme satisfies privacy, if (F,X, d) reveals
no information about x other than f(x). In our discussion, it is enough to con-
sider the privacy property. For further details on other security properties such
as obliviousness and authenticity, refer to Bellare, Hoang, and Rogaway [5].

3 Algebraic Understanding of Garbling Schemes

In [15], garbling schemes were interpreted as systems of linear equations. Building
on this idea, they were able to devise an efficient garbling scheme that improved
upon previous state-of-the-art constructions. In this section, we review the refor-
mulation introduced by [2], which offers an algebraic perspective on existing
garbling schemes.

3.1 Review on Existing Schemes

For now, we focus on a gate g with input wires a, b and output wire c. If g is the
AND gate, we have c = g(a, b) = a · b for a, b ∈ F2. From now on we assume the
point-and-permute techniques [4].

Notations.

– (Permute bits) The values α and β are secret permute bits that are only
known by the garbler.

– (Input labels) Aα, Bβ ∈ {0, 1}κ are wire labels corresponding to the false
value on input wires a and b, respectively.

– (Output label) C ∈ {0, 1}κ represents the output wire label corresponding to
the false value on the output wire c.

– (Color bits) When Ax and By are held by the evaluator, we assume that the
subscripts, x and y, referred to as color bits, are known by the evaluator.

– (Free-XOR) For each wire label W , it holds W0 +W1 = Δ, with the addition
being performed over F2. Here Δ ∈ {0, 1}κ is a global offset.

– (Sliced labels) Given an integer s, we represent the wire label W =
W 1‖ · · · ‖W s as W = (W 1, . . . ,W s), where each W i is κ/s-bits. If s = 1,
we simply write W instead of W .

Analysis on Sliced Garbling via Algebraic Approach 243

With the above notations, the wire labels Ax and By correspond to the logical
values u := x + α and v := y + β, where the addition is computed over F2.

As a matter of mathematical conventions, we abstract strings in {0, 1}κ as
fields elements in F2κ . However, the field structures that we are only interested in
are additions and multiplications by F2 (no multiplications by full field elements
are required).

Yao’s Garbled Circuits. We describe the classical Yao’s garbled circuits from
the algebraic perspective. In Yao’s circuit, the garbler generates the ciphertexts
Gx,y for each (x, y) ∈ F2 × F2 in a way that the following equation holds:

C + (x + α)(y + β)Δ = Gx,y + H(Ax, By). (1)

In other words, decryption of Gx,y under the key H(Ax, By) yields to the value
C + Δ, the output wire label corresponding to the logical value 1, if and only if
(x + α)(y + β) = 1.

Let us consider Gx,y and Hx,y := H(Ax, By) as functions in variables x, y
with their values in F2κ . Particularly, we only consider x, y that take values in
F2, then we may write the functions as formal summations using group algebra:

Tκ := F2κ

[
F2[x, y]/(x2 + x, y2 + y)

]

=
{∑

f af · f | af ∈ F2κ , f ∈ F2[x, y]/(x2 + x, y2 + y)
}

.

For instance, using Lagrange polynomials, we can write:

Gx,y := G0,0(x + 1)(y + 1) + G0,1(x + 1)y + G1,0x(y + 1) + G1,1xy ∈ Tκ

Hx,y := H0,0(x + 1)(y + 1) + H0,1(x + 1)y + H1,0x(y + 1) + H1,1xy ∈ Tκ.
(2)

To generate the ciphertexts, the garbler chooses G := (G0,0, G0,1, G1,0, G1,1)
so that Eq. (1) should hold for any choices of (x, y) ∈ F2 ×F2. By comparing the
coefficients of 1, x, y and xy in the both sides, we obtain the following system of
linear equations:

C + αβΔ = G0,0 + H0,0

βΔ = G0,0 + G1,0 + H0,0 + H1,0

αΔ = G0,0 + G0,1 + H0,0 + H0,1

Δ =
∑

i,j∈F2
(Gi,j + Hi,j).

(3)

The garbler produces the desired ciphertexts by solving this system of equations
with respect to G. One might easily check that it is equivalent to the system of
linear equations described in [15].

For readers, it seems to be just a matter of wordplay. Nevertheless, it provides
an intriguing intuition into the understanding of garbled schemes as we shall see
below.

Row Reduction Technique. In Eq. (3), all equations have the term G0,0 in com-
mon. Therefore, simply canceling out the term will not affect on solving the
system of linear equations. It allows us to set G0,0 = 0 ∈ F2κ . It reduces the size
of ciphertexts from 4κ to 3κ.

244 T. Kim

Half-Gate Garbling. Zahur, Rosulek and Evans [17] showed that the size of
ciphertexts further reduces to 2κ. It is called the half-gate garbling technique.
Their construction has two main differences: First, the ciphertexts Gx,y are
generated using only two ciphertexts G0 and G1 through the formula Gx,y :=
xG0 + yG1, rather than four independent ciphertexts. Second, the output labels
are encrypted using the key H(Ax) + H(By) instead of H(Ax, By).

We provide a more general explanation of this technique from the algebraic
point of view. In the technique, the garbling scheme can be represented as the
following equation:

C+(x+α)(y+β)Δ = xG0+yG1+H(Ax)+H(By)+RA(x, y)·Ax+RB(x, y)·By,
(4)

where RA, RB are linear polynomials in F2[x, y] to be determined later. Similar
to Eq. (2), we write the following terms as polynomials in Tκ:

H(Ax) = (x + 1)H(A0) + xH(A1)
H(By) = (y + 1)H(B0) + xH(B1)

Ax = A0 + xΔ
By = B0 + yΔ.

(5)

Let us set RA = y and RB = 0 which is equivalent to the setting of [17].
As before, one substitutes Eq. (5) into Eq. (4) and compares the coefficients.
We have

C + αβΔ = H(A0) + H(B0)
βΔ = G0 + H(A0) + H(A1)
αΔ = G1 + H(B0) + H(B1).

(6)

The garbler determines the output label C and the ciphertexts (G0, G1) using
the above equation.

In general, setting RA = a0 + a1x + a2y and RB = b0 + b1x + b2y such that
a2 + b1 = 1 leads us to a valid garbled circuit. This can be seen as follows: The
expression RA(A0 + xΔ) + RB(B0 + yΔ) contains the term xyΔ if and only if
a2 + b1 = 1. Since the quadratic term xyΔ gets cancelled out in Eq. (4), the
values of C and G0, G1 can be found by comparing the coefficients of 1, x and y.

From our algebraic viewpoint, it is interesting to observe that their modi-
fications involving the use of xG0 + yG1 and H(Ax) + H(By) instead of Gx,y

and H(Ax, By) enabled the representation of the garbling equation without any
quadratic terms. Consequently, this reduced the number of free variables that
have to be determined.

RR21’s Garbling Scheme. Rosulek and Roy [15] proposed a garbling scheme,
dubbed as RR21 from now on, that further reduces the size of the ciphertexts
from 2κ to 1.5κ + O(1). One of their primary ideas involves splitting the out-
put wire label into two parts, say C = (CL‖CR), where each half is of κ/2
bits. Then they discuss how to derive each half using three well-structured κ/2-
bits ciphertexts G0, G1 and G2, along with input labels. It should be noted
that a straightforward application of the half-gate strategy would not yield any

Analysis on Sliced Garbling via Algebraic Approach 245

enhancements: The size of the garbled gates for each half would be of 2 · (κ/2)
bits.

To obtain a further reduction on the garbled gate size, the RR21 construction
implicitly ensures that two of the four κ/2-bits ciphertexts will be identical. For
instance, suppose that (GL

0 , GL
1) and (GR

0 , GR
1) are ciphertexts for the left and

right halves of C, respectively. They enforce GL
1 = GR

0 and demonstrate how
to construct garbling schemes satisfying this condition. To accomplish this chal-
lenging task, they propose employing extra oracle queries on Ax + By alongside
Ax and By. Then the idea is to use the following combination of oracle queries
to mask the each half of the output labels:

CL + (x + α)(y + β)ΔL = xGL
0 + yGL

1 + H(Ax) + H(Ax + By) + · · · ,
CR + (x + α)(y + β)ΔR = xGR

0 + yGR
1 + H(By) + H(Ax + By) + · · · .

(7)

Keeping in mind the above, one may interpret the RR21 construction from
the algebraic viewpoint. Again, we can write H(Ax + By) as follows:2

H(Ax + By) = (x + y + 1)H(A0 + B0) + (x + y)H(A0 + B1).

Then we have [
H(Ax) + H(Ax + By)
H(By) + H(Ax + By)

]
= M · H,

where

M :=
[
x + 1 x 0 0 x + y + 1 x + y

0 0 y + 1 y x + y + 1 x + y

]

and H := (H(A0),H(A1),H(B0),H(B1),H(A0 + B0),H(A0 + B1))�.
Interestingly, we observe that the y-coefficient of H(Ax) + H(Ax + By) and

the x-coefficient of H(By) + H(Ax + By) are identical to each other. Let us
enforce GL

1 = GR
0 as desired. By properly rearranging and rewriting Eq. (7), the

RR21 construction can be restated as the following equation:

V
[
C
G

]
= MH + RA(A0 + xΔ) + RB(B0 + yΔ) + (x + α)(y + β)Δ, (8)

where

V :=
[
1 0 x 0 x + y
0 1 0 y x + y

]
,C :=

[
CL

CR

]
,A0 :=

[
AL

0

AR
0

]
,B0 :=

[
BL

0

BR
0

]
,Δ :=

[
ΔL

ΔR

]
,

and G := (G0, G1, G2)� = (GL
1 + GL

0 , GL
1 + GR

1 , GL
1)�. Here, RA and RB are

2 × 2 matrices over F2[x, y] to be determined later.
Observe that the y-coefficient of the upper and the x-coefficient of the lower

in V
[
C
G

]
coincides with each other. It is exactly equivalent to saying that M and

2 With the free-XOR constraint, recall that H(A0 + B0) = H(A1 + B1) and H(A0 +
B1) = H(A1 + B0).

246 T. Kim

V have the same column space over F2. Indeed, V is a column-reduced matrix
of M where the operation is carried over F2.

Once RA and RB are determined (as we shall describe soon how to deter-
mine them), the garbler generates the output label C and the ciphertexts G
analogously to prior constructions, ensuring that Eq. (8) holds for all x, y ∈ F2.

Choosing Control Matrices. We now proceed to explain the procedure for deter-
mining the matrices RA and RB . According to the linear-algebraic represen-
tation in [15], this step is equivalent to find out the control matrix. Although,
according to their linear-algebraic representation, they managed to identify the
control matrix solely through an exhaustive computer search, we can provide
explicit formulas for RA and RB due to the algebraic perspective.

First of all, we note that M and V share the same column space. Therefore,
it suffices to guarantee that the remaining term of Eq. (8) also belongs to this
common space, ensuring the existence of C and G satisfying Eq. (8). More
precisely, it is equivalent to the following:

1. The y-coefficient of the top and the x-coefficient of the bottom in RA(A0 +
xΔ) + RB(B0 + yΔ) + (x + α)(y + β)Δ coincide with each other;

2. The xy-term in RA(A0 + xΔ) +RB(B0 + yΔ) + (x + α)(y + β)Δ vanishes.

To find RA and RB satisfying the aforementioned conditions, we write RX =
RX,0+RX,1x+RX,2y for X ∈ {A,B}, where each RX,i is a 2×2 binary matrix.3

Substituting this to Eq. (8) and imposing that x2 = x and y2 = y yield

V
[
C
G

]
= MH +

(
RA,1A0 + RB,1B0 +

(
RA,0 + RA,1 + βI

)
Δ

)
x

+
(
RA,2A0 + RB,2B0 +

(
RB,0 + RB,2 + αI

)
Δ

)
y

+
((
RA,2 + RB,1 + I

)
Δ

)
xy + (constant),

(9)

where I is the 2-dimensional identity matrix.
As the aforementioned conditions should satisfy for arbitrary choices of

A0,B0, and Δ, the conditions translate to the following system of equations:

RA,2 + RB,1 + Is = 0[
0 1

]
RA,1 =

[
1 0

]
RA,2[

0 1
]
RB,1 =

[
1 0

]
RB,2[

0 1
] (

RA,0 + RA,1 + βI
)

=
[
1 0

] (
RB,0 + RB,2 + αI

)
(10)

Solving the above equations provides us the following formulas for RA and RB :

RA,1 =
[
a1 a2

a3 a4

]
, RA,2 =

[
a3 a4

b3 b4

]
, RA,0 =

[
c1 c2
c3 c4

]

RB,1 =
[
a3 + 1 a4

b3 b4 + 1

]
, RB,2 =

[
b3 b4 + 1
e3 e4

]
, RB,0 =

[
f1 f2
f3 f4

]
,

(11)

3 We observe that it is sufficient to consider the case where RX is linear rather than
of arbitrary degree. This is because when H consists solely of linear queries, M
is composed only of linear polynomials. For RA(A0 + xΔ) to lie within the same
column space as M, we deduce that RAA0 ∈ span(M) for any A0. Therefore, RA

must also be linear.

Analysis on Sliced Garbling via Algebraic Approach 247

where f1 = a3+b3+c3+α and f2 = a4+b4+c4+β+1 and all the other unspecified
entries are arbitrary binary elements. One might observe that (RA,RB) is a 14-
dimensional space.

To garble a gate, the garbler must select a pair of matrices (RA,RB) from
the set of 214 possible choices. The garbler then needs to share this selection
with the evaluator so she can utilize it in order to decrypt the encrypted gate.
However, unlike the half-gate scheme, (RA,RB) are dependent on the choice of
the secret permute bits α and β. As a result, providing the matrices (RA,RB) in
clear to the evaluator would violate the privacy property of the garbling scheme.
Rosulek and Roy addressed this challenge by incorporating the concept of dic-
ing, initially proposed by Kempka, Kikuchi, and Suzuki in [10]. In a nutshell,
the method involves encrypting the matrices (RA,RB) and sending the result-
ing ciphertexts to the evaluator, ensuring that she can only obtain a decryption
the ciphertexts on her active input labels. Precisely, if Ai and Bj are the evalu-
ator’s active input labels, then she will solely be capable of obtaining the value
of (RA(i, j),RB(i, j)), rather than having access to the entire information on
(RA,RB). For further clarification, we have provided additional details regard-
ing the dicing technique from the algebraic perspective in Appendix A.

4 Analysis on Sliced Garbling

4.1 A Generalized Framework for Garbling Schemes

In this section, we provide a generalized framework for constructing garbled
gates based on the observations made in Sect. 3. For simplicity of discussion,
we primarily concentrate on a gate g with three fan-ins and a single fan-out
throughout this section. Nonetheless, it is evident that similar arguments are
still valid for any gate g with a higher fan-in.

To begin with, we first re-establish some essential notation. Let g be a gate
with input wires a, b, c and output wire d.

Notations.

– (Permute bits) The values α, β, γ ∈ {0, 1} are secret permute bits that are
only known by the garbler.

– (Input labels) Aα, Bβ , Cγ ∈ {0, 1}κ are wire labels corresponding to the false
value on input wires a, b and c, respectively.

– (Output label) D ∈ {0, 1}κ represents the output wire label corresponding to
the false value on the output wire d.

– (Color bits) When Ax, By and Cz are held by the evaluator, we assume that
the subscripts, x, y and z, referred to as color bits, are known by the evaluator.

– (Free-XOR) The value Δ ∈ {0, 1}κ is a global offset secretly chosen by the
garbler. Then, W0 + W1 = Δ for W ∈ {A,B,C}. Also, D + Δ represents the
output label corresponding to the true on the wire d.

248 T. Kim

– (Sliced labels) Given an integer s, we represent the wire label W =
W 1‖ · · · ‖W s as W = (W 1, . . . ,W s), where each W i is κ/s-bits. If s = 1,
we simply write W instead of W .

With the above notations, the wire labels Ax, By and Cz correspond to the
logical values u := x+α, v := y+β and w := z+γ, where the addition is carried
out over F2.

In the following, we assume that only linear operations are allowed, apart
from querying random oracles on input labels, during the construction of garbled
circuits. Based on the prescribed observation, we specifically consider a garbling
scheme that can be represented as an equation of the following form:

D + g(x + α, y + β, z + γ)Δ = WG + MH + RAAx + RBBy + RCCz. (12)

Providing a concrete scheme involves the steps of specifying the matrices W,
M, RA, RB and RC (which are over F2[x, y, z]) and H (which are over F2κ/s),
whose detailed descriptions will be presented subsequently.

Once they are established, to garble a 3-input gate g, the garbler generates
the output label D and the ciphertexts G according to Eq. (12). Upon receiving
the ciphertexts G, the evaluator computes the right-hand side of Eq. (12) using
her active input labels Ai, Bj , and Ck for some (i, j, k) ∈ F

3
2. This allows the

evaluator only revealing the output label corresponding to g(i+α, j +β, k+γ).4

Now, we proceed to explain on the idea of establishing Eq. (12). It is anal-
ogous to the description we have seen from Sect. 3. It can be summarized as
follows:

1. The vector H defined over F2κ/s consists of all possible responses of oracle
queries that can be made during the construction of garbled circuits.

2. The matrix M is a matrix over F2[x, y, z] with s rows. Each row of M is
determined by which combinations of oracle queries are to be used for the
corresponding slices.

3. The matrix V := [I|W] is chosen so that it has the same column space
(over F2) with the matrix M. Here, the matrix I is the s-dimensional identity
matrix. Note that we implicitly assumed that the column-reduced matrix of
M contains the identity matrix.

4. Each of the matrices RX for X ∈ {A,B,C} is chosen so that the vector
RAAx +RBBy +RCCz + g(x+α, y +β, z + γ)Δ belongs to the same space
spanned by the columns of V.

From the preceding discussion, we observe that primary concerns in garbling
constructions revolve around (1) determining the matrix M and the vector H,
and (2) deriving the matrices RX for each X ∈ {A,B,C}. Following the previous
works, we refer the matrix RX to the control matrix.

4 To simplify discussion, for now, let us presume that the evaluator obtains the values
of RA, RB and RC precisely at (i, j, k) in a certain way. In other words, we implicitly
assume the dicing technique is applied.

Analysis on Sliced Garbling via Algebraic Approach 249

4.2 Garbled Circuits for 3-Input Gates

Recently, Ashur, Hazay and Satish [1] proposed a scheme that garbles a 3-input
gate. They specifically claimed that a circuit of the form gtri(u, v, w) := u(v+w)
can be garbled at a cost of 4/3κ + O(1) bits. As its corollary, they insisted that
garbling an AND gate requires the same cost as garbling gtri by fixing w = 0.
This claim, if correct, would provide an asymptotic improvement compared to
the state-of-the-art requiring 3/2κ + O(1) bits.

However, in this paper, we demonstrate that their proposed construction
will leak permute bits, thereby jeopardizing the security guarantees offered by
garbling schemes. Prior to describe our main results, we begin by reviewing their
construction from our perspective provided in Sect. 4.1.

4.2.1 Review on Tri-Gate Garbling Scheme

Choice of the Matrix M and the Vector H. In their work [1], they suggested
splitting wire labels into three slices, i.e. s = 3, to garble the gate gtri. To encrypt
each slices of the output label D = (D1,D2,D3), they chose the following linear
combinations of oracle queries:

D1 + gtri(u, v, w)Δ1 = H(Ax) + H(By) + H(Ax + By + Cz) + · · ·
D2 + gtri(u, v, w)Δ2 = H(By) + H(Cz) + H(Ax + By + Cz) + · · ·
D3 + gtri(u, v, w)Δ3 = H(Ax) + H(Cz) + H(Ax + By + Cz) + · · · ,

where u := x + α, v := y + β and w := z + γ.
Analogously to the previous constructions, we represent them into polyno-

mials as follows. For instance, under the free-XOR setting, we may write

H(Ax +By +Cz) = (x+y+z+1)H(A0+B0+C0)+(x+y+z)H(A0+B0+C1).

Let us define

H :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(A0)
H(A1)
H(B0)
H(B1)
H(C0)
H(C1)

H(A0 + B0 + C0)
H(A0 + B0 + C1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then this determines the matrix M in Eq. (12) as follows:

M =

⎡
⎣

x + 1 x y + 1 y 0 0 x + y + z + 1 x + y + z
0 0 y + 1 y z + 1 z x + y + z + 1 x + y + z

x + 1 x 0 0 z + 1 z x + y + z + 1 x + y + z

⎤
⎦ .

250 T. Kim

It can be easily verified that the following matrix V has the same column space
as M, where the span is carried out over F2κ/3 :

V =

⎡
⎣

1 0 0 x y 0 x + y + z
0 1 0 0 y z x + y + z
0 0 1 x 0 z x + y + z

⎤
⎦ := [I | W] . (13)

Here, I is the 3-dimensional identity matrix and W is the right (3 × 4)-matrix.

Choosing the Control Matrix RX . Having determined the matrix M, the next
step is to choose the control matrix RX . Based on the linear-algebraic represen-
tation by Rosulek and Roy [15], Ashur, Hazay and Satish [1] demonstrated how
to find the control matrices. While they elucidated the methodology for finding
these matrices, explicit formulas were not provided.

In the following, we provide explicit formulas for the control matrices based
on our algebraic perspective. As desired, this will show that how their proposed
construction leaks the secret permute bits, even though the dicing technique is
properly applied.

We begin with scrutinizing the subspace spanned by the columns of V =
[I | W]. Let us consider

span(V) :=
{
V ·

[
D
G

] ∣∣D ∈ F
3
2κ/3 ,G ∈ F

4
2κ/3

}
.

We represent the matrix W as follows:

W = W1x + W2y + W3z,

where each Wi is a (3 × 4)-binary matrix derived from W. Note that these
matrices are formed by considering the coefficients of x, y, and z in the expansion
of W.

Let us consider a cokernel matrix P = [P1 | P2 | P3] of a binary matrix

formed by

⎡
⎣
W1

W2

W3

⎤
⎦. In other words, we have the following:

P1W1 + P2W2 + P3W3 = 0,

where each Pi is a (5 × 3) binary matrix.
Given ν ∈ span(V), we represent the vector ν as ν = ν0 + ν1x+ ν2y + ν3z,

where νi = WiG for some G ∈ F
4
2κ/3 . Thus we have that

P1ν1 + P2ν2 + P3ν3 = 0 for all ν ∈ span(V).

We shall use this relation to find the control matrices RX . We define this relation,
denoted by πV, as:

πV(X1,X2,X3) := P1X1 + P2X2 + P3X3,

Analysis on Sliced Garbling via Algebraic Approach 251

where each Xi refers to a binary matrix with the same number of rows as the
columns in Pi.

In summary, the span by the columns of V is given by

span(V) =
{
ν | ν = ν0 + ν1x + ν2y + ν3z and πV(ν1, ν2, ν3) = 0 for νi ∈ F

3
2κ/3

}
.

Recall that each RX has to be chosen so that

ρ := RAAx + RBBy + RCCz + gtri(x + α, y + β, z + γ)Δ
= RAA0 + RBB0 + RCC0

+
(
xRA + yRB + zRC + (x + α)(y + z + β + γ)I

)
Δ ∈ span(V),

(14)

for any choices of A0,B0,C0, and Δ. Since ρ := ρ0+ρ1x+ρ2y+ρ3z ∈ span(V),
we also have πV(ρ1, ρ2, ρ3) = 0. This condition must be satisfied for arbitrary
choices of A0,B0,C0, and Δ. Consequently, it is sufficient to analyze the equiva-
lent relationships by focusing on the coefficients of A0,B0,C0, and Δ in Eq. (14)
independently.

For instance, in Eq. (14), the vector RAA0 should belong to span(V) for any
A0. Let us express RA = RA,0 + RA,1x + RA,2y + RA,3z, where each RA,i is a
3 × 3 binary matrix. Then, the requirement that RAA0 ∈ span(V) for all A0 is
equivalent to the following condition:

πV

(
RA,1,RA,2,RA,3

)
= 0.

Similar reasoning applies to the matrices RB and RC as well. As a result, we have

πV

(
RX,1,RX,2,RX,3

)
= 0 for each X ∈ {A,B,C}. (15)

As we are interested in the case that x, y and z take the values in F2, we
impose the condition that x2 = x, y2 = y, and z2 = z. Then, the Δ-term in
Eq. (14) can be rewritten as follows:

ρΔ := xRA + yRB + zRC + (x + α)(y + z + β + γ)I
=

(
RA,0 + RA,1 + (β + γ)I

)
x +

(
RB,0 + RB,2 + αI

)
y +

(
RC,0 + RC,3 + αI

)
z+(

RA,2 + RB,1 + I
)
xy +

(
RA,3 + RC,1 + I

)
xz +

(
RB,3 + RC,2

)
yz.

The requirement that ρΔΔ ∈ span(V) for all Δ is equivalent to the following
equations:

πV

(
RA,0 + RA,1 + (β + γ)I,RB,0 + RB,2 + αI,RC,0 + RC,3 + αI

)
= 0

RA,2 + RB,1 + I = 0
RA,3 + RC,1 + I = 0
RB,3 + RC,2 = 0

(16)

We can construct binary matrices RX,i such that they fulfill the requirements
imposed by Eq. (15) and (16). Then it will provide explicit formulas for the set of
all possible pairs of the control matrices. Although proving how this construction
exposes the permutation bits does not require comprehensive explicit formulae,
we nonetheless supply more details regarding the identification of RX,i and their
resulting explicit formulae in Appendix B for the sake of thoroughness.

252 T. Kim

4.2.2 Analysis on Tri-Gate Garbling

In the rest of this section, we show that the garbling scheme suggested by [1]
is insecure. To be precise, we show that the evaluator can reveal the values of
α and β + γ. Consequently, she would be aware of the logical values associated
with the input labels A0 and B0 + C0. Furthermore, if the evaluator has prior
information about either β or γ, she can deduce all logical values related to her
active input labels.

As we have explicit formulae for the control matrices (RA,RB ,RC), as shown
in Eq. (22), it becomes straightforward to verify the aforementioned claims. For
instance, if the evaluator’s active input labels are A0,B0 and C0, then she
will have the values of (RA,RB ,RC) evaluated at (0, 0, 0). In other words, the
evaluator is aware of the matrix values (RA,0,RB,0,RC,0). As one might observe
from Eq. (22), this directly implies the desired results: By adding the second row
of RA,0 to its third row, the evaluator obtains the vector (β+γ, 0, β+γ). Likewise,
if the evaluator adds the first row of RB,0 with its second row, she will obtain
the vector (α, α, 0).

In the following, we also provide alternative mathematical arguments for the
above claims without requiring explicit formulae for the control matrices. We
begin with the following simple observations:

1. Assuming that πV(X1,X2,X3) = 0 and πV(Y1,Y2,Y3) = 0, it follows that

πV(X1 + Y1,X2 + Y2,X3 + Y3) = 0.

Each of Xi and Yi are binary matrices with identical dimensions and an
equal number of rows as the columns in Pi.

2. For the matrix P = [P1 | P2 | P3], as given in Eq. (21), there exists non-zero
vectors k1,k2 and k3 such that

k�
i Pi−1 = k�

i Pi+1 = 0 and k�
i Pi �= 0

for every i = 1, 2, 3. Here, the subscript indices are computed modulo 3.
For instance, one might choose k�

1 = (1, 0, 0, 0, 0), k�
1 = (0, 1, 0, 0, 0), and

k�
3 = (0, 0, 1, 0, 0).

Based on the above observations, we prove the following theorem:

Theorem 1. Let V be as Eq. (13). For a fixed triple (α, β, γ) ∈ F
3
2, con-

sider a set R of three matrices (RA,RB ,RC) such that the vector ρ defined
in Eq. (14) belongs to span(V) for any choices of A0,B0,C0, and Δ. Take an
element (RA,RB ,RC) from R. As before, let us write RX = RX,0 + RX,1x +
RX,2y +RX,3z. Given the triple of matrices (RA(i, j, k),RB(i, j, k),RC(i, j, k))
for i, j, k ∈ {0, 1}, one can compute the values of α and β + γ.

Proof. First, let us recall that ρ ∈ span(V) implies that Eq. (15) and (16). We
prove the assertion case by case.

Analysis on Sliced Garbling via Algebraic Approach 253

Case 1. (i, j, k) = (0, 0, 0): Recall that we are working over a field of characteristic
2. By adding the first equation in Eq. (16) with πV

(
RA,1,RA,2,RA,3

)
= 0 (see

Eq. (15)), we obtain the following:

πV

(
RA,0+(β+γ)I,RB,0+RB,2+RA,2+αI,RC,0+RC,3+RA,3+αI

)
= 0. (17)

Multiplying k�
1 to both sides of Eq. (17), we obtain:

k�
1 P1

(
RA,0 + (β + γ)I

)
= 0 =⇒ k�

1 P1RA,0 = (β + γ)k�
1 P1.

Since RA(0, 0, 0) = RA,0 is given, calculating k�
1 P1RA,0 and examining whether

it equals zero or not allows one to determine the bit of β + γ.
Similarly, adding the first equation in Eq. (16) with πV

(
RA,1,RA,2,RA,3

)
=

0 leads us to obtain the equation of the following form:

πV

(∗,RB,0 + αI, ∗)
= 0.

Multiplying k�
2 to the both side of the equation, we obtain:

k�
2 P2

(
RB,0 + αI

)
= 0 =⇒ k�

2 P2RB,0 = αk�
1 P1.

From this relation, one can deduce the bit of α.

Case 2. (i, j, k) = (1, 0, 0): In this case RA(1, 0, 0) = RA,0 + RA,1 is given.
Multiplying k�

1 to the first equation of Eq. (16) provides us

k�
1 P1

(
RA,0 + RA,1 + (β + γ)I

)
= 0.

Thus, one can obtain the value of β + γ by calculating k�
1 P1

(
RA,0 + RA,1

)
.

To deduce the bit of α, we observe the followings: By adding πV

(
RA,1,RA,2,

RA,3

)
= 0 and πV

(
RB,1,RB,2,RB,3

)
= 0 to the first equation of Eq. (16), we

obtain the equation of the form

πV

(∗,RB,0 + RA,2 + αI, ∗)
= 0.

Since RA,2 = RB,1+I, we have πV

(∗,RB,0+RB,1+(α+1)I, ∗)
= 0. Therefore,

calculating the value of k�
2 RB(1, 0, 0) provides us the value of α.

Case 3. (i, j, k) = (0, 1, 0): For the value of α, we can just use the first relation in
Eq. (16). To obtain β +γ, use Eq. (15) with X = A and B and RB,1 = RA,2 +I.

Case 4. (i, j, k) = (0, 0, 1): For the value of α, it is sufficient with the first relation
in Eq. (16). To obtain β+γ, use Eq. (15) with X = A and C and RC,1 = RA,3+I.

For the other cases, we can proceed analogous arguments to obtain the desired
results. We leave verifying them to readers. 	

254 T. Kim

5 (Im)possibility of Higher Fan-In Gates Garbling

In this section, we build upon our earlier work and investigate the existence of
secure garbling schemes for 	-input gates using s-sliced labels, where 	 ≥ 3 and
s ≥ 3. Our previous research demonstrated that the construction presented in [1],
which aims to garble tri-gates gtri, leaks information about the permutation bits,
rendering the scheme insecure. This construction relied on employing three-sliced
labels to garble 3-input gates. The primary goal of this section is to address
the following open question: Is there a secure garbling scheme for 	-input gates
utilizing s-sliced labels, with 	 ≥ 3 and s ≥ 3? Unfortunately, our response is
negative. Even considering s ≥ 3 and 	 ≥ 3 seems unlikely to yield a secure
garbling scheme.

Let us begin with defining several notions. Throughout this section, we con-
sider garbling an 	-input gate g with input wires a1, . . . , a� and output wire
b.

Notations.

– (Permute bits) The values αj ∈ {0, 1} for j ∈ {1, . . . , 	} are secret permute
bits that are only known by the garbler.

– (Input labels) Aαj ,j ∈ {0, 1}κ are wire labels corresponding to the false value
on the input wire aj for each j ∈ {1, . . . , 	}.

– (Output label) B ∈ {0, 1}κ represents the output wire label corresponding to
the false value on the output wire b.

– (Color bits) When Axj ,j are held by the evaluator, we assume that the sub-
scripts xj , referred to as color bits, are known by the evaluator.

– (Free-XOR) The value Δ ∈ {0, 1}κ is a global offset secretly chosen by the
garbler. Then, A0,j +A1,j = Δ for each j ∈ {1, . . . , 	}. Also, B +Δ represents
the output label corresponding to the true on the wire b.

– (Sliced labels) Given an integer s, we represent the wire label W =
W 1‖ · · · ‖W s as W = (W 1, . . . ,W s), where each W i is κ/s-bits.

Using the previously mentioned notation, we now define several matrices and
vectors to establish a garbling equation.

– (Linear queries) We assume that queries to a random oracle are made on
functions of the input labels. For each j ∈ {1, . . . , 	}, only one of A0,j or
A1,j can be used as inputs to the random oracle. Particularly, we restrict
our concern to the setting where the only possible queries allowed to the
oracle are linear functions of the input labels. That is, we consider queries of
the following form: H

(∑
j∈I Axj ,j

)
for a subset I ⊂ {1, . . . , 	}. We call such

queries as linear queries.
– (Function representation of queries) We continue to focus on the free-XOR

setting. Given an oracle response of the form H
(∑

j∈I Axj ,j

)
, we represent

it as a function in F2κ/s [x1, . . . , x�]:

H
(∑

j∈I Axj ,j

)
=

(
1 +

∑
j∈I xj

)
H

(∑
j∈I A0,j

)

+
(∑

j∈I xj

)
H

(
A1,i∗ +

∑
j∈I\{i∗} A0,j

)
,

Analysis on Sliced Garbling via Algebraic Approach 255

where i∗ is the index such that xi∗ = 1. To understand why this representation
holds, note that if there are even number of j ∈ I such that xj = 1, then
we have H

(∑
j∈I Axj ,j

)
= H

(∑
j∈I A0,j

)
due to the free-XOR condition.

Similar arguments apply for the odd case.
– (Query matrix) Consider a vector H comprising H

(∑
j∈I A0,j

)
and

H
(
A1,i∗ +

∑
j∈I\{i∗} A0,j

)
for all non-empty subset I ⊂ {1, . . . , 	}. Based

upon the aforementioned function representation of hI := H
(∑

j∈I Axj ,j

)
,

one can represent a linear sum of the form
∑

I hI as a dot product M� · H,
where M comprises polynomials 1 +

∑
j∈I xj and

∑
j∈I xj for certain I’s. In

this manner, for s linear sums of
∑

I hI ’s, one can express (h1, . . . , hs)� =
MH, where the k-th row of M corresponds to the vector M associated with
hj . We refer to the matrix M as a query matrix and the vector H as a hash
vector.

– (Control matrix) For each j ∈ {1, . . . , 	}, we introduce a j-th control matrix,
denoted by Rj , associated with the j-th input. The control matrix Rj is a
(s × s)-matrix with its entries in F2[α1, . . . , α�, x1, . . . , x�]. Since our main
interest lies in the case when αi ∈ F2, to streamline notation without causing
confusion, we treat its entries as elements in F2[x1, . . . , x�], and their coeffi-
cients are parameterised by αi’s. As before, we also write

Rj = Rj,0 + Rj,1x1 + · · · + Rj,�x�,

where each Rj,k is a binary matrix.5

Remark 1. Assume that arbitrary non-linear functions of the input labels are
used to make queries to the random oracle. We observe that it remains feasible
to provide a function representation of the responses to these oracle queries. For
instance, as we have seen from an example of Yao’s garbling scheme, a response
of the form H(Ax, By) can be represented as a quadratic function. Neverthe-
less, we confine our attention to the setting of linear queries, consistent with
prior studies [1,15,17]. Introducing non-linear queries may potentially increase
communication costs since we must account for additional monomials resulting
from higher-degree functions being considered. Notably, if our aim is to garble a
degree-2 gate, it is unnecessary to consider non-linear queries of degree exceed-
ing 2. Nonetheless, exploring the potential benefits of such non-linear queries
in reducing communication cost when targeting higher-degree gates constitutes
an intriguing subject for future investigation. We reserve this issue for further
research. 	

5.1 Garbling Equations

We are ready to formally define the notion of garbling equations. We will continue
to utilize the previously introduced notation throughout this discussion.

5 By a similar argument to (See Footnote 3), it suffices to consider only linear poly-
nomials.

256 T. Kim

Definition 1 (Garbling Equation). For each i ∈ {1, . . . , s}, let hi be a linear
sum of linear queries. For j ∈ {1, . . . , 	}, let Rj be a j-th control matrix. The
matrix M is the query matrix and the vector H is the hash vector associated
with (h1, . . . , hs) such that (h1, . . . , hs) = MH. Given the vector (h1, . . . , hs)
and the control matrix Rj, we define a garbling equation G of a 	-input gate g
by the following equation:

Gg : V
[
C
G

]
= MH +

∑
1≤j≤�

RjAxj ,j + g(x1 + α1, . . . , x� + α�)Δ.

Here, V is a matrix comprised of column basis of the F2-subspace generated by
the columns of M and [C,G] is a (s + r)-dimensional vector where s + r is the
column length of V.

Definition 2. For an 	-input gate g, let Π = (Gb,En,Ev,De) be a garbling
scheme associated with a garbling equation Gg. If the garbling scheme Π is cor-
rect, then we say that Π is correctly garbleable with respect to the garbling
equation Gg. Moreover, if Π satisfies privacy property, then we call that Π is
privately garbleable.

We observe that if there exists a vector [C,G] satisfying the garbling equation
Gg holds for any input labels Axj ,j , a global offset Δ, and permute bits αj ∈ F2,
then the corresponding garbling scheme Π is correct.

In what follows, we will expand upon the discussions presented earlier to
encompass the garbling of arbitrary 	-input gates.

Definition 3. Assume that V is of the form V = [Is | W], where Is is the s-
dimensional identity matrix and W is a (s × r)-matrix over F2[x1, . . . , x�]. As
before, we write W = W1x1 + · · · + W�x� for a (s × r)-binary matrix. Let us
consider a cokernel matrix P of the (s×r)-matrix formed by

[
W�

1 | · · · | W�
�

]�.
Abusing the notation, we denote the matrix P by coker(W), i.e. coker(W) is a
binary matrix of the following form:

coker(W) := P = coker

⎛
⎜⎝

⎡
⎢⎣
W1

...
W�

⎤
⎥⎦

⎞
⎟⎠ .

Moreover, if the matrix
[
W�

1 | · · · | W�
�

]� is of rank r, then we can write
coker(W) = P = [P1 | · · · | P�], where each Pj is a (s − r) × s dimensional
matrix.

For a finite field F of characteristic 2, we consider the F-subspace spanned
by the columns in V and denote it by span(V):6

span(V) =
{
V

[
C
G

] ∣∣C ∈ F
s,G ∈ F

r

}
.

6 In the case that s-sliced labels used, we typically choose F = F2κ/s .

Analysis on Sliced Garbling via Algebraic Approach 257

Similar to the previous sections, let us write ν ∈ span(V) as ν = ν0 + ν1x1 +
· · · + ν�x� for a F-vector νj . Then we can check that

ν ∈ span(V) if and only if P1ν1 + · · · + P�ν� = 0.

Again, we define the relation πV by

πV(X1, . . . ,X�) := P1X1 + · · · + P�X�,

where the dimension of each matrix Xj is properly defined.

5.2 Main Results

Next, we discuss on the conditions under which the garbling scheme Π is correct.

Lemma 1. Assume that span(M) = span(V) in the garbling equation Gg. If
ρ :=

∑
1≤j≤� RjAxj ,j + g(x1 + α1, . . . , x� + α�)Δ ∈ span(V) for any Axj ,j and

Δ, then the garbling scheme Π is correct.

Proof. It is obvious from the definition. Since span(M) = span(V), there exist
CM and GM such that MH = V

[
C�

M | G�
M

]�. Similarly, as we have ρ ∈
span(V), there exist Cρ and Gρ such that ρ = V

[
C�

ρ | G�
ρ

]�. Therefore, we
have C = CM + Cρ and G = GM + Gρ. 	

In the following, let us write the 	-variate gate g as a polynomial of the
following form:

g(x1 + α1, . . . , x� + α�) = g(0)(α1, . . . , α�) +
∑
d≥1

g
(d)
i1,...,id

(α1, . . . , α�)xi1 · · · xid
,

(18)
where each g

(d)
i1,...,id

is the coefficient of xi1 · · · xid
in the expansion of g.

Lemma 2. Let the notations as above. Assume that H only consists of linear
queries. Then, we have ρ ∈ span(V) for any Axj ,j and Δ if and only if (1) The
degree of g is less than or equal to 2 and (2) the following equations hold:

πV

(
Rj,1, . . . ,Rj,�

)
= 0 for each j = 1, . . . , 	

πV

(
S1, . . . ,S�

)
= 0 where Sj := Rj,0 + Rj,j + g

(1)
j Is

Rj,k + Rk,j + g
(2)
j,kIs = 0 for 1 ≤ j � k ≤ 	,

(19)

where Is is the s-dimensional identity matrix.

Proof. We follow a similar approach to the discussion presented in Eq. (15)
and (16). Let us write Axj ,j = A0,j + xjΔ, for each j, and substitute them
into the expression of ρ in Lemma 1. As before, since we are working with the
case where the variable xj takes the value in F2, we impose the condition that
x2

j = xj . Expanding the expression of ρ, we have the following:

ρ = R1A0,1 + · · · + R�A0,� + ρΔΔ,

258 T. Kim

where

ρΔ =
�∑

j=1

(
Rj,0 +Rj,j

)
xj +

∑
1≤j �=k≤�

(
Rj,k +Rk,j

)
xjxk + g(x1 +α1, . . . , x� +α�).

Since ρ should belong to span(V) for any A0,j and Δ, it should satisfy that
RjA0,j ∈ span(V), for each j, and ρΔΔ ∈ span(V).

The condition that RjA0,j ∈ span(V) is equivalent to that

πV

(
Rj,1, . . . ,Rj,�

)
= 0.

We notice that any elements in span(V) contain only linear terms since we
assumed that H contains only linear queries. Thus, any terms of degree ≥ 2 in
ρΔ should vanish. This condition is equivalent to that the polynomial g is of at
most degree 2 and the quadratic terms of ρΔ are zeros, i.e.

Rj,k + Rk,j + g
(2)
j,kIs = 0 for 1 ≤ j � k ≤ 	.

Regarding the linear terms in ρΔ, it should satisfy the following:

πV

(
S1, . . . ,S�

)
= 0,

where each Sj = Rj,0 +Rj,j + g
(1)
j Is is the coefficient of xj in ρΔ. Therefore, we

have proved our claims. 	

The following theorem is a straightforward consequence of the preceding

lemmata. It provides guidance on selecting the control matrices to ensure the
correctness of a garbling scheme.

Theorem 2. Assume that the vector H consists of only linear queries and the
matrix M is of full rank in the garbling equation Gg. Then the garbling scheme
Π associated with the garbling equation Gg is correct, if and only if the followings
hold:

1. The degree of the target gate g is less than or equal to 2;
2. The control matrix Rj satisfies Eq. (19) for each j.

Remark 2. From Theorem 2, we observe that if solely linear queries are permit-
ted to the random oracle, then it becomes unfeasible to garble a gate of degree
greater than or equal to 3 using the described method. Interestingly, this find-
ing is equivalent to Corollary 4 in [1], which demonstrates the impossibility of
garbling a higher fan-in gate of degree ≥ 3.

Indeed, although Theorem 2 implies that garbling high-degree gates using
solely linear queries is infeasible, the prospect of constructing a garbling scheme
for such gates through non-linear queries remains open. Exploring this avenue
could yield fascinating results and warrants further investigation. 	

Analysis on Sliced Garbling via Algebraic Approach 259

As demonstrated in the example of the construction by Ashur et al. [1] in
Sect. 4.2, choosing the control matrices in a manner that guarantees the cor-
rectness of a garbling scheme does not invariably imply that the scheme is also
private. In other words, despite ensuring the correctness, the corresponding con-
trol matrices may inadvertently reveal some information about the permute bits.
Consequently, we will explore the conditions under which information regarding
the permute bits is compromised.

Precisely, we provide the following lemma and theorem:

Lemma 3. For each j, suppose that there exists a non-zero vector vj such that

v�
j Pj �= 0 and v�

j Pi = 0 for all i �= j.

Then, given
(
R1(i1, . . . , i�), . . . ,R�(i1, . . . , i�)

)
for some i1, . . . , i� ∈ F2, one can

compute the value g̃j(α1, . . . , α�) for each j, where g̃j is a function that is defined
by the following:

g̃j := g
(1)
j +

∑
k�j

ikg
(2)
k,j +

∑
j�k

ikg
(2)
j,k .

Proof. First, we consider the case of j = 1. From the relations in Eq. (14), we
have the following:

π(S1, . . . , S�) + (i1 + 1)π(R1,1, . . . , Ri,�) + i2π(R2,1, . . . , R2,�) + · · · + i�π(R�,1, . . . , R�,�)

= π
(
R1,0 + i1R2,1 + · · · + i�R�,1 + g

(1)
1 Is, ∗ , . . . , ∗

)

= π
(
R̃1 + g̃1Is, ∗ , · · · , ∗

)

= 0,

where R̃k := Rk(i1, . . . , i�). In the second equality, we used the relation that
Rj,k = Rk,j + g

(2)
j,kIs from Eq. (14).

Multiplying the vector v�
1 to the both sides yields

v�
1 P1R1(i1, . . . , i�) = g̃1v

�
1 P1.

Thus, calculating the left-hand side, one can compute the value of g̃1. Similar
arguments hold for the other cases. 	

The following theorem is an immediate consequence of the preceding lemma.
It specifies the conditions under which the garbling scheme leaks information
about the permute bits.

Theorem 3. For each j, suppose that there exists a non-zero vector vj such
that

v�
j Pj �= 0 and v�

j Pi = 0 for all i �= j.

Then the garbling scheme with the garbling equation Gg cannot be privately gar-
bleable.

260 T. Kim

Proof. Recall that the evaluator is given
(
R1(i1, . . . , i�), . . . ,R�(i1, . . . , i�)

)
for

some i1, . . . , i� ∈ F2 depending on her choices of the active input labels. By
Lemma 3, she can compute the value of g̃j(α1, . . . , α�) for each j = 1, . . . , 	. Thus,
the garbling scheme leaks some information on the permute bits α1, . . . , α�. It
violates the privacy property. 	

5.3 Discussions

In this section, we discuss on several interesting implication of our results.

RR21 Construction. We observe that our proposed attack does not apply to the
construction by Rosulek and Roy [15], implying that it remains secure against
our presented attack. Recall that in their construction the matrix W is of the
form W = W1x + W2y, where:

W1 =
[
1 0 1
0 0 1

]
and W2 =

[
0 0 1
0 1 1

]
.

Hence, the cokernel of W is coker(W) = P = [P1 | P2] = [0 1 | 1 0]. Since the
matrix Pk consists of only one row, its left kernel is trivial. In other words, there
exists no non-zero vector v such that v�Pk = 0, which precludes our proposed
attack.

Indeed, as observed in the explicit formula presented in Sect. 3, the values
RA(i, j) and RB(i, j) do not reveal any information on the permute bits α
and β. Due to the enough degrees of freedom available in the choice of the
control matrices, the permute bits are effectively masked by these random values,
hindering the evaluator from deducing the permute bits.

When Our Attack Works. Recalling that the matrix Pi depends directly on
the matrix V = [I | W], we will now present a simple criterion for determining
whether our attack can be applied simply by observing the matrix W. Recall
that W = W1x1 + · · · + W�x�, where each Wj is a (s × r)-binary matrix. We
assume that s ≤ r; we will address later why this assumption seems to hold
whenever the matrix V includes the identity matrix I.

In what follows, we argue that if the Wj is not of a full rank for some
j, then our attack is applicable. Without loss of generality, assume that the
rank of W1 is less than s. By this assumption, the rows of W1 are linearly
dependent. Therefore, there exists a non-zero vector p1 such that p�

1 W1 = 0.
Since

[
p�
1 | 0 | · · · | 0

]
is an element of the cokernel of

[
W�

1 | · · · | W�
�

]� and
the matrix P is a basis matrix of the cokernel, there exists a non-zero vector
v1 such that v1P = [v1P1 | · · · | v1P�] =

[
p�
1 | 0 | · · · | 0

]
. Thus, the vector v1

satisfies the condition in Theorem 3.
For instance, as discussed in Sect. 4, in the construction by Ashur et al. [1],

the (3×4)-matrix Wj has rank 2. Hence, their construction is vulnerable to our
attack.

Analysis on Sliced Garbling via Algebraic Approach 261

Necessary Conditions to Succeed Our Attack. Unfortunately, the condition in
Theorem 3 is not a necessary condition for our attack to succeed. We will now
examine the following intriguing case study. Let us consider a three-sliced gar-
bling scheme, as described in the construction presented by Ashur et al., i.e. we
set s = 3. We maintain the same notation used in Sect. 4.2. In our example, let
us take into account the following linear combinations of linear queries:

D1 + gtri(u, v, w)Δ1 = H(By + Cz) + H(Ax + By + Cz) + · · ·
D2 + gtri(u, v, w)Δ2 = H(Ax + Cz) + H(Ax + By + Cz) + · · ·
D3 + gtri(u, v, w)Δ3 = H(Ax + By) + H(Ax + By + Cz) + · · · .

In this case, we have the matrix V = [I | W] where

W =

⎡
⎣

y + z 0 0 x + y + z
0 x + z 0 x + y + z
0 0 x + y x + y + z

⎤
⎦ = W1x + W2y + W3z.

One might check that each matrix Wj has full rank. Moreover, we could not
find a vector vj satisfying the condition in Theorem 3. However, if we find the
control matrices fulfilling Eq. (19), we observe that the corresponding garbling
scheme still leaks some information on the permute bits. Precisely, when the
evaluator is given the control matrices at (x, y, z) = (0, 0, 0), i.e. the active input
labels are A0, B0, C0, the evaluator can deduce the value of β + γ by comparing
the values R1,0 = RA(0, 0, 0) and R2,0 = RB(0, 0, 0).

Consequently, it has been observed that the rank condition on Wj is insuf-
ficient to construct a secure garbling scheme. It remains as an open problem to
explore further when a secure garbling scheme can be constructed.

A How to Randomize the Control Bits

In this section, we explain how the dicing technique works from the algebraic
perspective. For the sake of readability, we mainly describe the technique with
the example of RR21’s construction.

At the beginning of the dicing technique, the garbler chooses (RA,RB) at
random among 214 possible choices. Assume that the choice is

R = [RA|RB] =
[

0 0 x + α y + β + 1
0 0 y x

]
.

It is chosen by setting all the free variables zero except e3 = 1.
To send the information on R, the garbler encrypts it column by column.

More precisely, say R = [−→r1 , . . . ,−→r4], where −→rk is the k-th column of R. The
garbler makes random oracle queries and define

−→
S con :=

(
Hc(A0),Hc(A1),Hc(B0),Hc(B1),Hc(A0 + B0),Hc(A0 + B1)

)�
,

where Hc is a random oracle that returns an 1-bit string (it is usually chosen as
the least significant bit of outputs by the random oracle).

262 T. Kim

Given the column −→rk for each k, choose −→zk := (zk1, . . . , zk5)� such that

V−→zk = M
−→
S con + −→rk . (20)

Then it returns the vector −→zk which comprises the ciphertexts encrypting −→rk .
For instance, let us take an example of −→r3 = (x + α, y)�. By comparing both

sides, we have
z31 = Hc(A0) + Hc(A0 + B0) + α
z32 = Hc(B0) + Hc(A0 + B0)
z33 = Hc(A0) + Hc(A1) + 1
z34 = Hc(B0) + Hc(B1) + 1
z35 = Hc(A0 + B0) + Hc(A0 + B1).

Let Vij be the value of V evaluated at (x, y) = (i, j). Upon receiving −→zk , on
input Ai and Bj , the evaluator computes

−→̃
rk = Vij

−→zk +
[

1 0 1
0 1 1

]⎡
⎣

H(Ai)
H(Bj)

H(Ai + Bj)

⎤
⎦ .

It is easily verified that
−→̃
rk is the value of −→rk evaluated at (x, y) = (i, j).

We observe that the above argument works in general not only for RR21’s
construction. Actually, the control bit randomization is carried out by encrypting
each columns of R, the randomly chosen control bits. Moreover, it is encrypted
via the same garbling equation as that used for the original garbling construction.
In other words, the matrices M and V in Eq. (20) are the same as the original
garbling equation. The only condition for the control bits encryption to work,
it suffices to see whether −→rk belongs to the same space spanned by the columns
of M or V. And it turns out to be equivalent that −→rk satisfies the relation πV

in Sect. 5. Recall that −→rk is the column of R. We observe that R, thus each
of its columns, satisfies the relation πV which is the desired result. Henceforth,
we argue that the control bit randomization is always possible with its original
garbling equation.

To help readers’ understanding, let us call back the previous example of the
RR21 construction. In this case, the relation π is equivalent to say that the y-
coefficient on the top is the same as the x-coefficient of the bottom. We see that,
for each −→rk , it satisfies the condition.

Let us consider why this technique does not reveal the information on α
and β. We see that the entire value of R will definitely disclose the permute
bits. Observe that −→zk ’s are encrypting the coefficients of the polynomials in R
using

−→
S con. And the decryption only reveals the value of the polynomials in R

evaluated at (x, y) = (i, j). Without knowing the wire labels other than Ai and
Bj , the evaluator cannot evaluate the polynomials outside of (i, j). Thus, it does
not disclose the entire information on R.

Analysis on Sliced Garbling via Algebraic Approach 263

One might observe that the number of additional ciphertexts required to
encrypt the control matrices can be further reduced in RR21’s construction. Let
us consider the control matrices given by

[
RA | RB

]
=

[
r1 r2 r2 + x r1 + r2 + y
r2 r1 + r2 r1 + r2 r1 + x

]

where r1(x, y) := αx + (β + 1)y + c and r2(x, y) := (β + 1)x + (α + β + 1)y + e
are the polynomials in F2[x, y], and the bits c and e are randomly chosen. It
can be readily verified that the above control matrices yield a correct garbling
scheme for RR21’s construction. Thus, it is enough to send only the encryption
of (r1, r2)�, instead of sending entire encryptions of all columns. Therefore, it
reduces the number of ciphertexts garbling the control bits.

B How to Choose Control Matrices

Given the matrix V as defined in Eq. (13), for any vector ν = ν0 +ν1x+ν2y +
ν3z ∈ span(V), we obtain πV(ν1,ν2,ν3) = P1ν1 + P2ν2 + P3ν3 = 0, where

P = [P1 | P2 | P3] =

⎡
⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

. (21)

By computing the control matrices satisfying Eq. (15) and (16), we can pro-
vide their explicit formula as follows.

B.1 Formulas for the Control Matrices

We provide explicit formulas for the control matrices.

RA =

⎡
⎣

a0 b0 c0
a1 b1 c1

a0 + β + γ b0 c0 + β + γ

⎤
⎦ +

⎡
⎣

a3 b3 c3
a4 b4 c4
a3 b3 c3

⎤
⎦ x

+

⎡
⎣

a4 + 1 b4 c4 + 1
a4 + 1 b4 c4 + 1

a4 b4 c4

⎤
⎦ y +

⎡
⎣

a4 b4 c4
a4 + 1 b4 c4 + 1
a4 + 1 b4 c4 + 1

⎤
⎦ z

RB =

⎡
⎣

d0 e0 f0
d0 + α e0 + α f0
a1 + 1 b1 + β + γ + 1 c1 + α + 1

⎤
⎦ +

⎡
⎣

a4 b4 c4 + 1
a4 + 1 b4 + 1 c4 + 1

a4 b4 c4 + 1

⎤
⎦x

+

⎡
⎣

d5 e5 f5
d5 e5 f5

a4 + 1 b4 + 1 c4 + 1

⎤
⎦ y +

⎡
⎣

a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1

⎤
⎦ z

264 T. Kim

RC =

⎡
⎣

a1 + α + 1 b1 + β + γ + 1 c1 + 1
g1 h1 i1
g1 h1 + α i1 + α

⎤
⎦ +

⎡
⎣

a4 + 1 b4 c4
a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 c4

⎤
⎦ x

+

⎡
⎣

a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1

⎤
⎦ y +

⎡
⎣

a4 + 1 b4 + 1 c4 + 1
g6 h6 i6
g6 h6 i6

⎤
⎦ z, (22)

where all of the entries are binary elements. We observe that the set of the pairs
of (RA,RB ,RC) is isomorphic to 24-dimensional subspace.

References

1. T. Ashur, C. Hazay, and R. Satish. On the feasibility of sliced garbling. Cryptology
ePrint Archive, Paper 2024/389, 2024. https://eprint.iacr.org/2024/389.

2. C. Baek and T. Kim. Can we beat three halves lower bound?: (im)possibility
of reducing communication cost for garbled circuits. Cryptology ePrint Archive,
Paper 2024/803, 2024. https://eprint.iacr.org/2024/803.

3. M. Ball, H. Li, H. Lin, and T. Liu. New ways to garble arithmetic circuits. In
C. Hazay and M. Stam, editors, Advances in Cryptology - EUROCRYPT 2023 -
42nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part II, volume
14005 of Lecture Notes in Computer Science, pages 3–34. Springer, 2023.

4. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In H. Ortiz, editor, Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 503–513. ACM, 1990.

5. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
T. Yu, G. Danezis, and V. D. Gligor, editors, the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012,
pages 784–796. ACM, 2012.

6. L. Fan, Z. Lu, and H. Zhou. Column-wise garbling, and how to go beyond the
linear model. IACR Cryptol. ePrint Arch., page 415, 2024.

7. S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast garbling of circuits under stan-
dard assumptions. In I. Ray, N. Li, and C. Kruegel, editors, Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015, pages 567–578. ACM, 2015.

8. D. Heath and V. Kolesnikov. One hot garbling. In Y. Kim, J. Kim, G. Vigna,
and E. Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021, pages 574–593. ACM, 2021.

9. D. Heath, V. Kolesnikov, and L. K. L. Ng. Garbled circuit lookup tables with
logarithmic number of ciphertexts. In M. Joye and G. Leander, editors, Advances
in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May
26-30, 2024, Proceedings, Part V, volume 14655 of Lecture Notes in Computer
Science, pages 185–215. Springer, 2024.

https://eprint.iacr.org/2024/389
https://eprint.iacr.org/2024/803

Analysis on Sliced Garbling via Algebraic Approach 265

10. C. Kempka, R. Kikuchi, and K. Suzuki. How to circumvent the two-ciphertext
lower bound for linear garbling schemes. In J. H. Cheon and T. Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on
the Theory and Application of Cryptology and Information Security, Hanoi, Viet-
nam, December 4-8, 2016, Proceedings, Part II, volume 10032 of Lecture Notes in
Computer Science, pages 967–997, 2016.

11. V. Kolesnikov, P. Mohassel, and M. Rosulek. Flexor: Flexible garbling for XOR
gates that beats free-xor. In J. A. Garay and R. Gennaro, editors, Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part II, volume 8617 of Lecture Notes
in Computer Science, pages 440–457. Springer, 2014.

12. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Languages and Program-
ming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Program-
ming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture
Notes in Computer Science, pages 486–498. Springer, 2008.

13. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In S. I. Feldman and M. P. Wellman, editors, Proceedings of the First ACM
Conference on Electronic Commerce (EC-99), Denver, CO, USA, November 3-5,
1999, pages 129–139. ACM, 1999.

14. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party com-
putation is practical. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, vol-
ume 5912 of Lecture Notes in Computer Science, pages 250–267. Springer, 2009.

15. M. Rosulek and L. Roy. Three halves make a whole? beating the half-gates lower
bound for garbled circuits. In T. Malkin and C. Peikert, editors, Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I, volume
12825 of Lecture Notes in Computer Science, pages 94–124. Springer, 2021.

16. A. C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 160–164. IEEE Computer Society, 1982.

17. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer
Science, pages 220–250. Springer, 2015.

Revisiting OKVS-Based OPRF and PSI:
Cryptanalysis and Better Construction

Kyoohyung Han1, Seongkwang Kim1(B), Byeonghak Lee1, and Yongha Son2(B)

1 Samsung SDS, Seoul, Korea
{kh89.han,sk39.kim,byghak.lee}@samsung.com
2 Sungshin Women’s University, Seoul, Korea

yongha.son@sungshin.ac.kr

Abstract. Oblivious pseudorandom function (OPRF) is a two-party
cryptographic protocol that allows the receiver to input x and learn F (x)
for some PRF F , only known to the sender. For private set intersection
(PSI) applications, OPRF protocols have evolved to enhance efficiency,
primarily using symmetric key cryptography. Current state-of-the-art
protocols, such as those by Rindal and Schoppmann (Eurocrypt ’21),
leverage vector oblivious linear evaluation (VOLE) and oblivious key-
value store (OKVS) constructions.

In this work, we identify a flaw in an existing security proof, and
present practical attacks in the malicious model, which results in addi-
tional PRF evaluations than the previous works’ claim. In particular, the
attack for malicious model is related to the concept of OKVS overfitting,
whose hardness is conjectured in previous works. Our attack is the first
one to discuss the concrete hardness of OKVS overfitting problem.

As another flavour of contribution, we generalize OKVS-based OPRF
constructions, suggesting new instantiations using a VOLE protocol
with only Minicrypt assumptions. Our generalized construction shows
improved performance in high-speed network environments, narrowing
the efficiency gap between the OPRF constructions over Cryptomania
and Minicrypt.

Keywords: oblivious pseudorandom function · oblivious key-value
store · private set intersection

1 Introduction

Oblivious pseudo random function (OPRF) is a two-party cryptographic protocol
that allows the receiver to input x and learn F (x) for some PRF F , only known
to the sender. OPRF in general can be thought of as a two-party protocol where
the sender inputs a secret key and the receiver inputs some items to evaluated
and obtains a PRF value for each input. In contrast, OPRF for PSI application
– which will be called batch OPRF – have been advanced in an independent

Y. Son—This work was done while Y. Son was at Samsung SDS.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 266–296, 2025.
https://doi.org/10.1007/978-981-96-0944-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_9&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_9

Revisiting OKVS-Based OPRF and PSI 267

direction. As two-party PSI does not require the sender to choose the secret key
nor to evaluate each item separately, batch OPRF usually outputs a random
secret key to the sender and batched PRF evaluations to the receiver. Any item
which is not in the batched inputs at the moment of invoking the OPRF protocol
cannot be evaluated.

At the cost of such demerits, batch OPRFs are concretely efficient since they
heavily use symmetric key cryptography rather than public key cryptography
such as Diffie-Hellman computation. Pinkas et al. [9] proposed a PSI protocol
based on a special sort of data structure called oblivious key-value store (OKVS)
(called PaXoS at that time of writing). Although this paper does not include any
explicit OPRF construction, the PSI protocol can be naturally extend to a PSI
protocol, which we call PRTY construction hereafter. After then, Rindal and
Schoppmann proposed an improved construction while replacing a subroutine
of the PRTY construction by another functionality called vector-oblivious linear
evaluation (VOLE), which forms the state-of-the-art protocols of (batch) OPRF
and PSI protocols [3,10], and we call this by RS construction.

Currently, the RS construction that utilizes VOLE over large field such as
GF(2128) has much better performance than the PRTY construction, in both
computation and communication view. It depends on so-called VOLE protocols
based on pseudorandom correlation generator (PCG) [4,5,11], which assumes
some (some variants of) Learning Parity with Noise (LPN). Meanwhile, the
PRTY construction used the OOS functionality [8] (or GF(2)-VOLE), which
can be realized with only Minicrypt assumptions. However, as the performance
gap between two constructions is fairly large currently, the advantage of PRTY
construction in robustness may seem less attractive.

In batch OPRF protocols based on OKVS, the receiver encodes all its input
items into an OKVS to obtain the PRF values of them. Because of the linearity
of existing OKVS, the OPRF protocols based on OKVS by nature allows more
evaluations than it should. Pinkas et al. upper bound the allowed number of
evaluations information-theoretically, and Garimella et al. formalize the problem
to overpack in an OKVS as OKVS overfitting problem.

1.1 Our Contribution

We revisit the security of batch OPRFs, with respect to the number of evaluation.
Although OPRF protocols should prevent the receiver to arbitrarily evaluate
the PRF value, we found that batch OPRF protocols in [3,10,13] based on
OKVS allow more evaluations than the authors claimed. We point out the flaw in
the security proof, and present practical attacks on them.

In the malicious model, we propose an overfitting algorithm to solve the
OKVS overfitting problem, whose main idea is to reduce the overfitting prob-
lem of OKVS to either a k-XOR problem or a multicollision finding problem.
To the best of our knowledge, the second attack is the first constructive (not
information-theoretical) solving algorithm for the OKVS overfitting problem [7].
To prevent these attacks, [13] in the malicious setting incurs 1371% communi-
cation overhead, where the number of items is set to 220.

268 K. Han et al.

In PSI applications, our attacks usually incur a situation that a corrupt
receiver knows “the sender does not have some specific items”. In the literature,
the security of PSI only refers to the opposite side (“the sender have some spe-
cific items”). However, we clarify that such situation may leak some membership
information by computing statistical distance. Depends on the application set-
ting, the distance may exceed 2−λ where λ is the statistical security parameter.

In a construction aspect, we suggest some possible mitigations to prevent our
proposed attacks, and also provide revised security proof along with the mitiga-
tions in the malicious model. The mitigations shows more efficiency compared
to solely following the PRTY information-theoretic bound.

We also investigate more general instantiations of OKVS-based OPRF con-
struction, and suggest new instantiations that generalize the PRTY construction
[9] using a recently proposed VOLE protocol over Minicrypt assumptions [14].
In the fast network environments, our generalization even outperforms the RS
construction (with quasi-cyclic code). In slower network environment, as our
generalization requires more communication than the RS constructions, the RS
constructions remains the best one. Although, our generalization is still meaning-
ful in a view that it narrows the communication gap between the RS construction
(Cryptomania) and the PRTY construction (Minicrypt) from 4.2× to 1.3×.

2 Preliminaries

2.1 Notation

For a matrix A, each i-th row vector is denoted by �Ai and j-th column vector
is denoted by �Aj . For a vector �Δ = (Δ1, · · · ,Δn) and a matrix U , we denote
�Δ � U := (Δ1 · �U1, · · · ,Δnc

· �Unc). Unless otherwise stated, every field F in our
paper is assumed to be of characteristic 2, or we explicitly write the finite field
(or Galois field) of size q by GF(q). For a field F, we write a linear code C in a
kc dimensional subspace in F

nc with minimum distance dc by [nc, kc, dc]F, with
an exception of [nc, kc, dc]2 for F = GF(2) case. We often consider a [nc, kc, dc]F
linear code as a map C : F

kc → F
nc to write the codeword on �x ∈ B

kc by
C(�x). We denote computational security parameter by κ, and statistical security
parameter by λ. We denote B(n, p) binomial distribution of probability p and n
independent experiments.

2.2 Vector Oblivious Linear Evaluation

A (subfield) vector oblivious linear evaluation, precisely (F,B)-VOLE outputs
two parties a secret shares of scalar-vector multiplication Δ · �U for randomly
chosen Δ ∈ F and �U ∈ B

m to each party. When the subfield B equals to F, we
call it simply by F-VOLE. The corresponding ideal functionality Fvole is defined
as Fig. 1.

During the past few years, the performance of VOLE for large fields such as
GF(2128) has been rapidly improved, thanks to the advances on pseudorandom

Revisiting OKVS-Based OPRF and PSI 269

correlation generator (PCG) [5] based on learning with parity (LPN) problem.
However, such rapid performance is enabled by assuming the hardness of LPN
over somewhat non-standard codes [4,6,11]. Indeed, there has been proposed an
attack [11] on the silver code utilized in [6]. Meanwhile, Roy [14] proposed a novel
VOLE protocol that only requires Minicrypt assumptions, unlike the LPN-based
protocols. It is practically efficient for small field such as GF(2f) with f ≤ 8.

Fig. 1. An ideal functionality of Fvole(F,B) for (F,B)-vector oblivious linear evaluation

2.3 Oblivious Key-Value Store

Informally, an oblivious key-value store (OKVS) is a data structure that effi-
ciently encodes n pairs of keys and values, which satisfies if a value are random,
the corresponding key cannot be recovered from the encoding of the key-value
pairs.

Definition 1 (Oblivious Key-Value Store). An oblivious key-value store
(OKVS) with key universe K and value universe V consists of two functions:

– Ecd : (K×V)n →Vm ∪{⊥}, a function that receives n distinct key-value pairs
(ki, vi)i∈[n] then outputs encoding S or failure symbol ⊥;

– Dcd : Vm × K →V, a function that receives encoding S and a key k then
outputs the associated value v.

For correctness, for all I ⊂ K × V of n elements with distinct keys and an
ordering �I ∈ (K × V)n of I, an OKVS should satisfies

(k, v) ∈ I and Ecd(�I) = S 	= ⊥⇒Dcd(S, k) = v.

For obliviousness, for any pair of lists of n distinct keys (k1, . . . , kn) ∈
Kn and (k′

1, . . . , k
′
n) ∈ Kn and n random values v1, . . . , vn ←$ V,

Ecd ((k1, v1), . . . , (kn, vn)) and Ecd ((k′
1, v1), . . . , (k

′
n, vn)) should be computation-

ally indistinguishable.

270 K. Han et al.

The storage efficiency of OKVS can be measure by the expansion ratio of
the number of key-value pairs n and the length of the encoding vector m. Many
known OKVS constructions achieves m = (1 + εokvs) · n for some small constant
εokvs: PaXoS [9] achieves ε ≈ 1.4, 3H-GCT [7] and RR22 [10] achieve ε ≈ 0.3, and
RB-OKVS [3] achieve ε down to 0.03.

Several OKVS applications, such as OPRF and PSI, expect OKVS to have
linearity and support for some sort of homomorphic operations, and we call such
OKVS by linear OKVS.

Definition 2 (Linear OKVS). An OKVS is linear if there exists a function
row : K →Vm such that Dcd(S, k) = 〈row(k), S〉 for all k ∈ K and S ∈ Vm. If
the range of such function row can be restricted to a set of binary vectors, i.e.,
row : K →{0, 1}m, we call the OKVS as binary linear, or simply binary.

3 Oblivious PRF and OKVS-Based Constructions

This section provides a formal definition of oblivious PRF (and private set inter-
section), and reviews the OKVS-based OPRF constructions [9,13], which con-
sists of the state-of-the-art protocols [3,10].

Fig. 2. Ideal functionality Foprf of oblivious pseudorandom function.

3.1 Ideal Functionalities and Generic PSI Construction

The ideal functionality of an oblivious pseudorandom function (OPRF) is
described in Fig. 2, and the (two-party) private set intersection (PSI) function-
ality is described in Fig. 3. Ideally, the receiver should not be able to obtain
any OPRF evaluations other than for its input. However, the OPRF definition
in Fig. 2 allows more PRF evaluations, denoted by n′ > n for a malicious receiver,
and the PSI definition also allows at most n′ items for the malicious receiver.
This reflects the fact that known OPRF (or PSI) protocols enable an adversary
to learn OPRF values F (X) (or X ∩ Y) for some n′(> n)-sized set X, while
pretending to run the protocol with a size n set. This type of definition has been
widely adopted in the literature [9,13].

Revisiting OKVS-Based OPRF and PSI 271

Fig. 3. Ideal functionality Fpsi of (2-party) private set intersection.

PSI from OPRF. Given an OPRF functionality Foprf , it is straightforward to
construct a protocol that realizes Fpsi, as shown in Fig. 4. This protocol requires
one additional round of communication, with �2 · ny bits transferred from the
sender to the receiver, on top of the communication cost for realizing Foprf . The
concrete choice of �2 has been improved using better security proofs, and our
paper adapts the state-of-the-art result from [13].

Fig. 4. Protocol Πpsi for a private set intersection using Foprf .

Theorem 1 (Adapted from [13]). The protocol Πpsi realizes the Fpsi func-
tionality in the semi-honest model with �2 = λ + log(nxny) and in the malicious
model with �2 = κ, in a Foprf-hybrid model.

Remark 1. In more detail, the simulated view against the malicious sender in [13]
is distinguishable from the real protocol execution with 2�2/nx random oracle
queries. Hence, the simulation with �2 = κ can be distinguished by fewer than
2κ queries. Rindal and Schoppmann was already aware of this fact while they
sticked to use �2 = κ [13]. To be more rigorous, it is required to set �2 = κ+log nx

in order to simulate against the malicious sender. But we follow the choice �2 = κ
as the distinguishing advantage does not lead to any actual information leakage.

272 K. Han et al.

3.2 OKVS-Based OPRF Constructions

We present an overview of the OKVS-based OPRF construction in Fig. 5, which
captures the RS construction [3,10,13] with F = GF(2128) and the identity linear
code [1, 1, 1]GF(2128), as well as the natural OPRF extension from the PRTY PSI
protocol [7,9] with F = GF(2) and non-trivial binary linear codes. Detailed
parameter selections and security arguments will be presented in later sections,
as one of our main contributions is to identify the flaws in previous works.

Fig. 5. Integrated overview of OKVS-based OPRF protocols.

To see the correctness, the set {H2(x,Dcd(V, x)) | x ∈ X} should equal to
F (X) with the sender’s definition F (y) = H2(y,Dcd(W, y) − �Δ � C(H1(y))).
From the linearity of Dcd and the linear code C, we have

F (y) = H2(y,Dcd(W ′, y) − �Δ � C(H1(y)))

= H2(y,Dcd(V, y) − �Δ � C(Dcd(P, y) − H1(y)))

for any y ∈ {0, 1}∗. So, the OKVS correctness is ensured by the fact that
Dcd(P, x) = H1(x) for every x ∈ X. Thus, we further have

F (x) = H2(x,Dcd(V, y) − �Δ � C(Dcd(P, y) − H1(y))) = H2(x,Dcd(V, x)). (1)

Revisiting OKVS-Based OPRF and PSI 273

Remark 2. The original description in [9] used OOS (correlated) OT exten-
sion [8] instead of VOLE over GF(2), but two functionalities are exactly same.

Overfitted OKVS. The key to the correctness of OKVS-based OPRF in (1)
is the equality Dcd(P, x) = H(x) for every x ∈ X, ensured by the OKVS cor-
rectness. However, in OKVS-based OPRF protocols, a malicious receiver can
arbitrarily generate the OKVS encoding P , allowing more than n items x such
that Dcd(P, x) = H1(x). This enables the receiver to obtain the PRF values for
these x. Garimella et al. [7] formalize this issue as the OKVS overfitting game
as follows.

Definition 3 ((n, n′)-OKVS overfitting game, [7]). Let (Ecd,Dcd) be an
OKVS with parameters chosen to support n items, and let H1 : {0, 1}∗ →
{0, 1}�1 be a random oracle. For any arbitrary PPT adversary A that outputs
P ∈ {0, 1}�1×m ← AH(1κ), define

X ′ = {x | A queried H1 at x and Dcd(P, x) = H1(x)}.

If |X ′| > n′, then the adversary wins the (n, n′)-OKVS overfitting game.
We say the (n, n′)-OKVS overfitting problem is hard for an OKVS construc-

tion if no PPT adversary wins this game except with negligible probability.

PRTY Bound. It can be easily observed that if the underlying OKVS is linear,
a malicious receiver can obtain m = (1+εokvs)·n PRF evaluations with almost no
computational overhead. This fact leads OKVS-based OPRF protocols to focus
on n′ = c · m for some c > 1.

In [9], Pinkas et al. analyzed the choice of �1 (the output bit-length of
H1 in Fig. 5) that makes the OKVS-based OPRF construction information-
theoretically secure against malicious adversaries. This analysis can be
rephrased using OKVS terminology as follows.

Lemma 1 (PRTY bound, [9]). Suppose an adversary makes q queries to ran-
dom oracle H1 with output length �1, and then generates an OKVS P of size m.
For a fixed integer n′, let E denote the event that Dcd(P, x) = H1(x) for at least
n′ values x that were queried to H1. Then,

Pr[E] ≤
(

q
n′

)

2(n′−m)�1
.

Suppose there is a linear system Ax = b where A ∈ (F2�1)n′×m (n′ > m) is
invertible and b ←$ (F2�1)m. The probability that b produces a solvable system
is 2(n

′−m)�1 . Since the number of n′-tuples of queried items is
(

q
n′

)
, the bound in

Lemma 1 is quite tight, with only a small gap possible due to a non-invertible
OKVS system.

274 K. Han et al.

4 Security Flaws of OKVS-Based OPRFs

The OKVS-based OPRF naturally allows the receiver to locally computes F (x)
that satisfies Dcd(P, x) = H1(x) ∈ {0, 1}�1 . Thus, the length �1 should be
set properly to prevent unwanted PRF evaluations. Indeed, previous OKVS-
based OPRF protocols suggested some appropriate choice of �1 to bound the
number of PRF evaluation by n (semi-honest) or n′ (malicious), along with
corresponding security arguments. However, in this section, we present some
(possible) vulnerabilities in the previous works setting on n, n′ and �1, and show
that it indeed implies more number of PRF evaluations than the works claimed.

4.1 Caution for Possible Semi-honest OPRF

Although previous works [9,10,13] claimed the malicious security of the OPRF
protocol or the semi-honest security of the PSI protocol rather than the semi-
honest security of OPRF protocol, one can naturally derive an semi-honest ver-
sion of OPRF protocol and try to use it. In this section, we briefly point out
which security issue can be popped up.

All semi-honest OKVS-based PSI protocols set �1 = λ + 2 log n where n is
the number of items in both parties, whose rationale is to prevent unwanted
collision of hashed values. However, as random oracle is an idealization of cryp-
tographic hash function, it should be assumed that the receiver is free to query to
the random oracle before or after the protocol. It implies that the probability of
the equality Dcd(P, x) = H1(x) for a fixed P and a random x is 1/2�1 .

This fact discloses the trivial attack on the natural OPRF extension; for a
fixed P after the OPRF protocol, the corrupt receiver can query to H1 and find
inputs satisfying Dcd(P, x) = H1(x). As the computational security parameter
κ is much larger than those choices of �1, the receiver can obtain q/�1 extra
evaluations with q local computation of H1.

4.2 Malicious Flaw: Hardness of OKVS Overfitting Game

The OPRF (PSI) protocol of PRTY [9] takes �1 so that Pr[E] in the PRTY bound
(Lemma 1) is bounded by 2−λ, given n′ = c · m. One can check that larger n′

yields smaller �1, and such smaller �1 naturally brings better efficiency. Indeed,
[9] set n′ ≈ 12n to have efficient protocol where they reported experimental
results. Meanwhile, Rindal and Schoppmann [13] (implicitly) argued that n′

can be limited by only m = (1+εokvs)n, by setting �1 = κ. This obviously makes it
possible to take smaller �1 than [9] protocol, so that has better parameter choice
and better performance of the OPRF protocol.1 This has also been continously
adapted in the following works [3,10]; whose main points are improving OKVS
performance while following the framework of [13].

1 We are not saying that every performance gain of [13] comes from such small �1;
indeed the primary change from [9] to [13] that greatly affects to the performance is
replacing OOS functionality into LPN-based VOLE.

Revisiting OKVS-Based OPRF and PSI 275

However, we claim the choice of �1 = κ of RS construction with n′ = m
is flawed. The reason is simple: �1 = κ is less than �1 derived from the PRTY
bound with n′ = m. That is, the malicious receiver with unbounded power can
indeed find (more than) n′ items x fitting in some P . However, such presence of
unbounded adversary could be not considered as serious one, because one can
simply assume the computational hardness of OKVS overfitting problem to make
[13] secure. Indeed, Garimella et al. [7] stated that OKVS overfitting could be
computationally hard even �1 is below PRTY bound.

What we further make is the concrete attack that shows OKVS overfitting
can be computationally done, so that �1 = κ choice of [3,10,13] allows more PRF
evaluations than n′ = m using less than 2κ computational cost. The details are
placed in the next section independently.

Flaw in the Security Proof. The Hybrid 4 of Lemma 2 in [13] is the relevant
argument that argues n′ can be limited to m = (1 + εokvs)n. However, their
argument only considered the case where the malicious adversary fixes the OKVS
encoding P and then expects that Dcd(P, x) = H1(x) for additional x. This
makes the proof false, because the malicious adversary can make q = O(2κ)
amount of H1 queries in advance, and then tries to find some maximal subset
X ′ that overfits to some P of size m among the H1 queries.

4.3 Efficacy of Extra Evaluation

In the OPRF view, extra evaluation directly violates the security requirements.
However, the implication on PSI need some consideration. If the receiver obtains
an additional PRF evaluation F (y) for y ∈ Y \X, this immediately violates
the PSI functionality since the receiver knows other information than the inter-
section X ∩ Y . The case where the additional PRF evaluation F (y) is for
y /∈ X ∪ Y lets the receiver know that the element y is not in the sender’s
set Y , whose effect seems a bit ambiguous.

In fact, we can measure the amount of information leakage from the informa-
tion y /∈ Ȳ . Suppose that D1 be the original distribution of the sender’s dataset
Ȳ with p1(Ȳ) = PrY ∼D1 [Y = Ȳ]. And, let D2 be the distribution of the dataset
without an element z in a universe of items in set. From the additional leakage of
z /∈ Ȳ , the corrupt receiver now have the distribution D2 of the sender’s dataset.
And the probability function of D2 can be computed as follows:

p2(X̄) =

{
1

1−p′ · p1(X̄) if z /∈ X̄

0 otherwise

where p′ =
∑

{X̄|z∈X̄} p1(X̄). Note that the probability p2(X̄) is increased pro-
portionally to have sum of all the probability 1 when z /∈ X̄. Now we can compute
the statistical distance between D1 and D2,

dist(D1,D2) =
∑

z/∈X̄

∣
∣p1(X̄) − p2(X̄)

∣
∣ +

∑

z∈X̄

∣
∣p1(X̄) − p2(X̄)

∣
∣ = 2p′.

276 K. Han et al.

From this, we conclude that the information of y /∈ Y can lead to a non-
negligible amount of information, if y has a non-negligible probability (> 2−λ)
to be included in the honest party’s dataset. Moreover, this series of computa-
tions shows an undesirable feature of the PSI protocol, which is the dependency
of the security on the distribution of the dataset.

5 Overfitting Attacks on Various OKVS

The �1 bound in [13] was found out to be information-theoretically not secure. To
connect the information-theoretic vulnerability to a concrete attack, we need to
overfit the OKVS P . Overfitting P refers to a problem to find n′ > m items
x1, . . . , xn′ and a vector P that satisfy Dcd(P, xi) = H1(xi) for all i. Since the
OKVS algorithm used in [13] is binary linear, there is a function row : {0, 1}∗ →
{0, 1}�1 such that Dcd(P, x) = 〈row(x), P 〉. Then overfitting P is in principle
a finding �X = (x1, . . . , xn′) which builds a redundant (i.e., linearly dependent)
system of linear equations row(�X) · P = H1(�X) for n′ > n, where row(�X) (and
H1(�X)) is a matrix whose i-th row is row(xi) (and H1(xi)).

For the idea of the attacks, observe that if there are some elements x1, . . . , xk

in �X satisfy that
∑k

j=1 row(xj)‖H1(xj) = 0, they contribute to the rank of
row(�X) by at most k − 1. Finding such x1, . . . , xk is equivalent to solving the k-
XOR problem for k ≥ 2, and hence we can build �X of length k(m−1)/(k−1) > m

by solving the k-XOR problem repeatedly. Although row(�X) is a quite large
matrix of size k × m where k-XOR problem is difficult in general, the attacks
can be practically feasible thanks to the special structure of row(�X) observed
in previous OKVS constructions [3,10,13], whose details are described in the
following subsections.

Before presenting the attacks, we provide some definitions of basic problems
required to formulate the attacks.

k-XOR Problem and Multi-collision Finding Problem. Before explaining
our attacks, we briefly introduce the k-XOR problem and the multi-collision
finding problem since it is a crucial subroutine of our attacks to solve these
problems. The k-XOR problem is to find a k-tuple in some lists whose sum is 0.
Formally, a k-XOR problem is defined as follows.

Definition 4 (k-XOR Problem). Given lists of n-bit strings L1, . . . , Lk, find
k distinct elements a1 ∈ L1, . . . , ak ∈ Lk such that their XOR sum is zero:

a1 ⊕ a2 ⊕ · · · ⊕ ak = 0.

The state of the art algorithm to solve the k-XOR problem is Wagner’s k-tree
algorithm [17]. It costs O(k · 2n/(1+�log k�)) time and space with lists of size
O(2n/(1+�log k�)) each.

For a given cryptographic hash function, the multi-collision finding problem
is to find c multi-collisions which give the same hash output. Formally, a multi-
collision finding problem is defined as follows.

Revisiting OKVS-Based OPRF and PSI 277

Definition 5 (c-Multicollision Finding Problem). Given a hash function
H : {0, 1}∗ → {0, 1}n, find c distinct elements a1, . . . , ac such that:

H(a1) = H(a2) = · · · = H(ac).

The best algorithm to solve the c-multicollision finding problem is proposed by
Suzuki et al. [15], which costs O((c!)1/c · 2(c−1)n/c) time and space.

5.1 Overfitting PaXoS

PaXoS [9] is the firstly proposed OKVS with linear complexity. Given a vector
of input items �X, which is an ordering of the set X, PaXoS has a following type
of the row(�X) matrix.

row(�X) = [R �X | D �X]

where R �X ∈ F
n×m
2 is defined by a pair of hash functions (h1, h2) each to [m] =

{1, . . . , m}, and D �X ∈ F
n×d
2 is a matrix with uniformly random entries. Each

row of R �X corresponds to an item x, and it has only two 1’s whose positions are
h1(x) and h2(x). In the same row, the row of D �X also corresponds to the same
item x, and it is defined by a uniform hash function h0 : {0, 1}∗ → {0, 1}d. We
note that m is set to be 2.4n in [13].

As R �X is a sparse matrix, it is hard to apply Wagner’s k-tree algorithm
directly on row(x)‖H1(x). So, we will solve the k-XOR problem over h0(x)‖H1(x)
rather than row(�X)‖H1(x). To make R �X part also sum to zero, we bucketize
row(�X)‖H1(x) by h1 and h2, and deliberately organize a singular combination
of buckets. For an easy example, if three items x1, x2, x3 satisfy

h1(x1) = 1, h2(x1) = 2,
h1(x2) = 2, h2(x2) = 3,
h1(x3) = 3, h2(x3) = 1,

then R �X part of those three items sum to zero. Then, solving 3-XOR problem in
those three buckets gives a small redundant system of equations of rank 2. Our
attack on [13] basically repeats these steps until row(�X) has full rank, but the
number of buckets may vary. In the following, we describe the detailed procedure
of the attack.

– (Case n′ < 2(m−1)) For this case, we reduce the (n, k(m−1)
k−1)-overfitting game

to a k-XOR problem as follows. We will assume that k − 1 | m − 1, but the
attack also works well otherwise.
1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the

items in Q to h0, h1, h2, and H1. Bucketize Q by {h1, h2}, denoting Bh1,h2

the corresponding bucket. Then, there are
(
m
2

)
buckets, and there are

expectedly q/
(
m
2

)
items per bucket.

2. Make a k × k-matrix K over F2 such that
• rank(K) = k − 1;

278 K. Han et al.

• rank(K ′) = k − 1 where K ′ ∈ F
(k−1)×(k−1)
2 is sub-matrix of K with

first k − 1 rows and first k − 1 columns;
• each row of K should have only two 1’s.

See Fig. 6 for examples.
3. Set X ′ ← ∅, and do the following for j ∈ {1, 1+(k−1), 1+2(k−1), . . . ,m−

k + 2}.
(a) Denote the positions of two 1’s in the i-th row (1 ≤ i ≤ k) of K

by pi and p′
i. Solve a k-XOR problem for h0(x) ‖ H1(x) in buckets

Bj+p1,j+p′
1
, . . . , Bj+pk,j+p′

k
.

(b) Denote the solution (x1, . . . , xk), then it satisfies

k∑

i=1

h0(xi)‖H1(xi) = 0.

Set X ′ ← X ′ ∪ {x1, . . . , xk}
4. Let �X ′ = (x′

1, . . . , x
′
n′) be an ordering of X ′ where n′ = k(m−1)

k−1 . Since
rank(row(�X ′)) = rank(row(�X ′)|H1(�X ′)), there is a solution P ′ of
the linear equation row(�X ′) · P ′ = H1(�X ′) where H1(�X ′) =
(H1(x′

1), . . . , H1(x′
n′)).

As solving a k-XOR problem of (d + �1)-bit strings costs O
(
k2

d+�1
1+�log k�

)

time, our attack costs O

(
m22

d+�1

1+�log k�

)
time including time for querying

to the random oracle. Note that the time cost for random oracle query dom-
inates the cost for solving k-XOR problems.

– (Case n′ ≥ 2m) For this case, we reduce the (n, c(m − 1))-overfitting game
to a c-multicollision (c ≥ 2) finding problem as follows.
1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the

items in Q to h0, h1, h2, and H1. Bucketize Q by {h1, h2}, denoting Bh1,h2

the corresponding bucket. Then, there are
(
m
2

)
buckets, and there are

expectedly q/
(
m
2

)
items per bucket.

2. Set X ′ ← ∅ and do the following for j ∈ {1, 2, . . . ,m − 1}.
(a) Find a c-multicollision for h0(x) ‖ H1(x) from bucket Bj,j+1.
(b) Gather the solutions of the problem to X ′.

3. Let �X ′ = (x′
1, . . . , x

′
n′) be an ordering of X ′ where n′ = c(m − 1). Since

rank(row(�X ′)) = rank(row(�X ′)|H1(�X ′)), there is a solution P ′ of the
linear equation row(�X ′) · P ′ = H1(�X ′).

As finding c-multicollision of (d + �1)-bit strings costs O((c!)1/c2
(c−1)(d+�1)

c)
time, our attack costs O(m22

(c−1)(d+�1)
c) time for small enough c.

5.2 Overfitting 3H-GCT or RR22

Garimella et al. [7] proposed a 3H-GCT OKVS that generalizes PaXoS by using
3 hashes instead of 2 hashes. Raghuraman and Rindal [10] proposed a similar

Revisiting OKVS-Based OPRF and PSI 279

Fig. 6. Examples of Step 2.

OKVS that has only w 1’s in R �X part, which is almost the same with 3H-GCT for
w = 3. Precisely, it also follows the form row(�X) = [R �X |D �X], where R �X ∈ F

n×m
2

is defined by a triple of hash functions (h1, h2, h3) each to [m], and D �X ∈ F
n×d′

2�1

is a matrix with uniformly random entries; 3H-GCT proposal sets �1 = 1, and
RR22 sets �1 = κ. We denote d = d′�1. Each row of R �X corresponds to an item
x, and it has only three 1’s whose positions are h1(x), h2(x) and h3(x). Each
row of D �X also corresponds to the same item x, and it is defined by a uniform
hash function h0 : {0, 1}∗ → {0, 1}d. We note that m is set to be approximately
1.3n in [13].

As PaXoS and 3H-GCT are similar, the attacks for PaXoS work well on this
case except some details. The buckets should be labeled with three hash values
{h1, h2, h3}. In Step 2, since 3H-GCT uses three hash functions, the submatrix
should be of the different form. Step 2 can be rephrased to attack 3H-GCT as
follows.

2. For an even integer k > 2, make a k × (3k/2)-matrix over F2 of rank k − 1.
Each row of this matrix should have only three 1’s. See Fig. 7 for examples.

The asymptotic time complexity should be O(m) times larger than that for
PaXoS.

Fig. 7. Examples of submatrices when attacking 3H-GCT.

280 K. Han et al.

5.3 Overfitting RB-OKVS

RB-OKVS is an OKVS proposed by Bienstock et al. [3], whose row(�X) has
no sparse part unlike PaXoS or 3H-GCT. Given a pair of hash functions h1 :
{0, 1}∗ → [m − d] and h0 : {0, 1}∗ → {0, 1}d, row(x) for an item x is defined by

row(x)[i] =

{
h0(x)[i − h1(x)] if h1(x) < i ≤ h1(x) + d

0 otherwise

where v[n] for a vector v denotes the n-th component of v.
The attack can be done in the almost similar way to PaXoS and 3H-GCT.

The details can be found in Appendix A due to the space limit.

5.4 Efficacy of the Attacks

To measure the effectiveness of the attacks, we plot three dot graphs of �1 corre-
sponding to the extra-evaluation ratio n′/m for each OKVS in Fig. 8b, 8a, and
8c. Common to all the three graphs, the blue curve is the PRTY bound [9] for
each parameter set, and the yellow line is �1 which was claimed secure in [13].
We note that [3,10] follow the choice of �1. The red dots are the least �1 to pre-
vent our attacks. Each red dot corresponds to either 3 ≤ k ≤ 20 of the k-XOR
problem or 2 ≤ c ≤ 3 of the c-multicollision finding problem. The hash length
�1 to prevent our attacks are much larger than �1 claimed in [13]. Each graph
is plotted for n = 220, and the detailed choice of parameters is written in each
figures.

When the attacks are applied in the context of PSI, it implies that a corrupt
receiver can input n′ random items rather than n chosen items. As data is not
distributed uniformly at random in practice, n′ random items seem less valuable
than n chosen items so the attacks are quite useless. However, the attacks can still
evaluate more items than claimed including n chosen items as follows.

1. For a fixed (ordered) set �X = (x1, . . . , xn), make the row(�X) matrix.
2. Using Gaussian elimination, find all the non-pivot positions. There are at

least (m − n) non-pivot positions.
3. Let Q be a set of items whose hi (1 ≤ i ≤ 3) values are all in the non-pivot

positions.
4. Mount the attack with Q as if there is no pivot positions.

It is straightforward that this variation for RS21 and RR22 can evaluate n +
n′
m · (m − n) with similar complexities. For BPSY23, it is not always true. If
a consecutive d positions do not include k − 1 non-pivot positions, the attack
cannot utilize all the non-pivot positions so that the number of evaluation may
be less than n′

m · (m−n). For the worst case (most of the consecutive d positions
do not include k − 1 non-pivot positions), this variation may not evaluate more
than m items.

Revisiting OKVS-Based OPRF and PSI 281

Fig. 8. �1 to prevent the attack to various protocols.

6 Generic Security Considerations

In this section, we propose generic mitigations for our attacks, and a modified
OKVS-based OPRF with provably secure choice of parameters.

6.1 Mitigations for Attacks and Revised Parameter Selection

For the semi-honest case, note that the attack in Sect. 4.1 allows one additional
PRF evaluation with probability 1/2�1 . Thus, to prevent this attack, we recom-
mend to raise �1 to at least κ for the semi-honest case, from the previous works
choice �1 = λ + 2 log n.

For the malicious case, the adversary can try to overfit OKVS, which founds
additional PRF evaluation more efficiently. Here, observe that the possibility of
OKVS overfitting depends on the number of H1 queries, say q, as well as the
length �1. If we can restrict q less than 2κ, OKVS overfitting would gets harder

282 K. Han et al.

and then we can utilize more efficient OPRF parameters. This can be simply
done by set a sort of timeout for the (corrupt) receiver. To do this, we modify
two parts of the protocol, as following.

1. At the beginning of the protocol, the sender samples random salt salt and
transmit it to receiver. Then, both parties incorporates salt into all random
oracle inputs. This clearly prevents the malicious receiver prepare H1 values
before the protocol starts.

2. The sender aborts the protocol if the time between sending the salt and receiv-
ing the correction matrix back from the receiver exceeds a certain amount of
time.

Given that the overfitting attack is more effective than the semi-honest attack,
this mitigation technique has an effect of reducing the number of queries for
the overfitting attack. We formalize this problem as a new overfitting game as
follows.

Definition 6 ((n, n′, qon, qoff)-OKVS online overfitting game). Let
(Ecd,Dcd) be an OKVS with parameters chosen to support n items, and let A
be an arbitrary PPT adversary. Run P ← AH1(1κ, qon) where qon is the number
of queries to H1 before outputting P . Define

X ′ = {x | A queried H1 at x and Dcd(P, x) = H1(x)}
where A can query to H1 less than qoff times after P is produced. If |X ′| > n′,
then the adversary wins the (n, n′, qon, qoff)-OKVS online overfitting game.

The online query complexity qon should be determined after reviewing a
number of factors; such as, computing power of participating parties, timeout
time, or network environments. Given that recent Bitcoin’s hash rate is about
269 hashes per second,2 if those factors are unknown beforehand, qon = 296 seems
a safe choice for not a long timeout time. The offline query complexity qoff is the
original amount of permitted query, which is usually O(2κ).

Concrete Choice of �1. We provide some concrete choices of �1 that makes
OKVS online overfitting game. For that, we first consider n′

1 by the maximum
number of allowed evaluations following the PRTY bound given that qon random
oracle queries are permitted. Then we let n′

2 be the least integer such that

Pr
S←B(qoff ,2−�1)

[S > n′
2] < 2−λ,

which can be rewritten by multiplicative Chernoff bound as follows.
(

eqoff

n′
22�1

)n′
2

< 2−λ

Then, this �1 is a secure choice of n′ = n′
1 + n′

2 allowed evaluations. Table 1
summarizes �1 according to n′ and qon.
2 This data is retrieved from https://www.blockchain.com/explorer/charts/hash-rate

in May 2024.

https://www.blockchain.com/explorer/charts/hash-rate

Revisiting OKVS-Based OPRF and PSI 283

Table 1. The choice of �1 depending on qon and n′, where m is set to be 1.3× 220, and
qoff is set to be 2128. For qon = 2128, the offline complexity qoff is set to be 0, which is
same as the original PRTY bound with q = 2128.

log qon

n′/m
1.5 2 3 4 5

32 111110109108108

64 134112109108108

96 226150113111109

128 322214160141132

In Table 1, a reader might feel that �1 converges to 108 when n′/m is suf-
ficiently large, whatever qon is. It is because the semi-honest attack allows 2
times more evaluation if �1 is decreased by a single bit. So, �1 can be less than
108 if n′/m is large enough; if n′/m = 1000, then �1 = 100.

On �1 for the Semi-honest Model. At the beginning of this section, we
recommend to set �1 = κ = 128 for the semi-honest model. Meanwhile, the
choices of �1 for the malicious model presented in Table 1 for qon ≤ 296 is less
than 128. One may think this weird, because the malicious model allows smaller
�1 than the semi-honest model. However, we stress that not only the adversarial
model that determines the possible attacks, but the bound n′ for the number of
PRF evaluations is also an important factor for �1: In the semi-honest model, the
bound n′ is implicitly set by n, whereas the malicious model allows somewhat
larger n′ such as c · m for m = (1 + εokvs)n. Finally, it would be possible to
extend the definition of semi-honest OPRF to allowing further PRF evaluation
n′, which is not explicitly done in our OPRF definition, which enables to set
�1 = 128 − log n′ for the semi-honest model.

6.2 Revised Security Proof

We present the revised OKVS-based OPRF construction in Fig. 9, and The-
orem 2 that specifies the correct conditions of parameters, which reflects the
previous works the security flaws.

Correctness. We check that the set {H2(Dcd(V, x)+w) | x ∈ X} indeed equals
to F (X) with the sender’s definition

F (x) = H2(x,Dcd(W ′, x) + w − �Δ � C(H1(x, salt))).

284 K. Han et al.

For the readability, we omit salt in H1 and w for a while, which are common for
both parties. Then it holds that from the linearity of Dcd and linear code C

Dcd(W ′, y) − �Δ � C(H1(y)) = Dcd(V + �Δ � C(P), y) − �Δ � C(H1(y))

= Dcd(V, y) − �Δ � (Dcd(C(P), y) − C(H1(y))

= Dcd(V, y) − �Δ � C(Dcd(P, y)) − C(H1(y)))

= Dcd(V, y) − �Δ � C(Dcd(P, y) − H1(y)) (2)

for any y ∈ {0, 1}∗. Note that Dcd(C(P), y) = C(Dcd(P, y)) requires that row(y)
is a vector of Bnc for every y ∈ {0, 1}∗, which is always true when the underlying
OKVS is binary. Now, the OKVS correctness property ensures Dcd(P, x) =
H1(x) for every x ∈ X, then Eq. (2) further becomes

Dcd(W ′, x) − �Δ � C(H1(x)) = Dcd(V, x) − �Δ � C(Dcd(P, x) − H1(x))

= Dcd(V, x) − �Δ � C(H1(x) − H1(x)))
= Dcd(V, x),

which concludes the correctness of our framework.

Security Proof. The underlying proof idea is similar to the previous works [9,
13], whose main idea is to show that Dy := Dcd(P, y) − H1(y) has sufficient
(≥ κ) entropy. However, our statement and proof have two distinct points. First,
it provides general conditions on the linear code [nc, kc, d]B for arbitrary choice
of F and B, which correctly applies to both previous constructions. Second, our
proof correctly provides the condition on �1 considering our proposed attack;
namely online OKVS overfitting game.

Theorem 2. Let F be a field, B be a subfield of F, and �1 > 0 be an integer that
makes (n, n′, qon, qoff)-online OKVS overfitting game hard. Let C = [nc, kc, d]B
be a B-linear code where kc · log |B| ≥ �1 and d · log |F| ≥ κ. Then the pro-
tocol of Fig. 9 securely realizes Foprf against (qon, qoff)-malicious adversary in a
Fvole(F,B)-hybrid model.

We prove the theorem by the following two lemmas.

Lemma 2. The protocol of Fig. 9 securely realizes Foprf against malicious sender
A who queries to random oracles at most q times.

Proof. The S interacts with A as follows:

– S plays the role of Fvole. S waits for A to send (�Wi,Δi)i∈[nc] ∈ (Fm × F)nc .
– On behalf of the receiver, S waits for A to send salt and cs. Then, S sends

uniform wr ∈ F
nc and U ′ ∈ B

m×nc . Next, S waits for A to send ws and
aborts if cs 	= H(ws).

– For every queries to H, S abort if there exists output collision.
– Whenever A queries H2(y, q), if q = Dcd(W ′, y)+w − �Δ�C(H1(y, salt)) and

H2(y, q) has not previously been queried, send y to Foprf and programs H2

to the response. Otherwise, H2 responses normally.

Revisiting OKVS-Based OPRF and PSI 285

Fig. 9. Modified OKVS-based OPRF construction.

To prove that this simulation is indistinguishable, consider the following hybrids.

– G0: The same as the real protocol except S plays the role of Fvole.
– G1: S aborts if there exists output collision in H queries. As H as output

length 2κ,

Pr [G1 aborts] ≤ q2

22κ

– G2: S samples U ′ uniformly instead of computing U ′ = C(P) − U . Since U
is chosen uniformly at random, the distribution of A’s view does not change
except when Ecd aborts. Since the probability that Ecd abort is less than 2−λ,
the difference from the previous game is negligible:

|Pr [A wins G1] − Pr [A wins G2]| ≤ Pr [Ecd aborts in G0] ≤ 1
2λ

286 K. Han et al.

– G3: When S samples U ′ and wr, abort if there exists (y, σ) such that H2(y, σ)
has previously been queried and σ = Dcd(W ′, y) + w − �Δ � C(H1(y)). As wr

is chosen uniformly at random, we have

Pr[G3 aborts.] ≤ q

|F|nc
≤ q

2κ

Note this hybrid represents why wr should be sampled by the receiver and
sent to the sender.

– G3: Whenever A queries H2(y, σ) after U ′ is sampled, if σ = Dcd(W ′, y) +
w − �Δ � C(H1(y)) and H2(y, σ) has not previously been queried, send y to
Foprf and programs H2 to the response. Otherwise, H2 responses normally.
As output distribution of Foprf is random, the distribution of A’s view is
identical. ��

Lemma 3. The protocol of Fig. 9 securely realizes Foprf against (qon, qoff)-
malicious receiver A.

Proof. The S interacts with A as follows:

– S plays the role of Fvole. S waits for A to send (�Vi, �Ui)i∈[nc] ∈ (Fm × B
m)nc .

– On behalf of sender, S sends uniform salt and cs to A.
– When A sends wr, sample uniform ws and program H(ws) = cs.
– When A sends U ′, compute U ′ − U = C(P). For H1(x) queries made by A,

S checks if Dcd(C(P), x) = C(H1(x, salt)), S sends x to Foprf and receives it
as F (x).

– For each x ∈ X, S programs H2(x,Dcd(W ′, x)+w − �Δ�C(H1(x))) as F (x).

To prove that this simulation is indistinguishable, consider the following hybrids.

– G0: The same as the real protocol except S plays the role of Fvole, so S waits
for A to send (�Vi, �Ui)i∈[nc] ∈ (Fm × B

m)nc .
– G1: When S samples uniform salt, S abort if there exists a prior query from

A to H1 with form H1(·, salt). As |salt| ≥ κ, we have

Pr [G1 aborts] ≤ qoff

2κ

– G2: When A sends U ′ and wr, compute U ′ −U = C(P). For each of the previ-
ous H1(x, salt) queries made by A, S checks if Dcd(C(P), x) = C(H1(x, salt))
and if so adds x to X. S sends X to Foprf and receives {F (x) | x ∈ X} in
response.

– G3: S samples uniform cs instead of computing H, but programs H(ws) = cs

after sampling ws uniformly at random. G3 aborts if there exists a previous
query to H with input collision or there exists a previous query H2(x, σ) such
that σ = Dcd(V, x)+w. Then, as ws is chosen uniformly at random from F

nc

Pr [G2 aborts] ≤ qoff

Fnc
≤ qoff

2κ

Next, S programs H2(x,Dcd(V, x) + w) = F (x) for x ∈ X and by the unifor-
mity of F (x), it does not change A’s view. Note that this hybrid represents
why ws is required.

Revisiting OKVS-Based OPRF and PSI 287

– G4: For each query H2(x, σ), S add x into X and programs H2(x, σ) = Foprf(x)
if {

σ = Dcd(V, x) + w

Dcd(C(P), x) = C(H1(x, salt))

then, add x to X and program H2(x, σ) = Foprf(x). Similarly, for each query
H1(x, salt), S add x into X and programs H2(x,Dcd(V, x) + w) = Foprf(x) if

Dcd(C(P), x) = C(H1(x, salt)).

By the uniformity of Foprf(x), this does not change the view of A. Note that
|X| ≤ n′, by the hardness of (n, n′, qon, qoff)-online OKVS overfitting problem.

– G5: At the end of protocol, S samples Δ and aborts if A ever makes an
H2(x, σ) query for x /∈ X such that

σ = Dcd(W ′, x) − �Δ � C(H1(x, salt)).

By (2), for queries H2(x, σ) such that Dcd(P, x) 	= H1(x, salt), as there is at
least d log |F|-bit entropy from �Δ, we have

Pr[G5 abort] ≤ Q

2κ
.

��
6.3 Double Execution of OPRF

This section proposes a novel idea for the extreme case where much tighter n′ ≈
m is required. Recall that the underlying idea of preventing OKVS overfitting
is to limit the number of H1 queries that the malicious receiver can obtain.
The basic idea of what we call double execution of OPRF is to change H1 by
another OPRF, say F , and using the value again to encode OKVS. Precisely, for
a given OPRF functionality OPRFn for n items with variable number of allowed
evaluations, the double execution proceeds as follows.
1. The sender and the receiver invoke OPRFn with n′′ � m allowed evaluations.

The receiver gets at most n′′ evaluated items {F (x1), . . . , F (xn′′)}. We will
denote the bit-length of H1 in this phase �′′

1 .
2. The sender and the receiver invoke OPRFn one more time. But the value set

VX at OKVS encoding step at receiver’s side becomes {F (x) : x ∈ X} instead
of {H1(x) : x ∈ X}. As a result, the receiver gets at most n′ evaluated items
{G(xi1)), . . . , G(xin′))} where ik ∈ [n′].

The double execution has in fact the same effect of constraining online com-
plexity. In the second phase, since the receiver use F (x) instead of H1(x), a
corrupt receiver can try to overfit an OKVS with only n′′ random oracle queries.
As �1 required for tight n′ ≈ m is so huge in the PRTY bound, the double exe-
cution is an economic choice for a tight n′ ≈ m. For example, if a sender and a
receiver want to achieve n′ = 1.02m in [10] with qon = 2128, n = 220, �1 should be
no less than 5492 bits by PRTY bound. If they use double execution in this case,
it is sufficient that �′′

1 = 109 for n′′ = 24m and �1 = 307 for n′ = 1.02m. The
communication of double execution is 13.2 ≈ 5492/(109 + 307) times smaller
than the single execution.

288 K. Han et al.

7 Better OPRFs from Intermediate Fields

Although the original purpose of Fig. 9 was to address both the PRTY construc-
tion (with F = GF(2)) and the RS construction (with F = GF(2128)) simultane-
ously, it also demonstrates another instantiation with F = GF(2f) for 1 < f < κ,
beyond the binary field GF(2) and the full κ-degree field GF(2κ). This section
discusses these alternative instantiations and reveals more efficient OKVS-based
OPRF protocols compared to previous ones.

7.1 Concrete Instantiations

We first consider the instantiation with small-sized F, for example, F = GF(2f)
with f ≤ 10. In this case, the underlying VOLE can be efficiently realized by
the protocol due to [14], referred to as SoftSpokenVOLE, which is based solely
on Minicrypt assumptions. The computation cost of the VOLE scheme grows
exponentially with respect to the parameter f , limiting its practical application
when f becomes too large. As a result, the experiments conducted in [14] were
restricted to values of f up to 10.

For larger fields F, the LPN-based VOLE protocol, known as SilentVOLE
[5], offers a more efficient solution compared to the SoftSpokenVOLE protocol.
It has a linear computational complexity with respect to the field size, making
it suitable for handling large fields without incurring excessive computational
costs. However, due to the linear complexity of the VOLE, there is no benefit to
using nc > 1. Therefore, we only consider small-sized F hereafter.

Choice of B. To complete the instantiation, we need to specify the choice of
the subfield degree b that determines B = GF(2b), which can be freely chosen
among the divisors of f . Here, we highlight two advantages of taking b = 1.

First, the main computation of SoftSpokenVOLE consists of B operations, so
taking b = 1 makes every computation in the VOLE as bit-operations, resulting
in the fastest performance. In fact, the original proposal and its application
[2] used b = 1 for efficiency. Second, the transmission of the correction matrix
U ′ ∈ B

m×nc (from the receiver to the sender) dominates the communication cost
of our OPRF protocol with m · nc · log |B| = m · nc · b bits. As m is determined
by the input set size n and OKVS expansion factor εokvs, the choice of b only
affects nc ·b. Considering the general bound nc ≥ dc +kc −1 for every linear code
and the conditions kc ≥ �1/b and dc ≥ κ/f in Theorem 2, we have the inequality
nc ·b ≥ κ ·b/f +�1−b. This implies that b = 1 allows the minimal communication
cost. However, for b = 1, the linear code achieving nc = dc+kc−1 (called maximal
distance separable code) does not always exist, and that argument cannot assure
that b = 1 is the best choice. For these reasons, we investigate the known lower
bounds of nc such that the linear code [nc, kc, dc]B exists in [1] for given kc and
dc in Table 2, which shows that b = 1 provides the minimal nc · b.

Meanwhile, the choice of b affects other computational parts. The compu-
tation of F (·), particularly the OKVS decoding Dcd(W ′, x) or Dcd(V, x) where

Revisiting OKVS-Based OPRF and PSI 289

Table 2. Some minimal possible values of nc and corresponding nc ·b where [nc, kc, dc]B
can exist. The length �1 = 109 (resp., 150) is taken from Table 1 with qon = 296 with
n′ = 5m (resp., 2m).

�1 = 109 �1 = 150

F dc B kc nc nc · b F dc B kc nc nc · b

GF(28) 16

GF(2) 109 149 149

GF(28) 16

GF(2) 150 192 192

GF(22) 55 78 156 GF(22) 75 99 198

GF(28) 14 29 232 GF(28) 19 34 272

GF(26) 22

GF(2) 109 162 162

GF(26) 22

GF(2) 150 206 206

GF(22) 55 86 172 GF(22) 75 107 214

GF(23) 37 62 186 GF(23) 50 75 225

GF(26) 19 40 240 GF(26) 25 46 276

GF(24) 32

GF(2) 109 184 184

GF(24) 32

GF(2) 150 230 230

GF(22) 55 99 198 GF(22) 75 120 240

GF(24) 28 59 236 GF(24) 38 69 276

GF(22) 64
GF(2) 109 250 250

GF(22) 55 145 290

W ′, V ∈ F
m×nc , becomes maximal when b = 1 since it consists of XOR opera-

tions of (nc · f)-bit strings. Furthermore, two parties need to execute nc times of
(F,B)-VOLE, and the number of VOLE instances would be maximal for b = 1.

Considering these facts, another choice of b other than 1 could provide a
trade-off between computation and communication costs. As verifying the com-
putational benefit of other choices of b requires another extensive experimental
effort, we choose to fix b = 1 for its clear communication advantage and leave
the investigation of further trade-offs with other choices of b 	= 1 for future work.

Communication Cost. This framework consists of two phases of interaction:
VOLE, and the transmission of U ′ = C(P) − U ∈ B

m×nc from the receiver
to the sender. Assuming the VOLE communication is negligible (a reasonable
assumption due to recent advances in VOLE), the second phase dominates the
total communication cost, specifically

commoprf = (nc log |B|) · m = (nc log |B|) · (1 + εokvs) · n. (3)

Comparison with RS Constructions. As the RS construction that combines
LPN-based VOLE and OKVS represents the state-of-the-art for OPRF and PSI,
we provide some comparisons with it. To recall, the RS construction can be
understood as Fig. 9 with �1 = 128, F = B = GF(2128) and the identity linear
map [1, 1, 1]B, which requires 128 ·m bits of communication, as shown in Eq. (3).
As the value of nc · b in Table 2 always exceeds 128, the RS construction still
incurs a smaller communication cost. However, another important factor is the
bound for PRF evaluation n′. The RS construction itself does not have the online

290 K. Han et al.

hash mitigation, and the PRF bound n′ should be calculated with respect to 2128

queries, resulting in n′ = 5.6m with m = 1.3n (assuming OKVS from [10]). On
the other hand, our choice of �1 = 109 and 150 comes from n′ = 5m and 2m,
respectively, which is smaller than the RS construction’s n′ = 5.6m. In other
words, for the original RS construction to achieve n′ = 5m or 2m, their �1
should be taken larger.

7.2 Performance Evaluation

We present some experimental results to evaluate performance of our newly
proposed protocol. Since there is a trade-off between computational and com-
munication complexities, our evaluation was carried out under different network
settings with varying the field degree f from 1 to 8 (while fixing the subfield
degree by b = 1), and the set size n = 220.

For the SoftSpokenVOLE realization, we utilize the implementation of libOTe
library [12]. We also choose to employ the OKVS algorithm proposed by [10],
whose implementation is publicly available at [16]. Note that this the okvs expan-
sion factor εokvs ≈ 0.3, so every m below can be regarded as 1.3n. We remark
that RB-OKVS [3] is claimed to have smaller εokvs while having similar perfor-
mance with [10]. However, we found no public implementation of RB-OKVS,
and our internal implementation of RB-OKVS cannot reproduce the numbers in
the original paper, so we simply use [10] for experiments. Note that the choice of
OKVS might change the absolute numbers in this section, but our main contents
are almost independent to the choice of OKVS.

The tests were performed using a machine equipped with 3.50 GHz Intel
Xeon E5-1650 v3 (Haswell) CPU and 128 GB RAM, using a single thread. For
concrete parameters, we use λ = 40 bit of statistical security and κ = 128
bits of computational security. To simulate various network environments, we
employed the tc command in conjunction with a local network setup.

In this evaluation, we focus on the maliciously secure version. We consider
two values of �1 in Table 1 with qon = 296; �1 = 109 for n′ = 5 · m for m ≈ 1.3n,
and �1 = 150 for n′ = 2 · m for m ≈ 1.3n.

Main Comparison Target. Our main comparison target is the state-of-the-
art OPRF protocol [10] in the RS construction (fast version) that using LPN-
based VOLE over GF(2128). The performance of those performance strongly
depends on the specific choice of the code for LPN. We consider quasi-cyclic
LDPC code [5] which we denote below by QC, and a new family of codes named
expand-convolute codes proposed by Rindal et al. [11], especially ExConv7x24
(resp. ExConv21x24) implemented in libOTe by EC1 (resp. EC2).

Remark 3. There was another recent proposal of code family called Silver [6] that
retains quite aggressive structure to have blazing-fast performance. However, we
do not compare with this family, as it turns out to be vulnerable [11].

Concrete Linear Codes. Although Table 2 provides the minimal length of
nc such that [nc, �1, �128/f�]2, the concrete construction of such linear code is

Revisiting OKVS-Based OPRF and PSI 291

Table 3. Specification of the binary linear codes for our experiments.

�1 f nc Binary code

109

1 550RS[50, 19, 32]64 + [11, 6, 4]2

2 350RS[50, 19, 32]64 + [7, 6, 2]2

4 238RS[34, 19, 16]64 + [7, 6, 2]2

6 192RS[32, 22, 11]32 + [6, 5, 2]2

8 174RS[29, 22, 8]32 + [6, 5, 2]2

150

1 616RS[56, 25, 32]64 + [11, 6, 4]2

2 392RS[56, 25, 32]64 + [7, 6, 2]2

4 280RS[40, 25, 16]64 + [7, 6, 2]2

6 245RS[35, 25, 11]64 + [7, 6, 2]2

8 224RS[32, 25, 8]64 + [7, 6, 2]2

not known for most cases. Thus, for our experiments, we use the binary linear
code constructed by combining a Reed-Solomon (RS) code and another binary
code, which method is already used in [9]: To be precise, given �1-bit input, we
first apply some RS code RS[nrs, krs, drs]q by embedding �1-bit inputs into krs

elements of GF(q), which outputs nrs elements of GF(q). After then, we apply
[nb, log q, db]2 code for each GF(q) element by understanding it as log q-bits.
This implies a binary code [nrs ·nb, �1, drs ·db]2. Given �1 and dc, we exhaustively
searched through all possible RS codes and binary linear codes to find the one
satisfying drs · db = dc with the shortest nrs · nb, and the concrete codes are
obtained from SageMath. The results are summarized in Table 3.

Remark 4. There would be another construction of linear code [nc, �1, dc] shorter
than our found RS code & binary code combination; for example, it is known a
construction of [164, 109, 16]2 linear code [1] for �1 = 109 and f = 8 case, which
is 10-bit shorter than our construction [174, 110, 16]2. One might try to replace
our codes by investigating further shorter linear code, which directly improves
the performance without any harm on security.

Communication Costs. Recall that the transmission of the correction matrix
U ′ ∈ B

m×nc dominates the communication cost, precisely nc · b · (1 + εokvs)nx

bits. Thus the communication cost would be totally proportional to nc · b, which
is nc in our case, and b = 128 in [10]. Table 4 shows the communication cost
based on the concrete linear codes found in Table 3, and one can check that
indeed the communication cost is exactly proportional to nc · b. We have to
say that [10] requires smaller communication than ours, as it has nc · b = 128.
However, we would like to remark that the f = 1 case is actually corresponds to
the original PRTY construction [9] while replacing the subroutines to latest one.
In this view, our generalized f choice narrows the gap between [10] protocols

292 K. Han et al.

and our one: for example �1 = 109 (or n′ = 5m), the communication cost gap
between Minicrypt and LPN drops to 4.2x (f = 1) to 1.3x (f = 8).

Table 4. Total communication costs of our OPRF and [10] for n = 220 items. The
‘n′/m’ row shows the number of PRF values that malicious receiver can obtain. Our
protocols can set qon = 296 and qoff = 2128 thanks to our mitigation, which is not
applicable to the previous work.

n = 220, m ≈ 1.3n Ours [10]

n′/m 5 2 5.6

�1 109 150 128

Communication

(MB)

f = 1 93.56 104.8

22.23(QC)

22.78(EC1)

22.42(EC2)

f = 2 59.56 66.71

f = 4 40.53 47.68

f = 6 32.71 41.75

f = 8 29.67 38.20

Running Time. To check the total running time of OPRF in various network
setting, we used 3 settings. The first one is 100 Mbps with 100 ms rtt (round trip
time), and the second one is 1 Gbps with 1 ms rtt, the last one is 5 Gbps with 1 ms
rtt. These settings are done by using linux tc command in local host network.
We further note that the public implementation [16] of [10] only supports fixed
�1 = 128 now, which translates to n′ = 5.6m. As a fair comparison, we provide
the performances for �1 = 109 case of n′ = 5m in Table 5.

Table 5. Total running time (in second) of our OPRF and [10] on various network
settings for n = 220 items. Under the parameters used in this evaluation, our protocol
allows at most n′ = 5m PRF evaluations, and [10] allows at most n′ = 5.6m PRF
evaluations.

n = 220 100 Mbps 1 Gbps 5Gbps Assumption

Ours

f = 1 14.2 2.62 2.03

Minicrypt

f = 2 10.0 2.18 1.80

f = 4 7.787 2.25 1.99

f = 6 7.783 2.96 2.74

f = 8 9.37 4.75 4.55

[10]

QC 5.304 2.32 2.31

dual-LPNEC1 4.647 0.990 0.980

EC2 5.056 1.629 1.577

Revisiting OKVS-Based OPRF and PSI 293

Table 5 shows OPRF running time with f = 1, 2, 4, 6, 8 at our construction
and the previous work [10]. The implementation of the previous work is in pub-
lic [16], so we re-run the code in our evaluation setting for fair comparison. In
the fast (5 Gbps and 1 Gbps) network environments, our f = 2 case is even faster
than [10] with QC. Since our protocol only requires Minicrypt assumption while
QC is not, we might say our protocol is strictly better than it.

In slower network (100 Mbps) environment where the communication cost
affects a lot, the protocols of [10] are clearly still better. However, we can confirm
again the generalized field choice helps to narrow the gap between [10] protocols
and our one. Specifically, the f = 1 case that corresponds to revised PRTY
construction takes 14.2s, which is 2.7 − 3x than [10] protocols, while our f = 6
of 7.783s decreases the gap by 1.5 − 1.7x.

Discussion with Breakdown. Table 6 shows the breakdown for of our protocol
timing results in Table 5. The ‘Transpose V ’ row is an implementation-specific
part, which cannot be seen in Fig. 9: The VOLE outputs V,W ∈ F

m×nc are
obtained by nc independent call of VOLE, and they are naturally arranged in
a column-wise manner. However, the OKVS decoding understands V (and W)
as a length m vector of nc · log |F|-bits, we need to transpose them. As Table 6
shows, such transpose also takes quite a large computational cost.

Table 6. Breakdown of our protocol timings (in second) in Table 5.

100Mbps 1Gbps 5 Gbps

f 1 4 8 1 4 8 1 4 8

VOLE 0.6700.8222.673 0.2460.4302.333 0.2440.4142.324

Transpose 0.1330.2630.664 0.1320.2650.675 0.1340.2630.667

OKVS Encode 0.3560.3500.348 0.3560.3610.354 0.3520.3540.354

Apply Lin. Code 0.3730.1140.100 0.3780.1160.100 0.3790.1160.101

Send/Recv Corr. 12.145.5684.580 0.9950.4180.331 0.4040.1820.140

OKVS Decode 0.3430.4910.615 0.3320.4850.620 0.3360.4850.627

We finally remark that the first two steps (VOLE and transpose) can be
done in offline, before the input set X is determined. In other words, they can
be understood as a setup phase before the main OPRF starts. Concretely, for
f = 8, the first two steps occupy from 77% in the total timings un the 5 Gbps
network. Thus, we can conclude that our protocol with f = 8 would be a nice
choice for the situations where some offline computation is allowed, probably
even better than [10] protocol with EC-LPN-based VOLE.

Acknowledgments. The authors would like to thank Peter Rindal for helpful com-
ments and discussions, especially for verifying the early discovery of the flaw and pro-
viding clear understanding on the current state of OPRF and PSI protocols.

294 K. Han et al.

A Details for RB-OKVS Overfitting Attack

Case n′ < 2m. Similarly to PaXoS, we reduce the (n, km
k−1)-overfitting game to a

k-XOR problem for k > 2 as follows. As solving a k-XOR problem of (d+�1)-bit

strings costs O(k2
d+�1

1+�log k�) time, our attack costs O(m2
d+�1

1+�log k�) time including
time for querying to the random oracle.

1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the items
in Q to h0, h1, and H1. Bucketize Q by h1, denoting Bh1 the corresponding
bucket. Then, there are m buckets, and there are expectedly q/m items per
bucket. For simplicity, we assume that (k − 1)|d and (k − 1)|m.

2. For j ∈ {1, k, . . . ,m − d − k + 2}, do the following with initialization X ′ ←
{}.
(a) Solve a k-XOR problem for h0(x)‖H1(x) in buckets Bj . If leftmost k ×

(k − 1)-submatrix has rank strictly less than k − 1, then repeat this step
to find another solution.

(b) Gather the proper solutions of the k-XOR problem to X ′.
3. For j ∈ {m − d + 1,m − d + k, . . . ,m − k + 2}, do the following with initial-

ization Y ← {}.
(a) Solve a k-XOR problem for h0(x)‖H1(x) in buckets Bm−d+1 and let

x′
1, . . . , x

′
k are solutions.

(b) Make a matrix K ∈ F
k×(m+�1)
2 from row(xi)‖H1(xi).

(c) Let K ′ be a submatrix of K in F
k×(k−1)
2 , whose i-th column is equal to

the (j + i − 1)-th column of K.
(d) If rank(K ′) = k − 1, then add x′

1, . . . , x
′
k to Y . Otherwise, repeat step 3

for same j.
4. Denote X ′ = {x′

1, . . . , x
′
n′} where n′ = k · m−d

k−1 + k · d
k−1 = km

k−1 . Since
rank(row(�X ′)) = rank(row(�X ′)|H1(�X ′)), there is a solution P ′ of the linear
equation row(X ′) · P ′ = H1(X ′).

Case n′ ≥ 2m. Similarly to PaXoS, we reduce the OKVS overfitting problem to a
c-multicollision finding problem as follows. As finding c-multicollision of (d+�1)-
bit strings costs O((c!)1/c2

(c−1)(d+�1)
c) time, our attack costs O(m2

(c−1)(d+�1)
c)

time for small enough c.

1. Let Q = {x1, . . . , xq} be an arbitrary subset in {0, 1}∗. Query all the items
in Q to h0, h1, and H1. Bucketize Q by h1, denoting Bh1 the corresponding
bucket. Then, there are m buckets, and there are expectedly q/m items per
bucket.

2. Let k > 2. For j ∈ {1, 2, . . . , m − d}, do the following with initialization
X ′ ← {}.
(a) Find a c-multicollision for h0(x)‖H1(x) from bucket Bj . If the first bit of

h0(x) is 0, find another solution.
(b) Gather the proper solutions of the problem to X ′.

Revisiting OKVS-Based OPRF and PSI 295

3. For j ∈ {m − d + 1,m − d, . . . ,m}, do the following with initialization Y ←
{}.
(a) Find a c-multicollision for h0(x)‖H1(x) in buckets Bm−d+1 and let

x′
1, . . . , x

′
c are those solutions.

(b) Add proper solutions x′
1, . . . , x

′
c to Y .

4. If row(Y) has rank less than d, go back to Step 3. Otherwise, X ′ ← X ′ ∪ Y .
5. Denote X ′ = {x′

1, . . . , x
′
n′} where n′ = cm. Since rank(row(�X ′)) =

rank(row(�X ′)|H1(�X ′)), there is a solution P ′ of the linear equation row(X ′) ·
P ′ = H1(X ′).

References

1. Code Tables: Bounds on the parameters of various types of codes (2022), http://
codetables.de/

2. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Orsini, E., Roy, L., Scholl,
P.: Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-
in-the-Head. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology –
CRYPTO 2023. pp. 581–615. Springer Nature Switzerland, Cham (2023)

3. Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-Optimal Oblivious Key-Value
Stores for Efficient PSI, PSU and Volume-Hiding Multi-Maps. In: 32nd USENIX
Security Symposium (USENIX Security 23). pp. 301–318. USENIX Association,
Anaheim, CA (Aug 2023), https://www.usenix.org/conference/usenixsecurity23/
presentation/bienstock

4. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.: Corre-
lated Pseudorandomness from Expand-Accumulate Codes. In: Dodis, Y., Shrimp-
ton, T. (eds.) Advances in Cryptology – CRYPTO 2022. Springer Nature Switzer-
land, Cham (2022)

5. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Efficient
Two-Round OT Extension and Silent Non-Interactive Secure Computation. In: CCS
2019. pp. 291–308 (2019)

6. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and Oblivious Trans-
fer from Hardness of Decoding Structured LDPC Codes. In: CRYPTO 2021. pp.
502–534. Springer, Cham (2021)

7. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: CRYPTO 2021. pp. 395–425.
Springer (2021)

8. Orrù, M., Orsini, E., Scholl, P.: Actively Secure 1-out-of-N OT Extension with Appli-
cation to Private Set Intersection. In: Handschuh, H. (ed.) Topics in Cryptology –
CT-RSA 2017. pp. 381–396. Springer International Publishing, Cham (2017)

9. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
Private Set Intersection. In: EUROCRYPT 2020. pp. 739–767. Springer (2020)

10. Raghuraman, S., Rindal, P.: Blazing Fast PSI from Improved OKVS and Subfield
VOLE. In: CCS 2022. pp. 2505–2517. ACM, New York, NY, USA (2022)

11. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-Convolute Codes for Pseudoran-
dom Correlation Generators from LPN. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023. Springer Nature Switzerland, Cham
(2023)

12. Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer Library
(2022), https://github.com/osu-crypto/libOTe

http://codetables.de/
http://codetables.de/
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock
https://github.com/osu-crypto/libOTe

296 K. Han et al.

13. Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-
OLE. In: EUROCRYPT 2021. pp. 901–930. Springer, Cham (2021)

14. Roy, L.: SoftSpokenOT: Quieter OT Extension from Small-Field Silent VOLE in
the Minicrypt Model. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology
- CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 13507, pp. 657–687. Springer (2022). https://doi.
org/10.1007/978-3-031-15802-5 23, https://doi.org/10.1007/978-3-031-15802-5 23

15. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday Paradox for Multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) Information Security and Cryptology –
ICISC 2006. pp. 29–40. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

16. Visa-Research: volepsi: Efficient private set intersection base on vole (2022),
https://github.com/Visa-Research/volepsi

17. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) Advances in
Cryptology — CRYPTO 2002. pp. 288–304. Springer Berlin Heidelberg, Berlin,
Heidelberg (2002)

https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://github.com/Visa-Research/volepsi

Quantum Cryptanalysis

Reducing the Number of Qubits
in Quantum Information Set Decoding

Clémence Chevignard(B), Pierre-Alain Fouque, and André Schrottenloher

Univ Rennes, Inria, CNRS, IRISA, Rennes, France
{clemence.chevignard,pierre-alain.fouque,andre.schrottenloher}@inria.fr

Abstract. This paper presents an optimization of the memory cost of
the quantum Information Set Decoding (ISD) algorithm proposed by
Bernstein (PQCrypto 2010), obtained by combining Prange’s ISD with
Grover’s quantum search.

When the code has constant rate and length n, this algorithm essen-
tially performs a quantum search which, at each iteration, solves a lin-
ear system of dimension O(n). The typical code lengths used in post-
quantum public-key cryptosystems range from 103 to 105. Gaussian elim-
ination, which was used in previous works, needs O(n2) space to repre-
sent the matrix, resulting in millions or billions of (logical) qubits for
these schemes.

In this paper, we propose instead to use the algorithm for sparse
matrix inversion of Wiedemann (IEEE Trans. inf. theory 1986). The
interest of Wiedemann’s method is that one relies only on the implemen-
tation of a matrix-vector product, where the matrix can be represented
in an implicit way. This is the case here.

We give two main trade-offs, which we have fully implemented, tested
on small instances, and benchmarked for larger instances. The first one
is a quantum circuit using O(n) qubits, O(n3) Toffoli gates like Gaussian
elimination, and depth O(n2 log n). The second one is a quantum circuit
using O(n log2 n) qubits, O(n3) gates in total but only O(n2 log2 n) Tof-
foli gates, which relies on a different representation of the search space.

As an example, for the smallest Classic McEliece parameters we esti-
mate that the Quantum Prange’s algorithm can run with 18098 qubits,
while previous works would have required at least half a million qubits.

Keywords: Prange’s Algorithm · Quantum Search · Information Set
Decoding · Quantum Cryptanalysis

1 Introduction

Since the start of the NIST’s post-quantum cryptography standardization pro-
cess [42], several cryptosystems based on error correcting codes came to light.
The remaining key-encapsulation candidates Classic McEliece [12], HQC [1] and
BIKE [3] are currently in the fourth round [44]. Additionally, many more code-
based cryptosystems have been proposed at the NIST’s call for additional post-
quantum signature schemes [43].
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 299–329, 2025.
https://doi.org/10.1007/978-981-96-0944-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_10&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_10

300 C. Chevignard et al.

Cryptographic algorithms based on codes usually rely on the hardness of the
Syndrome Decoding Problem (SDP). This problem essentially consists in finding
a solution to an undetermined linear system, which is constrained under a given
metric. In the cases considered on this paper, the Hamming metric is used, which
counts the number of non-zero coordinates.

The most efficient algorithms to solve the SDP are the family of Information
Set Decoding algorithms (ISD), starting with Prange’s algorithm [47], which
have been gradually improved over time with list-merging subroutines [6,37,
39,52], nearest-neighbor techniques [15,40] and more recently sieving techniques
[25,32]. However, all these optimizations essentially improve the time complexity
at the detriment of the memory complexity.

Principle. Let H be the parity-check matrix of the code, which has n columns
and n − k rows, where n is the length of the code and k its dimension (the
codewords forming its kernel). The goal of SDP is to find a vector s such that
Hs has some prescribed Hamming weight.

Prange’s algorithm selects at random a subset I of n−k columns of H, which
defines a square submatrix HI , and inverts the subsystem defined by HI . If the
nonzero coefficients of the vector solution to SDP correspond to columns of
H that are all in HI , then inverting the subsystem defined by HI will allow
to retrieve this solution. And since HI is square, Gaussian elimination can be
used to invert the system, which will have few solutions on average. This proce-
dure is repeated for random choices of columns I until a solution is found.

Quantum ISD. In the quantum setting, one can speedup this algorithm using
Grover’s quantum search, as proposed by Bernstein [10] (an algorithm that we
will call “quantum Prange” in what follows). Indeed, the subsets of columns I
form a well-defined search space, and solving the subsystem HI allows to test
if I is solution to our problem. Using Grover’s search, the number of iterations
decreases to a square root of its classical value. Despite this asymptotic speedup,
we should note that in practice, the cost of solving HI , though a polynomial
factor, is far from negligible.

Similarly to the classical setting, improved quantum ISD algorithms were
introduced later on by Kachigar and Tillich [34] and Kirshanova [36] using
various techniques from classical ISD, notably quantum verzsions of the
MMT [39] and BJMM [6] algorithms using quantum walks. More recently,
Kimura et al. [35] presented another trade-off between time and memory using
a combination of Kirshanova’s algorithm, Both and May’s classical ISD algo-
rithm [15], and Grover’s algorithm. Chailloux et al. [19] extended the scope of
quantum Prange by adapting it to other metrics than the Hamming one. Since
we are particularly targeting the memory complexity of quantum ISD, and since
we consider the Hamming case only, the improvements of [19,34–36] will not be
considered further in this paper.

Improving Quantum Prange. Esser et al. [26,27] introduced several improve-
ments to quantum Prange, leading to polynomial runtime improvements: first,

Reducing the Number of Qubits in Quantum Information Set Decoding 301

an optimization using the Lee-Brickell algorithm [37] and an optimization based
on preprocessing the parity-check matrix to systematic form, which we will not
reuse here.

In [27], motivated by the large number of qubits required, they proposed
a hybrid quantum-classical trade-off. The idea is to guess a first part of the 0
coefficients’ positions in a precomputation on a classical computer, and then to
carry a smaller instance of the quantum Prange’s algorithm. Another possible
optimization, in the same fashion, is to not consider all of the equations in the
square systems one aims at solving. The combination of these two optimizations
reduces the qubit cost by a constant, but increases the time exponentially.

More recently, Perriello et al. [46] performed complete quantum cost esti-
mates of quantum Prange, which we will compare to for the parameters of the
NIST code-based candidates.

Memory Complexity and Comparisons. The parity-check matrix H itself, and
its sub-matrices that one tries to invert, occupies a space O(n2

)
. Therefore the

memory complexity of Prange’s algorithm, classical or quantum, is not negligible.
In code-based cryptosystems, n ranges between 103 and 105, leading to millions
or billions of logical qubits. This is much more than the thousands required by
Shor’s algorithm for factoring RSA semiprimes [30] or even exhaustive search
of AES keys [33], which is explicitly used by the NIST as a benchmark for post-
quantum security levels [42].

Looking back at the optimizations of quantum ISD [26,27,46], the number of
qubits could never decrease below O(n2

)
, despite improvements in the constants.

This is simply because these quantum algorithms used Gaussian elimination to
invert the sub-matrices considered during the Grover search iterations.

At the start of the post-quantum standardization process [42], the NIST
focused on the metrics of gate count and depth. Specifically, they suggested to
compare total gate counts under a limitation of circuit depth (i.e., total running
time), denoted MAXDEPTH, which ranges from 240 to 296. Under these met-
rics, the total number of qubits is not a limiting parameter, since one expects
the algorithms to become massively parallel. However, the number of qubits
that each individual machine uses remains of significance. Reducing this amount
would allow more flexible trade-offs for such parallel searches.

Contribution and Organization. In this paper, we optimize the qubit count
of quantum ISD. Our innovation lies in the way the sub-matrices considered
throughout the quantum search are represented, and inverted.

We use Wiedemann’s matrix inversion algorithm [53]. This technique, in our
case, is interesting because it reduces the inversion of a dimension-n matrix to
computing a series of O(n) matrix-vector products, and using the Berlekamp-
Massey algorithm on linear recurrent sequences of size O(n). We show how to
implement the matrix-vector product by a sub-matrix HI given a compact rep-
resentation of the choice I of columns. Next, we give a quantum implementation
of the Berkekamp-Massey algorithm over F2 using O(n) space only. This gives
us a circuit for the Grover iteration in quantum Prange that uses O(n) qubits.

302 C. Chevignard et al.

This first implementation is optimized for space, but the resulting gate count
O(n3

)
and circuit depth O(n2 log n

)
suffer from large constant factors. This

motivates us to give another trade-off, by changing the representation of I in
the algorithm. In the first version, I is represented as a selection of columns
of the matrix H, i.e., a vector of length n and weight n − k, similarly to what
is commonly done in previous works. In the second version, I is represented
as a permutation of the columns (an idea that appeared in [45], but without
further details). This permutation is implemented using a switching network
with O(n log2 n

)
switches. The qubit count increases to O(n log2 n

)
, but this is

compensated by a significant improvement in gate count.
First of all, we reduce the depth to O(n2

)
, becoming asymptotically optimal,

and the Toffoli gate count to O(n2 log2 n
)

(while the total gate count remains
O(n3

)
), improving over circuits based on Gaussian elimination. This is partic-

ularly interesting from an implementation standpoint, as Toffoli gates, which
contain nonlinearity, are considered much harder to implement than NOT and
CNOT gates. This also shows that there are further advantages to Wiede-
mann inversion than just space. Finally, when the parity-check matrix is block-
circulant, as in BIKE and HQC, we show that the total gate count of the Grover
iteration can be reduced to O(n2 log2 n

)
(Theorem 4), though our current imple-

mentation achieves only a minor gain, at the expense of circuit depth.
Inverting large sparse or implicit matrices is a building block of other quan-

tum algorithms, notably quantum algorithms for solving multivariate quadratic
systems [13,28]. The space complexity was not discussed in [28], and in [13],
the generic Bennett-Tompa reversibility trade-off is used [7], which leads to
additional non-negligible factors in time and space. Our results could lead to
improvements in both cases, although this would require a dedicated analysis.

On a side note, it has been pointed out by a reviewer that our space opti-
mization of quantum ISD is possible because the quantum circuit is instance-
dependent, i.e., the parity-check matrix H is encoded in the circuit instead of
being represented as an input. This is not an uncommon occurrence in quantum
cryptanalysis: typical implementations of Shor’s algorithm [30] use a precompu-
tation which also makes the circuit instance-dependent. However, it might be
interesting to develop further such techniques to reduce the qubit count.

Organization of the Paper. Section 2 describes Prange’s algorithm and Wiede-
mann’s inversion [53]. In Sect. 3 we detail the quantum version of Prange’s algo-
rithm, and explain how to replace the linear algebra part with Wiedemann’s
algorithm. Our main result is stated here, but its proof spans the following sec-
tions.

First, in Sect. 4, we give our implementation of Wiedemann inversion, includ-
ing a quantum reversible circuit for the Berlekamp-Massey algorithm [8]. This
implementation uses as black-box a quantum algorithm for matrix-vector prod-
uct. Then, in Sect. 5, we propose two such implementations. The first one (space-
optimized) reduces the space to O(n). The second (Toffoli-optimized) offers a
trade-off with a space O(n log2 n

)
and a reduced Toffoli cost. We give precise

Reducing the Number of Qubits in Quantum Information Set Decoding 303

formulas for the costs of all these circuits. Finally, in Sect. 6, we evaluate these
costs for the parameters of code-based cryptosystems.

We implemented the quantum circuits considered in this paper using the
Qiskit framework [48]. Our code is available at https://gitlab.inria.fr/capsule/
quantum-isd-less-qubits.

2 Preliminaries

Throughout this paper, n and k ≤ n are integers. We use bold notations for
vectors (e, s . . .) and uppercase letters for matrices (A,H, . . .). The transpose of
a matrix is denoted AT . Since we work only in F2, addition + will always refer
to addition in F2 (binary XOR) or in a vector space over F2. The symbol δij

corresponds to the Kronecker delta function, that equals 1 if and only if i = j,
and 0 otherwise.

For q a prime, a linear code of length n and dimension k over Fq is a k-
dimensional vector subspace F

n
q , which can be defined as the kernel of a parity-

check matrix H ∈ F
(n−k)×n
q . In this paper we consider the case of binary codes,

i.e., q = 2. The Hamming weight hw is defined, for vectors of any length, by the
number of non-zero coordinates. We consider the Syndrome Decoding problem
SD(n, k, w): given as input H ∈ F

(n−k)×n
2 and s ∈ F

n−k
2 (the error syndrome),

find e ∈ F
n
2 such that hw(e) = w.

While the decision version of this problem, i.e., the existence of such a solu-
tion, is well-known to be NP-complete [9], we consider the search version where
H is sampled uniformly at random, and the existence of the solution is guar-
anteed. With proper choice of the parameters n, k, w, this case is still believed
to be hard for classical and quantum computers alike.

Problem 1 (Random Decoding). Given as input H ∈ F
(n−k)×n
2 sampled uni-

formly at random, and s = He where e is sampled uniformly at random from
vectors of weight w, find e.

2.1 Prange’s Algorithm

In [47], Prange introduced an algorithm for generic decoding (Algorithm 1)
which forms the basis of the family of Information Set Decoding (ISD) algo-
rithms. We use it to solve Problem 1. The idea of the algorithm is to select
a random subset of the columns of H. Let Sn,k be the set of all subsets of
{0, . . . , n − 1} with n − k elements.

Given I ∈ Sn,k, we define HI as the sub-matrix of H which keeps these
columns only. If all non-zero positions of the vector e are in I, the equation
system HIx = s admits a solution x of weight w, and extending this solution by
zeroes provides a solution to the SDP1.

1 Note that we have considered here the binary case only; the case of a generic q
requires more care.

https://gitlab.inria.fr/capsule/quantum-isd-less-qubits
https://gitlab.inria.fr/capsule/quantum-isd-less-qubits

304 C. Chevignard et al.

Algorithm 1. Prange’s algorithm, binary case [47].

Input: parity-check matrix H ∈ F
(n−k)×n
2 , syndrome s ∈ F

n−k
2 , weight w ≤ n − k

Output: vector e such that He = s and hw(e) = w
repeat

Choose a random subset I ∈ Sn,k

If HI is not invertible, continue
Solve the linear system HIeI = s for eI

until hw(eI) = w
Return e = extension of eI with zeroes

Runtime. As a first remark, it is well known that a random square matrix in
F2 is invertible with probability at least 0.288 [21]. In order to bound easily the
runtime of Prange’s algorithm, we make the following heuristic assumption.

Heuristic 1. A matrix HI , where I leads to the solution, is invertible with prob-
ability 0.288.

Intuitively, the invertibility of the sub-matrix HI should be independent from
whether I is a solution or not. While we cannot exclude pathological values of
H and s, we can assume that such cases occur with negligible probability.

Theorem 1. Under Heuristic 1, Algorithm 1 succeeds with 1
p iterations on aver-

age, where:

p = 0.288

(
n−k

w

)
(

n
w

) , (1)

and has a time complexity O(1p (n − k)ω) where ω is the matrix multiplication
exponent.

Proof. A first important remark is that the algorithm does succeed: this is
because there are in general many solutions I, and by Heuristic 1, one of them
will lead to an invertible sub-matrix – so it will eventually be found.

Consider the columns Hi1 , . . . , Hiw of H that correspond to the non-zero coef-
ficients of the solution e. The loop succeeds whenever {i1, . . . , iw} ⊆ I and HI

is invertible. By Heuristic 1, the number of good choices for I is: 0.288
(

n−w
n−k−w

)
,

while the total number of possible I is
(

n
n−k

)
. This gives a probability of success

in the loop p = 0.288(n−w
n−k−w)
(n
n−k)

= 0.288(n−k
w)

(n
w) .

The average number of iterations before achieving a success follows from
this. Each iteration requires to invert a linear system of dimension n − k, which
requires O((n − k)ω) elementary operations. ��

The subsequent improvements to Prange’s ISD [6,15,25,32,37,39,40,52] put
less constraints on I, which decreases the number of loop iterations; however they
increase the complexity of recovering e during the iteration. Importantly, any
improvement in the time complexity exponent comes at the expense of a larger
memory complexity, which is why we do not consider these variants in what
follows.

Reducing the Number of Qubits in Quantum Information Set Decoding 305

2.2 Wiedemann’s Inversion Algorithm

This section follows Wiedemann [53].

Finding Relations. The Berlekamp-Massey algorithm [8,38] takes as input a
sequence (s0, . . . , sN−1) ∈ F

N
q satisfying a linear recurrence relation over Fq:

∃� ≤ N,∃c0 �= 0, c1, . . . , c�,∀i ≤ N, c0si + c1si−1 + . . . + c�si−� = 0 . (2)

This relation is represented by a polynomial C(X) := c0+c1X + . . .+c�X
� ∈

Fq[X], of degree �. Assuming that 2� ≤ N , the Berlekamp-Massey algorithm
returns such a polynomial C(X) with the smallest possible degree. We defer the
details of this algorithm to Sect. 4.2. It runs in O(N2

)
operations, using O(N)

space. Using its similarity to an extended Euclidean algorithm on polynomi-
als [24], this time can be reduced to Õ(N), but this will not be important for
us as the time complexity of Berlekamp-Massey will not be dominant in our
algorithms.

Wiedemann’s Algorithm. Wiedemann [53] considers the problem to invert a
sparse matrix over Fq, or more generally, any matrix A for which only a black-
box matrix-vector product is provided. In the case of sparse matrices, this is
motivated by the efficiency of such products, and the low space complexity.

Given inputs A and s ∈ F
n
q , the goal is to find the unique x such that

Ax = s. In the following, we assume that A is invertible. Wiedemann [53]
provides further analysis to deal with non-invertible matrices, but this will not be
necessary for us, as we will essentially need to succeed with constant probability
for random matrices (therefore, succeeding for invertible matrices is sufficient
for us).

Let S be the space spanned by {Ais, i ∈ N} where A0 = I is the identity
matrix. We consider the action of A on this space, defined by an operator AS

with minimal polynomial P (X) ∈ Fq[X]. The polynomial P is normalized to
have its first coefficient equal to 1. Let Q(X) = (1 − P (X))/X ∈ Fq[X], which
is of degree n − 1 at most. We have:

P (A)s = 0 =⇒ A (Q(A)s) = s =⇒ x = Q(A)s . (3)

Given Q, evaluating Q(A)s can be done by a series of n matrix-vector prod-
ucts and O(n) temporary space, by Horner’s method. Therefore, the search for
x is reduced to the search for P .

The search for P can be reduced to finding linear recurrences, as follows.
Since evaluating Ais yields a sequence of vectors in F

n
q , and not of scalars, one

selects a (random) vector u ∈ F
n
q and computes the sequence of projections:(

uT Ais, i ∈ N
)
. This sequence satisfies a linear recurrence, with a minimal poly-

nomial C(X) that divides P (X). Since P is of degree n, only 2n terms need to
be computed. In fact, after on expectation O(log n) tries with random vectors
u, one will obtain C(X). But it is possible to arrive at this result faster using a
slightly more technical algorithm which finds first a divisor C0 of P , then reduces
the problem to finding P/C0, etc. This is summarized in Algorithm 2.

The probability of success of this algorithm follows Lemma 1.

306 C. Chevignard et al.

Algorithm 2. Wiedemann’s algorithm for inversion.
Input: invertible matrix A accessed only by a black-box product operator: y �→
Ay; vector s
Output: x = A−1s

1: t ← s, y ← 0
2: d ← 0 � Current degree of the polynomial
3: repeat
4: Select u uniformly at random
5: Compute the first 2(n − d) terms of the sequence uTAit
6: Compute C(X), the minimal polynomial of this sequence
7: Let C′(X) = (C(X) − 1)/X
8: y ← y + C′(A)t
9: t = s + Ay

10: d ← d + deg(C)
11: until t = 0
12: Return −y

Lemma 1 (From [53], Section VI). For k > 1, the probability that after k
iterations in the main loop of Algorithm 2, one has t = 0 (and A(−y) = s), is
lower bounded by:

As a constant success probability will be enough for us, we can run Algo-
rithm 2 with a constant number of loops. In particular with q = 2, by using
k = 2 we ensure a probability of success bigger than 2−1.70. As proposed by
Wiedemann, we will also replace the selected vectors u by deterministic unit
vectors, which consist merely in selecting the first and second coordinates of Ais
(though it would not be much more difficult to take random vectors).

It should be noted that Wiedemann’s algorithm appeared previously in a
quantum context in the algorithms of [13,28] for multivariate quadratic equation
systems. These algorithms construct large sparse matrices (Macaulay matrices)
which need to be inverted. However, neither of these works considered a full
reversible implementation of Wiedemann’s algorithm; instead they used generic
reversibilisation results. In [28] they noticed that the algorithm could be imple-
mented in a naive way, increasing the space complexity. In [13] they used the
generic Bennett-Tompa trade-off [7] which introduces subexponential factors in
the complexity (which disappear in the asymptotic complexity estimates).

In order to get a satisfying space complexity for the quantum Prange’s algo-
rithm, we will need to implement Wiedemann’s algorithm in a reversible and
space-efficient way. This is the goal of Sect. 4.

3 Quantum Preliminaries

In this section we give the required preliminaries of quantum computing and
quantum ISD, including the formulation of our main result (Theorem 3) which
relies on all the building blocks studied in the remainder of the paper.

Reducing the Number of Qubits in Quantum Information Set Decoding 307

We refer to [41] for an introduction to the notions of quantum computing
(quantum states, amplitudes, ket notation |·〉). We describe quantum algorithms
in the quantum circuit model as a sequence of quantum gates applied to a set of
qubits. We stand only at the logical level, in which gates can be freely applied to
any qubit or pair of qubits without inducing any error. Ancilla qubits are those
which start in the state |0〉 and are restored to |0〉 after applying the circuit.

Many advanced quantum cryptanalysis algorithms make use of quantum-
accessible memories (also known as qRAM) [19,34]. qRAM can be seen as an
abstraction of quantum hardware in which writing and/or reading in quantum
superposition from a large-scale memory could be an efficient operation. It is
notably used in certain quantum walk algorithms which require to maintain and
update a large superposed memory state. However, it is almost certain that near-
term quantum devices will not benefit from such capabilities. Going back to the
baseline quantum circuit model, in which only fixed-arity gates can be used,
these advanced algorithms lose their advantage. We refer to the aforementioned
papers for more details on the qRAM model.

In this paper, we are interested in making conservative hardware assump-
tions, in which qRAM is not available and the number of logical qubits is lim-
ited. The new circuits that we design are entirely classical reversible circuits,
which contain only NOT (X), CNOT (controlled-X, or CX) and Toffoli (double-
controlled X, or CCX) gates. The other quantum gates required to run quan-
tum ISD algorithms are Hadamard gates (H) used in the iterations of Quantum
Amplitude Amplification, and rotation gates used in the construction of Dicke
states [4] (which we define later on).

From an implementation perspective, CCX gates are known to be much more
costly than X and CX gates, which is why they form the main target for opti-
mization (e.g., in [30]).

3.1 Quantum Search

Grover’s quantum search algorithm [31] provides a quadratic speedup for any
exhaustive search problem, which can be defined as the search of a preimage of
1 of a function f : {0, 1}n → {0, 1}, where {0, 1}n is the search space and f
distinguishes “good” elements (f(x) = 1) from “bad” ones (f(x) = 0).

Prange’s information set decoding algorithm can be rephrased as such a
search problem, which is why one can use quantum search here [10]. How-
ever, for this precise context it is better to rely on the generalization of Grover’s
search known as Quantum Amplitude Amplification (QAA) [16]. QAA can start
from any probabilistic algorithm (implemented as a quantum circuit) that suc-
ceeds with probability p, and needs O(1/

√
p
)

iterations. Furthermore, it is quite
robust if the probability of success is not known exactly, and p is only a lower
bound. In that case an adapted procedure still succeeds in time O(1/

√
p
)
.

For the specific case of quantum ISD, we apply QAA in the following way.

Theorem 2 (Consequence of Theorem 2 and Theorem 3 of [16]). Let U
be a quantum circuit that, on input |0〉, produces a uniform superposition of N

308 C. Chevignard et al.

basis states (a subset X ⊆ {0, 1}n):

U |0〉 =
1√
N

∑

x∈X

|x〉 . (4)

Let Of be a quantum circuit that realizes a phase oracle for a function f : X �→
{0, 1}, where |f−1(1)| = M :

∀x ∈ X,Of |x〉 = (−1)f(x) |x〉 . (5)

Then, there exists a quantum algorithm that outputs an x ∈ f−1(1), and makes
an expected number of Θ(

√
N/M) calls to Of and U .

More precisely, QAA is a procedure that runs with a fixed number of itera-
tions, which repeat the setup operation U and the test operation Of . A QAA
iteration is the unitary Q = −UO0U

−1Of , where U and Of are defined in The-
orem 2, and O0 is the unitary defined by O0 |x〉 = (−1)δ0x |x〉 , where δ0x is
the Kronecker delta. That is, it flips the phase iff x = 0. One should note that
O0 is essentially an n-bit multi-controlled Z gate, which is equivalent (up to a
Hadamard transform) to a multi-controlled Toffoli gate, which can be imple-
mented with O(n) Toffoli gates [41]. As soon as U and/or Of use more than
O(n) depth, qubits and gates, the cost of this operation becomes negligible.

Let θ := arcsin
√

M
N . It can be shown [16] that starting from U |0〉 and

applying k iterations of QAA, one produces the state:

QkU |0〉 =
(

sin ((2k + 1)θ)√
M

∑

x∈f−1(1)

|x〉
)

+
(

cos ((2k + 1)θ)√
N − M

∑

x∈f−1(0)

|x〉
)

. (6)

This is why, knowing M (hence θ) in advance, we can succeed with probability
close to 1 by setting k =

⌊
π
4θ

⌋
. If we have only upper and lower bounds on M ,

we can use the following lemma.

Lemma 2. Assume that M� ≤ M ≤ Mu. Run k =
⌊

π

4 arcsin(
√

Mu/N)
− 1

2

⌋
iter-

ations of QAA. The probability of success is:

psucc ≥ sin2

(
π

2
arcsin

√
M�/N

arcsin
√

Mu/N
− 2 arcsin

√
M�/N

)

. (7)

Proof. The choice of k ensures that (2k+1) arcsin
√

M
N ≤ (2k+1) arcsin

√
Mu

N ≤
π
2 , which means the sin remains an increasing function. We can use Eq. 6 to
bound the probability of measuring a good x:

psucc := sin2

(

(2k + 1) arcsin

√
M

N

)

≥ sin2

(

(2k + 1) arcsin

√
M�

N

)

≥ sin2

((
π

2 arcsin(
√

Mu/N)
− 2

)

arcsin

√
M�

N

)

. ��

Reducing the Number of Qubits in Quantum Information Set Decoding 309

In particular, if M� and Mu are very close to M , then the success probability
will become negligibly close to 1 (as it is when M is known exactly). If they are
close up to a constant factor, then we ensure a constant probability of success.

3.2 Quantum ISD

Bernstein [10] noticed that Algorithm 1 is an exhaustive search for which one can
use Grover’s algorithm. Quantum ISD was subsequently improved in [34], but
not in a way that can be useful for us, since we refrain from using quantum RAM
and exponential space.

Adapting Prange’s algorithm to the QAA framework is easily done, by defin-
ing the operators U and Of :

• U produces a uniform superposition of subsets I ⊆ {0, . . . , n−1} of size n−k:

|I〉 =
1

√|Sn,k|
∑

I∈Sn,k

|I〉 , (8)

where I is simply represented as a bit-vector of length n, where “1” in position
i indicates that i ∈ I.
Such a quantum state is known in the literature as a Dicke state, and several
efficient methods exist to compute it [4]. The cost of these methods is always
significantly smaller than the cost of linear algebra in Of (see, e.g., [46]).

• Of is an oracle for the function f that takes as input I, and returns 1 if and
only if HI is invertible and H−1

I s is of Hamming weight w.
Bernstein estimated that the evaluation of f would require O(n3

)
“bit oper-

ations” [10]. This analysis was refined by further works [46]. However, to
date, all implementations of Of start by writing the matrix HI , then invert-
ing it using Gaussian elimination. This strategy obviously requires at least
(n − k)2 qubits.

Decoding One out of Many. It is known that ISD algorithms can gain a speedup
if the adversary’s goal is to decode a single syndrome out of many (the so-
called DOOM problem [50]). A specific case of DOOM happens in the quasi-
cyclic variant of the problem, which is used in BIKE [3] and HQC [1]. Indeed,
in that case, one has n = 2k and the parity-check matrix H is formed of
two circulant blocks H1 and H2. If e = (e1e2) is the error vector, one has
(H1H2)(e1e2) = s. Let Ri be the rotation of a vector’s coordinates by i posi-
tions left, then due to the circulant structure of the blocks, one has:

∀0 ≤ i < k, (H1H2)(Ri(e1)Ri(e2)) = Ri(s) . (9)

As a consequence, e can be found by decoding any of the k syndromes Ri(s).
One can then adapt Prange’s algorithm as follows. When a set I has been cho-
sen, instead of computing H−1

I s and checking the Hamming weight of the result,
one forms the k × k-dimensional matrix whose i-th column is Ri(s), computes
H−1

I (R0(s) · · · Rk−1(s)) and looks for a column of weight w. This increases the

310 C. Chevignard et al.

probability of success by a factor k, and reduces the number of iterates in quan-
tum Prange by a factor

√
k. This use of DOOM was discussed in [46].

Intriguingly, we do not know how to use DOOM in the context of Wiedemann
inversion, because Wiedemann inverts the matrix on a single given vector. Doing
this for another vector essentially requires to re-run the whole algorithm, without
any gain. Therefore we will lose a factor

√
k in time complexity compared to [46]

for the cases of BIKE and HQC.

3.3 Quantum Prange Using Wiedemann Inversion

We give a very abstract formulation of our main result, where the matrix is only
accessed via a black-box representation of I and HI . In particular, this allows
to consider alternative ways to represent the selection of a subset of columns.

From now on, we let J be a set of bit-strings of fixed size such that there exists
a surjective mapping F from J to Sn,k, and furthermore, each subset has the
same number of preimages. Consequently, sampling uniformly at random from J
allows to sample uniformly at random from Sn,k, even though J may be a bigger
set. Furthermore, given any J ∈ J , we can extend our notation for sub-matrices
by writing HJ instead of HF (J).

For our main result, we need a stronger heuristic than Heuristic 1, which
indicates that being a solution, being an invertible matrix, and being a matrix on
which Algorithm 2 succeeds with two iterations, are roughly independent events.

Heuristic 2. The proportion of matrices HI where I is a solution, which are
invertible, and which Algorithm 2 can invert with k = 2 on input s, is at least
0.288 × 2−1.70 � 2−3.50.

We now assume that we have the following:

• A quantum circuit Init that, on input |0〉, returns |J 〉 = 1√
|J |

∑
J∈J |J〉

• A quantum circuit MultH that, on input |J〉 |x〉 |y〉, where x,y ∈ F
n−k
2 ,

returns |J〉 |y + HJx〉 |x〉
By their “space” complexity, we shall mean their entire qubit count, including
ancillas. Our main result, building upon our implementation of Wiedemann’s
algorithm in the quantum setting, integrates these two components in quantum
ISD.

Theorem 3. Given a circuit for Init with S(Init) qubits and G(Init) gates, and a
circuit for MultH with S(MultH) qubits and G(MultH) gates, under Heuristic 2,
there exists a quantum algorithm that solves the SDP with constant probability,
using space: max(S(Init), S(MultH) + O(n)), and gates:

O
(√ (

n
w

)

(
n−k

w

) × (
G(Init) + (n − k)G(MultH) + (n − k)2

)
)

. (10)

Reducing the Number of Qubits in Quantum Information Set Decoding 311

Proof. The algorithm is simply an adaptation of quantum Prange using QAA.
Formally, our goal is not exactly to recover a subset I that yields the error vector
e, but a representation of it through J .

The operator U is simply Init. For the operator Of , we use our quantum
implementation of Wiedemann’s algorithm (Lemma 3), which has gate count
O((n − k)G(MultH) + (n − k)2

)
and uses S(MultH) + O(n) space. Importantly,

in case of failure in Wiedemann’s algorithm, f will return 0. In case of success,
we obtain the vector x such that HJx = s. It remains to test if its Hamming
weight is equal to w: the cost of this step is negligible with respect to the other
components of the algorithm.

The number of iterations to perform depends on the probability that a given
J ∈ J satisfies f , i.e., that the corresponding subset is solution, that HJ is an
invertible matrix, and that Wiedemann’s algorithm with two iterations succeeds.

Under Heuristic 2, this probability can be lower bounded by: 2−3.50 (n−k
w)

(n
w) . The

result follows from Lemma 2. ��

3.4 Quantum Circuit Components

In order to implement the Berlekamp-Massey and Wiedemann’s algorithms in an
efficient and reversible manner, we need quantum circuits for several basic oper-
ations. These circuits are folklore and/or simple and/or borrowed from previous
works; they are constructed entirely from X, CX and CCX gates.

We summarize here the main results needed, and the interested reader can
find more details in the full version of the paper [20].

Fan-in. A fan-in circuit implements the operation:

|v0, . . . , vn−1, b〉 �→ |v0, . . . , vn−1, b + (
∑

i

vi)〉 .

It can be done using O(n) CX gates and in depth O(log n).

Fan-out. A fan-out circuit implements the operation: |b, 0, . . . , 0〉 �→
|b, b, . . . , b〉. It can be done using n CX gates and depth O(log n).

Controlled-shift. A controlled-shift by a constant k maps:
{

|0, v0, . . . , vn−1〉 �→ |0, v0, . . . , vn−1〉
|1, v0, . . . , vn−1〉 �→ |1, vk, . . . , vn−1, v0, . . . , vk−1〉

(11)

The shift is controlled by the first qubit. It can be done using 4n CX gates, 3n
CCX gates, O(n) ancilla qubits and O(log n) depth.

Reversion. A reversion circuit maps a register of n bits of the form:

1, b0, . . . , bd−1, 1, 0, . . . , 0 to: 1, bd−1, . . . , b0, 1, 0, . . . , 0 ,

i.e., it reverts the order of bits without taking into account the trailing zeroes
(d being a variable), and assuming that the first bit is 1. It can be done using
O(n log n) gates, depth O(n) and using O(n) ancilla qubits.

312 C. Chevignard et al.

(Constant) Matrix-vector Multiplication. The multiplication of an n-bit vector
x ∈ F

n
2 by a constant matrix H ∈ F

m×n
2 :

|x〉 |y〉 MultConstantH�−−−−−−−−−→ |x〉 |y + Hx〉 ,

can be implemented using ≤ mn CX gates (the exact number depends on the
matrix H), depth max(m,n) and no ancilla qubits.

Circulant Matrix-vector Multiplication. In Sect. 5.3 we will use a quantum cir-
cuit for multiplication of a vector by a constant circulant matrix: we borrow its
principle from Gidney [29].

When H is a circulant matrix of dimension n × n, there exists an implemen-
tation for MultConstantH using O(nlog2 3

)
CX gates, depth O(nlog2 3

)
and O(n)

ancilla qubits.

4 Space-Optimized Reversible Wiedemann Inversion

In this section, we detail our reversible implementation of Wiedemann’s matrix
inversion, assuming that both the representation of column subsets (via the
set J) and the matrix-vector product are given as black-boxes, i.e., quantum
circuits: {

Init : |0〉 �→ 1√
|J |

∑
J∈J |J〉

MultH : |J〉 |x〉 |y〉 �→ |J〉 |y + HJx〉 |x〉 .
(12)

We emphasize that the implementation of both components is not trivial,
and that the time and space complexities of the iteration in Grover’s search
depend in majority on them. But these implementations are deferred to Sect. 5.

The algorithm that we implement in this section is Algorithm 3, which corre-
sponds to Wiedemann’s algorithm with two loop iterations. Notice that in case
we succeed in the first iteration, we will have t = 0 at Step 8, so the output
value y will remain unchanged. Therefore, whether the first or second loop iter-
ation succeeds, the algorithm succeeds. Otherwise, even if the matrix is actually
invertible, the Boolean flag Success will be set to False. This entire section proves
the following result.

Lemma 3. There exists a (classical) reversible circuit implementation of Algo-
rithm 3 which uses S(MultH)+O(n) qubits and O((n − k)G(MultH) + (n − k)2

)

gates.

Proof. The remainder of this section proves that all steps of this algorithm can
be implemented reversibly and efficiently.

• The computation of each sequence (uT Hi
Jt) is done with Lemma 4.

• The evaluation of polynomials is done with Lemma 5.
• The Berlekamp-Massey algorithm for a sequence of length O(n − k) can

be implemented with O((n − k)2
)

gates and O((n − k) log(n − k)) depth
by Lemma 6.

All these individual steps occupy a total of O(n) space for their outputs, which
is erased by uncomputing them backwards once we have obtained the result. ��

Reducing the Number of Qubits in Quantum Information Set Decoding 313

Algorithm 3. Wiedemann’s algorithm, simplified.
Constant: matrix H, s
Input: J
Output: a Boolean Success, and if Success = True, a vector x such that HJx = s

1: t ← s,y ← 0,u ← (1, 0, . . . , 0)
2: Compute the sequence S = (uTHi

Jt)0≤i≤2(n−k) � See Lemma 4
3: Compute the minimal polynomial C(X) of the sequence using the Berlekamp-

Massey algorithm
� See Algorithm 5

4: Let C′(X) = (C(X) + 1)/X
5: y ← y + C′(HJ)t � See Lemma 5
6: t ← t + HJy � If success at the first step, here t = 0
7: u ← (0, 1, 0, . . . , 0)
8: Compute the sequence S = (uTHi

Jt)0≤i≤2(n−k)

9: Compute the minimal polynomial C(X) of the sequence
10: Compute C′(X) = (C(X) + 1)/X
11: y ← y + C′(HJ)t
12: If HJy = s, then set Success to True (False otherwise)
13: Return Success, y

4.1 Evaluation of Matrix Powers

We elaborate here on a sequence of orthogonal polynomials in F2[X]. These poly-
nomials arise from the fact that our MultH circuit, i.e., our matrix multiplication,
is performed out of place.

Indeed, if a matrix A is invertible, the operation y �→ Ay is reversible. This
means that there exists a reversible circuit performing the computation in-place:
|y〉 �→ |Ay〉. However, the reverse of this circuit would implement |y〉 �→ |A−1y〉.
This means that if we knew how to multiply by A in place, we would essentially
also know how to invert A.

This is the reason why we start from an out-of-place matrix-vector multi-
plication, which is much easier to implement: |x〉 |y〉 MultA�−−−−→ |y + Ax〉 |x〉, where
x,y are two vectors. This is essentially a round of a Feistel scheme. It is easy to
notice that MultA is a self-inverse operation followed by a swap, so it is reversible.

Unfortunately, Wiedemann’s algorithm requires to compute iterations Aix
given a starting vector x. Since we are computing MultA out of place, naively
computing a sequence of length O(n) would have us store O(n) intermediate
vectors. We can do better than this through a family of orthogonal polynomials,
which arise naturally by iterating MultA.

Polynomials. We define the following polynomials:
{

P−1(X) = 0, P0(X) = 1
∀i ≥ 1, Pi(X) = Pi−2(X) + XPi−1(X)

(13)

314 C. Chevignard et al.

Then, the circuit resulting of iterating i times MultA, noted MultA
i, is such

that:
∀i ≥ 0,MultA

i |t,0〉 = |Pi(A)t, Pi−1(A)t〉 . (14)

The proof is an elementary induction over i. Indeed, for all i:

MultA
i+1 |t,0〉 = MultA(MultA

i |t,0〉) = MultA |Pi+1(A)t, Pi(A)t〉
= |Pi(A)t + APi+1(A)t, Pi+1(A)t〉 = |Pi+2(A)t, Pi+1(A)t〉 . (15)

It can be noticed that for all i ≥ 0, Pi is of degree i. As a consequence, there
exists a binary, lower triangular (invertible) matrix M� such that:

M� (P0(X), P1(X), . . . , P�(X))T =
(
1,X, . . . ,X�

)T
. (16)

We can now explain how to perform two important steps in Wiedemann’s
algorithm:

• Evaluating a sequence uT Ait
• Evaluating C(A)t for a polynomial C

both reversibly, and using only linear additional space.

Lemma 4. Let A be a matrix of dimension n − k. Given an implementation
of MultA with G gates, depth D and O(n − k) space, there exists a reversible
circuit to compute the sequence uT Ait for i = 0, . . . , � using O(�G + �2

)
gates,

depth O(�D + � log �) and O(n − k + �) space.

Proof. The idea is the following: we compute the uT Ait as:
(
uTA0t, uTA1t, . . . , uTA�t

)T

= M�

(
uT P0(A)t, uT P1(A)t, . . . , uT P�(A)t

)T

. (17)

So, we only maintain two (n − k)-qubit registers for computing the successive
Pi(A)t in place, and � qubits for the sequence. Each time we compute a new
Pi(A)t, we compute uT Pi(A)t and then XOR it to the appropriate registers of
the sequence. This operation requires a fan-out of depth O(log �), which accounts
for the additional depth � log �.

Overall there will be O(�2) CX operations performed. The complexity is dom-
inated by the MultA operations. Once we have constructed the entire sequence,
we perform the MultAs in reverse to erase the intermediate registers. ��
Lemma 5. Let A be a matrix of dimension n − k. Given an implementation
of MultA with G gates, depth D and O(n − k) space, there exists a reversible
circuit to compute C(A)t on an input polynomial C(X) of degree ≤ � using
O(�G + ((n − k) + �)�) gates, depth O(�D + � log(n − k)) and O(n − k + �)
space.

Reducing the Number of Qubits in Quantum Information Set Decoding 315

Algorithm 4. Classical Berlekamp-Massey algorithm
1: Input: sequence s0, . . . , sN−1 in Fq

2: Output: retroaction polynomial C(X) ∈ Fq[X]
3: C(X) ← 1, B(X) ← 1
4: L ← 0; m ← 1; b ← 1
5: for all k = 1 . . . N − 1 do
6: d ← sk +

∑L
i=1 cisk−i

7: if d = 0 then � Case 1
8: m ← m + 1
9: else if 2L � k then � Case 2

10: B(X), C(X) ← C(X), C(X) − d
b
XmB(X)

11: L ← k + 1 − L; b ← d; m ← 1
12: else � Case 3
13: C(X) ← C(X) − d

b
XmB(X)

14: m ← m + 1
15: end if
16: end for
17: Return Reversed(C(X))

Proof. The technique is very similar, using the fact that each Ait is a linear
combination of the Pj(A)t with fixed coefficients.

Let us write M� = (mij)0≤i,j≤� and C(X) =
∑�

i=0 ciX
i, then:

C(A)t =
�∑

i=0

ciAit =
�∑

i=0

�∑

j=0

mijciPj(A)t =
�∑

j=0

(
�∑

i=0

mijci

)

Pj(A)t . (18)

We start by computing the vector of all c′
j :=

(∑�
i=0 mijci

)
for 0 ≤ j ≤ �, and

storing this in � + 1 qubits. Afterwards we compute the sequence of the Pj(A)t,
and depending on the stored coefficients, add this to our output register. The
additional depth � log(n−k) comes from having to fan-out the current coefficient
to control the addition to the output. ��

4.2 Reversible Berlekamp-Massey

In order to explain our reversible implementation, we recall the Berlekamp-
Massey algorithm [8] in Algorithm 4. We use N do denote the length of the input
sequence, which will be O(n − k) in our case.

Similar to the reversible version of Euclide’s algorithm [49], we run a sequence
of iterations where each one creates only O(1) bits of garbage, which can be
stored. In our case, there are two such Boolean values: d, and a value v which
decides if we enter case 2 or case 3 (leading to a modification of the polynomials,
and of L).

First of all, since we focus on the binary case, the coefficient b is always
1 in the algorithm. Second, we notice that we can remove the variable m, by
performing instead the operation B(X) ← XB(X) each time we would have

316 C. Chevignard et al.

Algorithm 5. Reversible Berlekamp-Massey algorithm for F2.
1: Input: sequence s0, . . . , sN−1 in F2

2: Output: retroaction polynomial C(X) ∈ F2[X]
3: Storage: register for C(X) (N bits), B(X) (N bits), L (N bits, in unary repre-

sentation)
4: Garbage: register for d1, . . . , dN , d0 := 1, register for v0, . . . , vN−1

5: C(X) ← 1, B(X) ← 1
6: L ← 0
7: for all k = 0 . . . N − 1 do
8: dk ← sk +

∑L
i=1 cisk−i

9: vk ← (2L � k) � Boolean value deciding between case 2 and case 3
10: B(X) ← XB(X)
11: Conditioned on dk = 1 do
12: C(X) ← C(X) + B(X)
13: EndConditioned
14: Conditioned on dkvk = 1 do � Remaining operations of case 2
15: B(X) ← B(X) + C(X)
16: L ← k + 1 − L � Can be done in place (k + 1 is a constant here)
17: EndConditioned
18: end for
19: Return Reversed(C(X))

incremented m. This turns the algorithm into a less efficient version, but more
suitable for reversibility.

Finally, we reorder the operations in the loop, as we notice that the shift
B(X) ← XB(X) is performed in all cases, and the operation C(X) ← C(X) +
B(X) is performed in all cases where d = 1. We obtain Algorithm 5.

Lemma 6. Algorithm 5 can be implemented as a quantum circuit using O(N2
)

quantum gates, O(N) space and depth O(N log N).

Proof. First of all, it is clear that each of the N loop iterations applies reversibly
on the registers C,B,L, di, vi

After performing these iterations, we copy the output C(X). Then we com-
pute the reverse of the iterations to erase all intermediate registers. After, we
still need to reverse the polynomial C(X). This is done in place using the imple-
mentation described in the full version of the paper [20].

In order to simplify the implementation, L is represented in unary, i.e., as a
list of N bits (�1, . . . , �N) where �i = 1 ⇐⇒ L ≤ i. This allows to perform the
computation of dk in O(N) gates (we perform the sum from i = 1 to N but use
Toffoli gates with �i as inputs). The depth is O(log N) using a fan-in circuit.

Then, vk can be computed with O(1) operations since we can just access
��k/2�.

The shift of B can be implemented by swaps (which are not counted in the
total number of gates, as they simply amount to renumbering the qubits). The
two conditional XORs costs O(N) gates and depth O(log N), needing again fan-
outs of the control. In order to update the unary representation of L, we only

Reducing the Number of Qubits in Quantum Information Set Decoding 317

need O(N) gates, as we will apply X gates on the bits at positions before k + 1,
then swap the entire sub-list (though k varies during the loop, it is a constant
of the circuit). The depth is O(log N), since this is also controlled and we need
to fan-out the control.

Finally, the reversion of C costs O(N log N) gates and depth O(N). We use
no more than O(N) ancillas throughout the circuit. ��

4.3 Benchmarks

We denote by Q = QJ + 2(n − k) + A the total number of qubits used by the
MultH circuit, where A is the number of ancilla qubits and QJ the number of
qubits used to represent J . We also denote by GX, GCX and GCCX its respective
X, CX and CCX gate counts.

Using our implementation of Berlekamp-Massey and Wiedemann’s algo-
rithms, we obtain the following counts. We neglect terms of smaller magnitude,
except for the qubit count which is exact.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Depth = 24D(n − k) + 152(n − k) log2(n − k)
Qubits = Q − A + 7(n − k + 1) + max(A + 3(n − k) + 2, 10(n − k) + 11)
CCX Gates = 24(n − k)GCCX + 116(n − k)2

CX Gates = 24(n − k)GCX + 356(n − k)2

X Gates = 24(n − k)GX

(19)
As our implementations of MultH will typically have quadratic gate count and

depth at least linear in (n − k), we can observe that this cost quickly dominates
over the rest of the algorithm, though the additional terms are not negligible.
The constant factors are also quite large, owing to the number of polynomial
sequences evaluated during Wiedemann’s algorithm and their size (twice n − k
to ensure success in the Berlekamp-Massey algorithm).

5 Implementing the Multiplication Circuit

In this section, we implement the multiplication circuit (with an implicit matrix).
We propose two main approaches, using different representations of the choice
of sub-matrix, i.e., different definitions of the set J .

The first one (Sect. 5.1) is the approach chosen in previous works [46], where
J is the set of n-bit strings of Hamming weight n − k. In that case, Init is a
unitary creating a so-called Dicke state, whose implementation can be borrowed
from these previous works. Using this representation, we are able to decrease the
space complexity of Wiedemann’s algorithm (hence, the entire quantum Prange)
to O(n).

The second one (Sect. 5.2) is based on permutations and sorting. In this
approach, J maps to a set of permutations of {0, . . . , n − 1}. Each permutation
π of {0, . . . , n − 1} naturally specifies a subset I = {π(0), . . . , π(n − k − 1)} ∈

318 C. Chevignard et al.

Sn,k. To the best of our knowledge, this idea has appeared in [45] but was not
completely exploited. Our result shows a remarkable trade-off between qubit
and gate count, where the qubit count increases to O(n log2 n

)
, but remains

comparable in practice to the space-efficient approach; while the total gate count
remains at O(n3

)
, the constant factor is reduced, and the CCX gate count

becomes asymptotically lower.
Using this second approach, further optimizations are possible (Sect. 5.3),

although they do not perform well for practical parameters at the moment.

5.1 Space-Optimized Circuits

In this subsection, J is the set of n-bit strings of Hamming weight n − k, which
is identified with Sn,k.

Lemma 7. There exists a reversible circuit implementing the MultH operation:

|J〉 |x〉 |y〉 MultH�−−−−→ |J〉 |y + HJx〉 |x〉 (20)

which uses O(n) space, O(n(n − k)) gates and depth O(n log(n − k)).

Proof. The operation that we implement is basically the computation of HJx,
except that we will directly XOR the result to y.

Let x := (x0, . . . , xn−k−1). Furthermore, let a = (a0, a1, . . . , an−k−1) be a
vector of integers where a0 is the position of the first “1” in J , a1 the second
one, etc. We note the coefficients of H as (hij) and HJ = (h′

ij), then by definition
of aj :

∀0 ≤ i ≤ n − k − 1,∀0 ≤ j ≤ n − k − 1, h′
ij = hiaj

=
n−1⊕

k=0

δajkhik . (21)

Thus, we can express HJx as follows:

∀0 ≤ i ≤ n − k − 1, (HJx)i =
n−k−1⊕

j=0

h′
ijxj =

n−k−1⊕

j=0

n−1⊕

�=0

δaj�hi�xj

=
n−1⊕

�=0

⎛

⎝
n−k−1⊕

j=0

δaj�xj

⎞

⎠hi� . (22)

Our strategy is to compute the vector v :=
(⊕n−k−1

j=0 δaj�xj

)

0≤�≤n−1
. This

vector simply places the coordinates of x at the positions marked by J , keep-
ing their order. As an example, if we have J = (0, 1, 0, 0, 1, 1, . . .), then v will
start with (0, x0, 0, 0, x1, x2, . . .).

In order to do so, we maintain a unary counter e, implemented as a register
with n − k bits, which remains of weight 1, and represents the number c such
that ec = 1, i.e., such that the bit of weight c in e equals 1.

Reducing the Number of Qubits in Quantum Information Set Decoding 319

For � = 0 to n − 1, we compute: v� = j�e · x where j� is the �th-bit in
the register J . Indeed, the dot-product e · x selects a new coordinate in x each
time the counter is updated. Then, we perform a shift of e, controlled on j�,
to update the counter c as c ← c + j�. These operations require O(n − k) CCX
gates and O(log(n − k)) depth (due to the use of fan-in and fan-out circuits).

Once we have computed v�, we use another fan-out and update the output
HJx. Indeed, from Eq. 22 we have:

∀0 ≤ i ≤ n − k − 1, (HJx)i =
n−1⊕

�=0

v�hi� . (23)

So we simply need to XOR v� at the right positions. This costs O(n − k) CXs. We
then uncompute the fan-out, erase v� and go to the next iteration. Since there are
n iterations, the overall gate count and depth are respectively O(n(n − k)) and
O(n log(n − k)). ��

Cost Formulas. We computed asymptotic formulas for this space-optimized
MultH circuit (left), and combined them with Eq. 19 to obtain the cost of the
inversion circuit (right):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Depth = 4n log2(n − k)
Qubits = n + 6(n − k) + 2
CCX Gates = 5n(n − k)
CX Gates = 9n(n − k)
X Gates = 2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Depth = 96n(n − k) log2(n − k)
Qubits = n + 19(n − k) + 18
CCX Gates = 120n(n − k)2

CX Gates = 216n(n − k)2

X Gates = O(n − k)
(24)

The multiplication of constants between the MultH circuit and the inversion
circuit creates even larger constants, which are far from negligible for actual
parameters.

5.2 Toffoli-Optimized Circuits

In this second approach, the set J is defined by means of a sorting network. Note
that [46] used similar tools to permute the columns of the matrix H within the
QAA iteration; our reasoning is different here since we directly implement MultH.

A sorting network with n entries is defined as a sequence of comparators and
switches, which respectively compare a pair of entries at fixed positions, and
swap them depending on the result of the comparison. While sorting networks
with O(n log n) comparators exist [2], one of the most efficient in practice is
Batcher’s odd-even mergesort [5], which has depth �log2 n� (�log2 n� + 1)/2 and
contains n

4 �log2 n� (�log2 n� − 1) + n − 1 comparators. This is the one we use
here.

Let (A0, . . . , An−1) be an n-tuple of integers. Let us define the mapping N
from (A0, . . . , An−1) to bit-strings of length n

4 �log2 n� (�log2 n� − 1) + n − 1 =
O(n log2 n

)
which gives the results of all comparisons in the sorting network,

320 C. Chevignard et al.

where the comparators are taken in a fixed, arbitrary order. While the sorting
network itself is not reversible, storing N (A0, . . . , An−1) is sufficient to make it
reversible. This increases the space usage of Batcher’s network to O(n log2 n

)
.

Definition of Init. Equipped with the mapping N above, we now define J as:

J =
{(

(A0, . . . , An−1),N (A0, . . . , An−1)
)
, A0, . . . , An−1 ∈ [0;n3 − 1]

}
. (25)

That is, we take an n-tuple of integers (A0, . . . , An−1) between 0 and n3,
append the result of all comparisons in the network, and identify this as a bit-
string.

The unitary Init, which creates the uniform superposition over J , essen-
tially consists in taking uniform superposition of such integers (which is effi-
cient) and computing a reversible sorting network. In particular, the bit-string
N (A0, . . . , An−1) is computed only once, at this step, and used later in the mul-
tiplication circuit without the need to recompute it. As a comparison of integers
can be performed without ancillas using a modified CDKM addition circuit [22],
Init uses almost no ancillas.

Besides removing the need for Dicke states, this definition will make the
multiplication circuit less costly, as we show later.

Mapping to a Subset of Columns. We explain here how an element J ∈ J
defines a subset Sn,k, and why all subsets have the same probability to appear.
This mapping is especially important for the definition of MultH.

First of all, an element J ∈ J defines a permutation πJ of {0, . . . , n − 1},
which is the permutation such that sorting A0, . . . , An−1 puts the integer Ai

in position πJ(i). This permutation can easily be implemented by a switching
network. This network has the same structure as the sorting network that defines
N , but it is made only of controlled swaps (the switches), which are controlled
by the bits of N (A0, . . . , An−1).

It is well-known that, if we sort n distinct entries chosen uniformly at ran-
dom, the permutation πJ is also uniformly random. By choosing entries with
sufficiently many bits, they will all be distinct with large probability.

Lemma 8. Let (A0, . . . , An−1) be drawn uniformly at random in [0;n3−1], then
they are all distinct with probability at least 1 − 1

2n .

Proof. We simply lower bound the probability of all Ai to be distinct, as:

(
1 − 1

n3

)(
1 − 2

n3

)
· · ·

(
1 − n − 1

n3

)
≥ 1 −

n−1∑

i=1

i

n3
≥ 1 − 1

2n
. ��

In the case where the entries are not distinct, we do not know if the algorithm
will succeed. Luckily, our implementation of Wiedemann’s inversion ensures that
there are no false positives, so we can still use QAA (Theorem 3). Indeed,

Reducing the Number of Qubits in Quantum Information Set Decoding 321

we know that the oracle f returns 1 for the tuples (A0, . . . , An−1) for which
all the numbers are distinct, and the corresponding permutation returns a
solution, so the probability of success of the amplified algorithm is at least
(
1 − 1

2n

)
2−3.50 (n−k

w)
(n
w) .

Finally, the permutation πJ defines a subset of columns from Sn,k as follows:
the positions of the columns are πJ(0), πJ (1), . . . , πJ (n − k − 1). As πJ is a
uniformly random permutation (when selecting J at random from J), the subset
{πJ(0), πJ (1), . . . , πJ (n − k − 1)} is also a uniformly random element of Sn,k.

Definition of the Multiplication Circuit. We make a small tweak to the
definition of the sub-matrix HJ . Since we defined a permutation of columns,
it makes sense to define HJ as:

(HJ)ij := (hiπJ (j)) (26)

This definition is slightly different from the one of Sect. 5.1, where the columns
were put in a fixed order. Here, the columns of HJ will also be permuted. This
has no incidence on the rest of the algorithm.

We can now implement our circuit for MultH, which takes as input an element
of J . In fact, this circuit does not need the integers (A0, . . . , An−1), which we
are keeping along only for the sake of reversibility. It only relies on the bit-string
N (A0, . . . , An−1) which defines the permutation πJ .

Lemma 9. There exists a reversible circuit implementing the MultH operation:

|J〉 |x〉 |y〉 MultH�−−−−→ |J〉 |y + HJx〉 |x〉 (27)

using O(n log2 n
)

space, O(n log2 n
)

CCX gates, O(n2
)

CX gates and depth
n + o(n).

Proof. The idea of the circuit is very similar to Lemma 7. First, we compute
the vector v that places the input bits x at appropriate positions, i.e., bit xi in
position πJ(i). Then, we compute the fixed matrix-vector product Hv.

The first step is done using the switching network, i.e., a series of O(n log2 n
)

controlled swaps with depth O(log2 n
)
.

The second step can be done in depth n and O(n2
)

CX gates as recalled
in Sect. 3.4 (see the full version [20] for more details). ��

Interestingly, the dominating operation becomes the product of v by the
constant matrix H. This is a linear quantum circuit, which can be implemented
with only CX gates. The depth is also asymptotically optimal. This appears
clearly on our asymptotic cost formulas for this alternative function:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Depth = n
Qubits = n + (n − k) + n

4 �log2 n� (�log2 n� − 1) + n − 1 + 3n log2 n
CCX Gates = 1

2n(log2 n)2

CX Gates = n(n − k)
X Gates = O(1)

(28)

322 C. Chevignard et al.

Having much lower constants than Eq. 24, these counts yield much more
favorable results when we plug them in Eq. 19:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Depth = 24n(n − k)
Qubits = n

4 �log2 n� (�log2 n� − 1) + n + 19(n − k) + 17 + 3n log2 n
CCX Gates = 12n(n − k)(log2 n)2 + 116(n − k)2

CX Gates = 24n(n − k)2 + 356(n − k)2

X Gates = O(n − k)
(29)

In both these formulas, the term 3n log2 n in the qubit count comes from the
initial tuple of integers (A0, . . . , An−1). They actually do not intervene in the
definition of the circuits, but we need to keep them along in order to be able
to invert the Init circuit. This term is asymptotically negligible, but not entirely
when n � 103.

5.3 Gate-Optimized Multiplication Circuit for Circulant Matrices

In the case of BIKE [3] and HQC [1], one has n = 2k and the parity-check
matrix H is made of two k × k circulant blocks. Therefore, we can replace the
multiplication by H by a more efficient circuit using Karatsuba multiplication
of polynomials (detailed in the full version of the paper [20]). While our bench-
marks show a noticeable improvement in total gate count, the downside is an
increase in depth, since the Karatsuba circuit that we use, based on Gidney [29],
has asymptotically worse depth.

Asymptotically, binary polynomial multiplication can be performed in Õ(n)
binary operations, for example using Cantor’s algorithm [18] in O(n(log n)1.585

)
.

This means that there exists a circuit for multiplication by a circulant matrix
using O(n(log n)1.585

)
gates and qubits, and consequently:

Theorem 4. If the parity-check matrix is block-circulant, there exists a quantum

algorithm solving SD for random codes using O
(

n2(log n)2 ×
√

(nk)
(n−t

k)

)
gates and

O(n(log n)2
)

qubits.

This decrease of the gate count is specific to our “sorting-based” approach,
using the fact that H is structured and that Wiedemann’s algorithm can make
use of this. To the best of our knowledge, this is the first asymptotic improvement
over the O(n3

)
linear algebra factor in quantum ISD to date.

Unfortunately, while efficient classical software exists [17], corresponding
quantum circuits for circulant matrix-vector multiplication have not been stud-
ied as much. In particular, the constant factors, depth and qubit counts of this
method remain unknown.

6 Evaluation of Costs for Code-Based Cryptosystems

In this section we give resource estimates for the three inversion circuits detailed
in Sect. 5, and compare them.

Reducing the Number of Qubits in Quantum Information Set Decoding 323

6.1 Comparison of Circuits

We computed the number of gates, qubits and depth of our circuits for param-
eters of the three round 4 candidates for post-quantum key-exchange based
on codes at the NIST post-quantum standardization: Classic McEliece [12],
BIKE [3] and HQC [1]. We compare them with the counts of [46] in Table 1.

Even if we disregard the use of memory, it is difficult to compare our results
with the advanced quantum ISD algorithms that could apply here [34–36], since
they considered only asymptotic complexities and neglected polynomial factors.
However, it is likely that these algorithms could benefit from improved linear
algebra circuits.

We note that, while we compare here with [46], Bonnetain and Jaques also
designed a quantum circuit for binary Gaussian elimination for a matrix of
dimension (n−k)× (n−k) with depth O((n − k) log(n − k)) [14]. This is better
than the depth O((n − k)2

)
reported in [46], so we believe their counts could be

immediately improved by using the circuit of [14] as a replacement. Nevertheless,
our main focus in Table 1 is on the number of qubits.

Let us consider the Classic McEliece parameters for NIST security level 1,
which are at least as secure as AES-128 against Grover’s exhaustive key search
(“McEliece L1” in Table 1). Using the space-optimized circuit, the total number
of qubits required for quantum Prange is 18 + n + 19(n − k) = 18 098, instead
of 222 � 4 194 304 reported in [46]. Previously one would have needed at least
(n − k)2 = 589 824 qubits at best to store the matrix being inverted using
Gaussian elimination. Our improvement brings the number of logical qubits to
the same order as the one required in factoring large instances of RSA [30] via
Shor’s algorithm [51].

However, this optimization of space comes at the expense of gate count and
depth. Indeed, both increase a thousandfold, mostly due to the large constant
factors appearing in Eq. 24. Overall, the product between depth and width of
the circuit (so-called “DW” metric) increases slightly.

The sorting-based approach has a much better trade-off. On the same exam-
ple, it will use 258 769 qubits, among which 115 104 are used to store the state
of switches, and 125 568 to store the initial numbers which are sorted. This
increase in the space complexity comes entirely from our representation of the
column choice, which could likely be compacted. On this example, the total gate
count and depth are significantly reduced but remain a factor 26 above those
of [46]. The difference is more favorable for larger code lengths as the Toffoli
count is asymptotically smaller.

With the same amount of qubits, the use of Karatsuba-based multiplication of
polynomials for the matrix-vector product reduces the gate count asymptotically.
The difference is already noticeable for the BIKE and HQC parameters. However,
our implementation is not optimized in depth. As a consequence the DW product
increases significantly.

324 C. Chevignard et al.

Table 1. Quantum resource estimates for the QAA iteration. Counts are given in log2

and rounded. The number of CCX gates is not given in [46], but due to the structure
of the Gaussian elimination circuit, it is of the same order as the total number of gates.

Counts (in log2)

Implementation Scheme n k CCX Total gates Depth Qubits DW

[46]

BIKE L1 24646 12323 43 28 29 57

BIKE L3 49318 24659 46 31 31 62

BIKE L5 81946 40973 48 32 33 65

HQC L1 35338 17669 45 30 30 60

HQC L3 71702 35851 47 32 32 64

HQC L5 115274 57637 50 34 34 68

McEliece L1 3488 2720 30 20 22 42

McEliece L3 4608 3360 32 22 23 45

McEliece L5-1 6688 5024 34 23 24 47

McEliece L5-2 6960 5413 33 23 24 47

McEliece L5-3 8192 6528 34 23 24 47

Space-optimized

Section 5.1

BIKE L1 24646 12323 48.7 50.2 38.9 18.0 56.9

BIKE L3 49318 24659 51.7 53.2 41.0 19.0 60.0

BIKE L5 81946 40973 53.9 55.4 42.5 19.7 62.2

HQC L1 35338 17669 50.2 51.7 40.0 18.5 58.5

HQC L3 71702 35851 53.3 54.8 42.1 19.5 61.7

HQC L5 115274 57637 55.4 56.8 43.5 20.2 63.7

McEliece L1 3488 2720 37.8 39.3 31.7 14.1 45.8

McEliece L3 4608 3360 39.6 41.1 32.9 14.8 47.7

McEliece L5-1 6688 5024 41.0 42.5 33.9 15.2 49.1

McEliece L5-2 6960 5413 40.9 42.3 33.8 15.2 49.0

McEliece L5-3 8192 6528 41.3 42.8 34.1 15.3 49.4

Toffoli-optimized

Section 5.2

BIKE L1 24646 12323 39.5 46.4 32.8 21.8 54.6

BIKE L3 49318 24659 41.7 49.4 34.8 22.9 57.7

BIKE L5 81946 40973 43.4 51.6 36.2 23.8 60.0

HQC L1 35338 17669 40.8 47.9 33.8 22.4 56.3

HQC L3 71702 35851 43.0 51.0 35.9 23.6 59.4

HQC L5 115274 57637 44.3 53.0 37.2 24.3 61.5

McEliece L1 3488 2720 32.0 35.9 26.2 18.5 44.7

McEliece L3 4608 3360 33.4 37.6 27.2 19.1 46.3

McEliece L5-1 6688 5024 34.3 38.9 28.1 19.6 47.8

McEliece L5-2 6960 5413 34.3 38.8 28.1 19.7 47.8

McEliece L5-3 8192 6528 34.6 39.2 28.4 19.9 48.3

Karatsuba

Section 5.3

BIKE L1 24646 12323 39.5 44.3 40.3 21.8 62.1

BIKE L3 49318 24659 41.7 46.8 42.9 23.0 65.8

BIKE L5 81946 40973 43.4 49.1 45.2 23.8 69.0

HQC L1 35338 17669 40.8 46.3 42.4 22.4 64.8

HQC L3 71702 35851 43.0 48.9 45.0 23.6 68.6

HQC L5 115274 57637 44.3 49.6 45.7 24.3 70.0

6.2 Discussion

Our work does not threaten the security of the NIST code-based candidates
Classic McEliece, BIKE and HQC. In fact, it does not overall improve the cir-
cuit depth with respect to [46] and [14], and the gains in DW product that we

Reducing the Number of Qubits in Quantum Information Set Decoding 325

observed with respect to [46] come mostly from the reduction in qubits. Besides,
we lose the gain of DOOM that is exploitable with Gaussian elimination in the
case of BIKE and HQC, as mentioned in Sect. 3.2. However, DOOM reduces the
number of iterations by a factor

√
n, while our method reduces the Toffoli gate

count (and the total gate count for block-circulant matrices) by a factor of order
n

log2 n
, which is asymptotically better.

While our space-optimized circuit reaches quite competitive qubit counts,
we have observed that the Toffoli-optimized approach offers a better trade-off in
practice, and can be combined with an improved matrix multiplication circuit
for block circulant matrices. There are several ways in which this approach can
be further improved.

First of all, the bottleneck of the cost in Toffoli (CCX) gates is the switching
network that is used in MultH. Right now, this network contains O(n log2 n

)

controlled swaps. However, it is known that given a permutation π of {0, . . . , n−
1}, one can design a network with only O(n log n) swaps that implements π.
Such an algorithm is described in detail in [11], but the difficulty would be to
implement it as an efficient quantum circuit. We would use this circuit once in
the QAA iteration and store the network using O(n log n) qubits. The CCX gate
of the MultH operation would further decrease to O(n log n).

The bottleneck in the space complexity is the integers (A0, . . . , An−1) which
we use as intermediates to sample a random permutation, and the state of the
comparators which we use to represent it. Other ways to generate a random per-
mutation (e.g., the Fisher-Yates shuffle) did not seem competitive. However, our
approach right now is quite conservative, as we ensured that the permutation
was sampled uniformly at random. This requirement can be relaxed: we only
want to sample from a family of permutations that distribute well the subset of
n−k columns to be selected, so that the probability of finding a solution remains
high. It is known that switching networks with O(n log n) and depth O(log2 n

)

with good mixing properties can be constructed [23]. We believe that such a
construction could be used to reduce both the CCX gate count and number of
qubits, but leave this as future work.

7 Conclusion

In this paper, we achieved new trade-offs in the linear algebra circuit required
in the quantum Prange’s algorithm. In particular, we can bring the number
of qubits down to O(n), at a level similar to what Shor’s algorithm requires
for large RSA instances. The core idea is to use Wiedemann’s matrix inversion
algorithm, where the matrix to invert is only implicitly represented. Our main
contribution is a complete reversible and space-efficient implementation of this
algorithm with detailed gate counts.

While our new approach removes the limitation of the number of qubits, we
still expect quantum ISD to remain unrealizable for code-based cryptosystems,
even for large-scale quantum computers, due to its large circuit depth and gate
count requirements.

326 C. Chevignard et al.

Nevertheless, our result greatly improves the known time-memory trade-
offs [27], and switches the focus towards the time complexity. In this context, we
also showed that Wiedemann inversion, combined with an appropriate repre-
sentation of column permutations in Prange’s algorithm, improves the Toffoli
(CCX) gate count with respect to Gaussian elimination. It can also improve
the overall gate count in the case of circulant matrices. Our estimations shows
that these improvements are observable for actual parameters of code-based
cryptosystems, but further dedicated circuit optimizations could significantly
enhance these results.

Finally, although this paper focused on the quantum Prange algorithm, our
implementation of Wiedemann’s algorithm is of independent interest, as there
are other quantum algorithms that need to inverse a sparse or implicit matrix, for
example solving multivariate polynomial equation systems [13,28]. Our circuit
could be used to reduce the memory complexity, and perhaps estimate more
precisely the time complexity of such methods.

Acknowledgments.. We would like to thank the anonymous reviewers of ASI-
ACRYPT 2024 for helpful remarks. This work has been supported by the French
Agence Nationale de la Recherche through the CROWD project under Contract ANR-
CE 48 2022, and through the France 2030 program under grant agreement No. ANR-
22-PETQ-0008 PQ-TLS.

References

1. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Persichetti, E., , Zémor, G., Bos, J., Dion, A., Lacan, J., Robert,
J.M., Véron, P.: Hamming quasi-cyclic (HQC). Submission to the NIST PQC pro-
cess, Round 4 (2022), https://pqc-hqc.org/

2. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC.
pp. 1–9. ACM (1983). https://doi.org/10.1145/800061.808726

3. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Gueron, S., Güneysu, T., Aguilar Melchor, C., Misoczki, R., Per-
sichetti, E., Sendrier, N., Tillich, J.P., Zémor, G., Vasseur, V., Ghosh, S., Richter-
Brokmann, J.: BIKE: bit flipping key encapsulation. Submission to the NIST PQC
process, Round 4 (2022), https://bikesuite.org/

4. Bärtschi, A., Eidenbenz, S.J.: Short-depth circuits for Dicke state preparation. In:
QCE. pp. 87–96. IEEE (2022). https://doi.org/10.1109/QCE53715.2022.00027

5. Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint
Computing Conference. AFIPS Conference Proceedings, vol. 32, pp. 307–314.
Thomson Book Company, Washington D.C. (1968). https://doi.org/10.1145/
1468075.1468121

6. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in
2n/20: How 1+1 = 0 improves information set decoding. In: EUROCRYPT. Lecture
Notes in Computer Science, vol. 7237, pp. 520–536. Springer (2012). https://doi.
org/10.1007/978-3-642-29011-4 31

7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

https://pqc-hqc.org/
https://doi.org/10.1145/800061.808726
https://bikesuite.org/
https://doi.org/10.1109/QCE53715.2022.00027
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31

Reducing the Number of Qubits in Quantum Information Set Decoding 327

8. Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill series in systems science,
McGraw-Hill (1968), https://www.worldcat.org/oclc/00256659

9. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386
(1978). https://doi.org/10.1109/TIT.1978.1055873

10. Bernstein, D.J.: Grover vs. mceliece. In: PQCrypto. Lecture Notes in Computer
Science, vol. 6061, pp. 73–80. Springer (2010). https://doi.org/10.1007/978-3-642-
12929-2 6

11. Bernstein, D.J.: Verified fast formulas for control bits for permutation networks.
IACR Cryptol. ePrint Arch. p. 1493 (2020), https://eprint.iacr.org/2020/1493

12. Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram, V., von Maurich,
I., Misoczki, R., Niederhagen, R., Persichetti, E., Peters, C., Sendrier, N., Szefer, J.,
Tjhai, C.J., Tomlinson, M., Wang, W.: Classic McEliece: conservative code-based
cryptography. Submission to the NIST PQC process, Round 4 (2022), https://
classic.mceliece.org

13. Bernstein, D.J., Yang, B.: Asymptotically faster quantum algorithms to solve
multivariate quadratic equations. In: PQCrypto. Lecture Notes in Computer Sci-
ence, vol. 10786, pp. 487–506. Springer (2018). https://doi.org/10.1007/978-3-319-
79063-3 23

14. Bonnetain, X., Jaques, S.: Quantum period finding against symmetric primitives
in practice. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 1–27 (2022).
https://doi.org/10.46586/TCHES.V2022.I1.1-27

15. Both, L., May, A.: Decoding linear codes with high error rate and its impact for
LPN security. In: PQCrypto. Lecture Notes in Computer Science, vol. 10786, pp.
25–46. Springer (2018). https://doi.org/10.1007/978-3-319-79063-3 2

16. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002). https://doi.org/
10.1090/conm/305/05215

17. Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in
gf(2)[x]. In: ANTS. Lecture Notes in Computer Science, vol. 5011, pp. 153–166.
Springer (2008). https://doi.org/10.1007/978-3-540-79456-1 10

18. Cantor, D.G.: On arithmetical algorithms over finite fields. J. Comb. Theory, Ser.
A 50(2), 285–300 (1989). https://doi.org/10.1016/0097-3165(89)90020-4

19. Chailloux, A., Debris-Alazard, T., Etinski, S.: Classical and quantum algorithms
for generic syndrome decoding problems and applications to the lee metric. In:
PQCrypto. Lecture Notes in Computer Science, vol. 12841, pp. 44–62. Springer
(2021). https://doi.org/10.1007/978-3-030-81293-5 3

20. Chevignard, C., Fouque, P., Schrottenloher, A.: Reducing the number of qubits
in quantum information set decoding. IACR Cryptol. ePrint Arch. p. 907 (2024),
https://eprint.iacr.org/2024/907

21. Cooper, C.: On the distribution of rank of a random matrix over a finite field.
Random Struct. Algorithms 17(3-4), 197–212 (2000)

22. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit (2004)

23. Czumaj, A.: Random permutations using switching networks. In: STOC. pp. 703–
712. ACM (2015). https://doi.org/10.1145/2746539.2746629

24. Dornstetter, J.: On the equivalence between Berlekamp’s and Euclid’s algorithms
(corresp.). IEEE transactions on information theory 33(3), 428–431 (1987)

25. Ducas, L., Esser, A., Etinski, S., Kirshanova, E.: Asymptotics and improvements of
sieving for codes. In: EUROCRYPT (6). Lecture Notes in Computer Science, vol.
14656, pp. 151–180. Springer (2024). https://doi.org/10.1007/978-3-031-58754-2 6

https://www.worldcat.org/oclc/00256659
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://eprint.iacr.org/2020/1493
https://classic.mceliece.org
https://classic.mceliece.org
https://doi.org/10.1007/978-3-319-79063-3_23
https://doi.org/10.1007/978-3-319-79063-3_23
https://doi.org/10.46586/TCHES.V2022.I1.1-27
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1007/978-3-540-79456-1_10
https://doi.org/10.1016/0097-3165(89)90020-4
https://doi.org/10.1007/978-3-030-81293-5_3
https://eprint.iacr.org/2024/907
https://doi.org/10.1145/2746539.2746629
https://doi.org/10.1007/978-3-031-58754-2_6

328 C. Chevignard et al.

26. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: An optimized
quantum implementation of ISD on scalable quantum resources. IACR Cryptol.
ePrint Arch. p. 1608 (2021), https://eprint.iacr.org/2021/1608

27. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: Hybrid
decoding - classical-quantum trade-offs for information set decoding. In: PQCrypto.
Lecture Notes in Computer Science, vol. 13512, pp. 3–23. Springer (2022). https://
doi.org/10.1007/978-3-031-17234-2 1

28. Faugère, J., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.:
Fast quantum algorithm for solving multivariate quadratic equations. CoRR
abs/1712.07211 (2017), http://arxiv.org/abs/1712.07211

29. Gidney, C.: Asymptotically efficient quantum karatsuba multiplication. arXiv
preprint arXiv:1904.07356 (2019)

30. Gidney, C., Eker̊a, M.: How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits. Quantum 5, 433 (2021). https://doi.org/10.22331/Q-2021-
04-15-433, https://doi.org/10.22331/q-2021-04-15-433

31. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC.
pp. 212–219. ACM (1996). https://doi.org/10.1145/237814.237866

32. Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding
algorithm. IACR Cryptol. ePrint Arch. p. 247 (2023), https://eprint.iacr.org/2023/
247

33. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for
quantum key search on AES and LowMC. In: EUROCRYPT (2). Lecture Notes
in Computer Science, vol. 12106, pp. 280–310. Springer (2020). https://doi.org/10.
1007/978-3-030-45724-2 10

34. Kachigar, G., Tillich, J.: Quantum information set decoding algorithms. In:
PQCrypto. Lecture Notes in Computer Science, vol. 10346, pp. 69–89. Springer
(2017). https://doi.org/10.1007/978-3-319-59879-6 5

35. Kimura, N., Takayasu, A., Takagi, T.: Memory-efficient quantum information set
decoding algorithm. In: ACISP. Lecture Notes in Computer Science, vol. 13915,
pp. 452–468. Springer (2023). https://doi.org/10.1007/978-3-031-35486-1 20

36. Kirshanova, E.: Improved quantum information set decoding. In: PQCrypto. Lec-
ture Notes in Computer Science, vol. 10786, pp. 507–527. Springer (2018). https://
doi.org/10.1007/978-3-319-79063-3 24

37. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 330,
pp. 275–280. Springer (1988). https://doi.org/10.1007/3-540-45961-8 25

38. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory
15(1), 122–127 (1969). https://doi.org/10.1109/TIT.1969.1054260

39. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in O(2 0 .054n). In:
ASIACRYPT. Lecture Notes in Computer Science, vol. 7073, pp. 107–124. Springer
(2011). https://doi.org/10.1007/978-3-642-25385-0 6

40. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: EUROCRYPT (1). Lecture Notes in Computer Science,
vol. 9056, pp. 203–228. Springer (2015). https://doi.org/10.1007/978-3-662-46800-
5 9

41. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
42. NIST: Submission requirements and evaluation criteria for the post-quantum

cryptography standardization process (2016), https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

https://eprint.iacr.org/2021/1608
https://doi.org/10.1007/978-3-031-17234-2_1
https://doi.org/10.1007/978-3-031-17234-2_1
http://arxiv.org/abs/1712.07211
http://arxiv.org/abs/1904.07356
https://doi.org/10.22331/Q-2021-04-15-433
https://doi.org/10.22331/Q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1145/237814.237866
https://eprint.iacr.org/2023/247
https://eprint.iacr.org/2023/247
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-031-35486-1_20
https://doi.org/10.1007/978-3-319-79063-3_24
https://doi.org/10.1007/978-3-319-79063-3_24
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

Reducing the Number of Qubits in Quantum Information Set Decoding 329

43. NIST: Post-quantum cryptography: Digital signature schemes - round 1 additional
signatures (2023), https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-
signatures

44. NIST: Round 4 standardisation results for the post-quantum cryptogra-
phy standardization process (2024), https://csrc.nist.gov/projects/post-quantum-
cryptography/round-4-submissions

45. Perriello, S.: Design and development of a quantum circuit to solve the information
set decoding problem (2017)

46. Perriello, S., Barenghi, A., Pelosi, G.: Improving the efficiency of quantum circuits
for information set decoding. ACM Transactions on Quantum Computing 4(4),
1–40 (2023)

47. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777

48. Qiskit contributors: Qiskit: An open-source framework for quantum computing
(2023). https://doi.org/10.5281/zenodo.2573505

49. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.E.: Quantum resource estimates
for computing elliptic curve discrete logarithms. In: ASIACRYPT (2). Lecture
Notes in Computer Science, vol. 10625, pp. 241–270. Springer (2017). https://doi.
org/10.1007/978-3-319-70697-9 9

50. Sendrier, N.: Decoding one out of many. In: PQCrypto. Lecture Notes in Computer
Science, vol. 7071, pp. 51–67. Springer (2011). https://doi.org/10.1007/978-3-642-
25405-5 4

51. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: FOCS. pp. 124–134. IEEE Computer Society (1994). https://doi.org/10.
1109/SFCS.1994.365700

52. Stern, J.: A method for finding codewords of small weight. In: Coding Theory and
Applications. Lecture Notes in Computer Science, vol. 388, pp. 106–113. Springer
(1988). https://doi.org/10.1007/BFB0019850

53. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theory 32(1), 54–62 (1986). https://doi.org/10.1109/TIT.1986.1057137

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/BFB0019850
https://doi.org/10.1109/TIT.1986.1057137

On the Semidirect Discrete Logarithm
Problem in Finite Groups

Christopher Battarbee1(B), Giacomo Borin2,14(B), Julian Brough13,
Ryann Cartor3, Tobias Hemmert13, Nadia Heninger4, David Jao5,
Delaram Kahrobaei6,7, Laura Maddison8, Edoardo Persichetti9,

Angela Robinson10, Daniel Smith-Tone10,11, and Rainer Steinwandt12

1 Sorbonne University, CNRS, LIP6, PolSys, Paris, France
christopher.battarbee@lip6.fr

2 IBM Research Europe, Rüschlikon, Switzerland
sdlp@gbor.in

3 Clemson University, Clemson, USA
4 University of California, San Diego, USA

5 University of Waterloo, Waterloo, ON, Canada
6 Department of Computer Science and Mathematics, Queens College,

City University of New York, Flushing, USA
7 Department of Computer Science and Engineering, Tandon School of Engineering,

New York University, New York, USA
8 University of Ottawa, Ottawa, ON, Canada

9 Florida Atlantic University, Boca Raton, USA
10 National Institute of Standards and Technology, Gaithersburg, USA

11 University of Louisville, Louisville, USA
12 University of Alabama in Huntsville, Huntsville, USA

13 Bundesamt für Sicherheit in der Informationstechnik, Bonn, Germany
14 University of Zurich, Zürich, Switzerland

Abstract. We present an efficient quantum algorithm for solving the
semidirect discrete logarithm problem (SDLP) in any finite group. The
believed hardness of the semidirect discrete logarithm problem under-
lies more than a decade of works constructing candidate post-quantum
cryptographic algorithms from non-abelian groups. We use a series of
reduction results to show that it suffices to consider SDLP in finite sim-
ple groups. We then apply the celebrated Classification of Finite Sim-
ple Groups to consider each family. The infinite families of finite simple
groups admit, in a fairly general setting, linear algebraic attacks pro-
viding a reduction to the classical discrete logarithm problem. For the
sporadic simple groups, we show that their inherent properties render
them unsuitable for cryptographically hard SDLP instances, which we
illustrate via a Baby-Step Giant-Step style attack against SDLP in the
Monster Group.

Our quantum SDLP algorithm is fully constructive, up to the compu-
tation of maximal normal subgroups, for all but three remaining cases
that appear to be gaps in the literature on constructive recognition of
groups; for these cases SDLP is no harder than finding a linear represen-

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 330–357, 2025.
https://doi.org/10.1007/978-981-96-0944-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_11&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_11

On the Semidirect Discrete Logarithm Problem in Finite Groups 331

tation. We conclude that SDLP is not a suitable post-quantum hardness
assumption for any choice of finite group.

Keywords: Group-Based Cryptography · Semidirect Discrete
Logarithm Problem · Post-Quantum Cryptography

1 Introduction

There has been a significant amount of research on semidirect product cryptogra-
phy within the post-quantum community [23,24,28,41,42] since its introduction
in 2013 by Habeeb et al. [24]. This approach aims to use the group-theoretic notion
of the semidirect product to generalize the discrete logarithm problem (DLP) in a
manner that resists quantum attacks. The resulting problem is called the Semidi-
rect Discrete Logarithm Problem (SDLP), and is the subject of this paper.

The NIST Post-Quantum Standardization process [39] has motivated work
on a wide variety of computational problems and candidate constructions for
post-quantum cryptographic algorithms. While lattice-based cryptography may
currently be the most well-represented among post-quantum schemes, there is a
desire to have a diverse collection of candidates, computational hardness assump-
tions and algorithms. This would provide a hedge against cryptanalytic surprises
(such as the late-breaking attacks against Rainbow and SIKE) and allow for dif-
ferent performance tradeoffs, as well as advanced functionalities.

In this light, SDLP is an appealing generalization of DLP over cyclic groups
that can be used to define analogues of discrete logarithm-based cryptography
over non-commutative (semi-)groups. SDLP offers an unusual degree of flexibil-
ity; almost all of the cryptosystems are defined for any finite group, and several
are defined for finite semigroups. Battarbee et al. [6,7] showed that the machin-
ery of SDLP gives rise to a group action and suggests that this might allow
efficiency improvements over other candidates for group-action based cryptog-
raphy, especially in the realm of digital signature schemes.

Historically, cryptanalysis of SDLP-based schemes has been specific to a par-
ticular choice of group. For example, there have been several proposals of groups
to be used with Semidirect Product Key Exchange (SDPKE), which is the
analogue of Diffie-Hellman Key Exchange (DHKE) for SDLP [23,24,28,41,42].
Each of these proposals was later shown to be insecure due to some feature
of the selected platform group [16,36–38,43]. However, analogously to the rela-
tionship between DHKE and the Diffie-Hellman problems, a break of SDPKE
for some group does not demonstrate that SDLP is easy in that group. More
recently, Imran and Ivanyos [25] showed that SDLP in a solvable group admits a
reduction to standard quantum-vulnerable problems. While this work has elim-
inated some candidate constructions, it leaves unresolved the question motivat-
ing our work: is there any choice of finite group G such that SDLP in G is
post-quantum secure?

This question has remained unanswered for over a decade of active research
in the area. In this work, we prove that the answer is negative. Our result
makes use of the famous Classification of Finite Simple Groups and develops

332 C. Battarbee et al.

a generalization of the “decomposition” methods of [25]. In particular, we will
repeatedly use the “recursion tool” of [25] to reduce an instance of SDLP in an
arbitrary finite group to several instances of SDLP in finite simple groups. Since
there is a relatively short and known list of all possible finite simple groups, we
then devise quantum and classical algorithms for solving SDLP or reducing it
to the problem of finding a linear representation of the group, that we can solve
(up to some technical detail concerning constructive recognition of groups) in
each family of finite simple groups.
Our contributions are highlighted below.

– We develop a more sophisticated method of decomposition into “smaller”
instances of SDLP, based on the ideas of [25]. In particular we show that, for
SDLP in an arbitrary finite group G, one can always generate logarithmically-
many instances of SDLP in simple groups; moreover, solving these instances
of SDLP suffices to solve SDLP in the group G.

– We solve SDLP in non-sporadic simple groups by studying their representa-
tions and, building on another idea of [25], give a reduction to the classical
DLP after some linear algebra calculations of polylogarithmic complexity.

– We propose an adaptation of Shanks’ Baby-Step-Giant-Step algorithm which
efficiently (and classically) solves SDLP in sporadic groups, exploiting the
relatively low orders of their elements. This completes our claim that one can
solve SDLP in a practical manner in an arbitrary finite group G.

While our work eliminates hope for quantum-secure SDLP-based cryptog-
raphy over finite groups, the corresponding problem for semigroups, which is
featured in some previous proposals [24], remains an interesting open problem.
Indeed, evidence suggests that some group-theoretic problems may be harder
to solve on semigroups than on groups. For example, Childs and Ivanyos [17]
prove an exponential lower bound on the number of quantum queries required
to solve the constructive semigroup membership problem on a black-box semi-
group, whereas the corresponding problem for black-box groups is known to be
quantum polynomial-time since it simply reduces to DLP. We remark also that
our techniques are unlikely to translate to the infinite case of SDLP.

1.1 Paper Organization and Contributions

We prove the following main results.

Theorem 1. Let G be a finite black-box group. Given an oracle computing max-
imal normal subgroups, in order to solve SDLP in G, it suffices to solve SDLP in
at most log |G| many simple groups. We can compute the information defining
these instances of SDLP in simple groups in quantum polynomial time in log |G|.
Theorem 2. Let G be a finite black-box group and suppose there is an efficient
linear (or projective) representation of G of dimension n. One can solve SDLP
in G in quantum polynomial time in n and log |G|.

On the Semidirect Discrete Logarithm Problem in Finite Groups 333

Corollary 1. Let S be a finite simple black-box group, that is not one of the
groups 2F4(22n+1) or 3D4(2e). One can solve SDLP in S in quantum polynomial
time in log |S|.

We will explicitly discuss SDLP in the two groups omitted by Corollary 1 in
Sect. 6. The techniques for computing arbitrary maximal normal subgroups
comes from the literature on various computational group theoretic problems,
in particular the task of computing composition series of groups. The literature
here does not appear to be completely resolved, and we discuss it in Appendix A.
The rest of our paper is organized as follows (which also gives a guide to the
structure of our results). Section 2 gives some background on group theory and
some of the computational problems that arise in this work. This section also
summarizes the main results of [25] that we generalize in this work. In Sect. 3,
we go into more detail on the main decomposition tool, and generalize it in sev-
eral steps to finite simple groups. In Sect. 4, we give a generic method to solve
SDLP for any finite group using its linear representation. Combining the results
in these two sections gives an efficient reduction of SDLP in any group to SDLP
in finite simple groups, as well as an algorithm solving SDLP with running time
dependent on the faithful dimension in simple groups. In Sect. 5, we use the clas-
sification of finite simple groups to iterate through each of the families of finite
simple groups in turn. Given the previous computational reductions, the main
question for each of these families is to construct an efficient linear representation
from a black-box group; this is known to be in probabilistic quantum polynomial
time for all but two minor special cases. Finally, the sporadic groups can be eas-
ily dispensed with, either via a brute-force search or via an adapted baby-step
giant-step algorithm. We conclude in Sect. 6 that SDLP on finite groups is not a
reliable candidate for quantum-resistant cryptography.

2 Preliminaries

The semidirect discrete logarithm problem arises from the study of the semidirect
product of a group G by its own automorphism group. Let us briefly recall the
definition:

Definition 1 (Holomorph). Let G be a group with automorphism group
Aut(G). The semidirect product of G by Aut(G), written G � Aut(G), is the
set of ordered pairs from G × Aut(G) equipped with multiplication defined by

(g, φ)(g′, ψ) := (gφ(g′), φ ◦ ψ)

where ◦ denotes function composition. We call this structure the holomorph of G
and denote it by Hol(G).

By induction, one can verify that for (g, φ) ∈ Hol(G) and x ∈ N, we have

(g, φ)x = (gφ(g) . . . φx−1(g)
︸ ︷︷ ︸

=:sg,φ(x)

, φx),

334 C. Battarbee et al.

and we can think of this as a function sg,φ : Z → G, mapping the exponent x to
the projection onto the G-component of (g, φ)x. For finite groups G, the order
of elements in Hol(G) is bounded above by |G| (see [11]), so we may, without
loss of generality, choose to restrict the domain of sg,φ to a finite set.

Definition 2 (Semidirect Discrete Logarithm Problem). Let G be a
group and fix (g, φ) ∈ Hol(G). Suppose h = sg,φ(x) for some x ∈ Z. We define
SDLP(G,φ, g, h) to be the set consisting of all the integers i such that sg,φ(i) = h.
The Semidirect Discrete Logarithm Problem (SDLP) is to determine this set.

Remark 1. It will be useful in some contexts for us to say “SDLP for G and
φ”, for a finite group G and one of its automorphisms φ. By this, we just mean
an instance of SDLP where one recovers SDLP(G,φ, g, h), without wishing to
specify g and h.

Since sg,φ(x) is the projection of a holomorph element onto one of its coor-
dinates, the SDLP setup does not directly expose an element of G or Aut(G).
The problem is therefore not trivially equivalent to a standard DLP. Thinking
of sg,φ in terms of a projection also tells us how to efficiently compute it: we can
compute exponentiation in the holomorph using standard square-and-multiply
techniques, and then project the result to obtain the desired value.

2.1 Essential Group Theory Notions

Let G be a group. A subgroup N ≤ G is said to be normal if for all g ∈ G and
n ∈ N , gng−1 ∈ N . We use N � G to denote that N is a normal subgroup of
G. We can then define the quotient group G/N to be the set of left cosets of N
in G. In other words, G/N = {gN | g ∈ G}. The group operation on G/N is
induced by the group operation on G in the obvious way.

A group G is simple if it has no non-trivial proper normal subgroups, and
we refer to a subgroup H of a group G as characteristic if φ(H) = H for every
automorphism φ ∈ Aut(G). The group G is said to be characteristically simple if
it has no non-trivial proper characteristic subgroups. The example Z/2Z×Z/2Z

illustrates that being characteristically simple is a strictly weaker property than
being simple. A subnormal series 1 = Hm � Hm−1 � · · · � H1 � H0 = H of a group
H is called a composition series if each quotient Hi/Hi−1 is simple and called a
quasi-composition series if each quotient is either abelian or non-abelian simple.

For technical reasons we require that any computational representation of
a group G comes with two attributes CS Abelian Flag, and CS NonAbelianFlag,
which are by default set to 0 (i.e., G.CS Abelian Flag = G.CS NonAbelian Flag =
0). One of our algorithms later on may update these values if it detects that the
group is either of two special cases of characteristically simple.

A linear representation of a group G on a finite-dimensional vector space V
is a group homomorphism

ψ : G → GL(V).

Here, GL(V) denotes the general linear group on V . We also consider projective
linear representations, i.e., homomorphisms G → PGL(V), where PGL(V) ∼=

On the Semidirect Discrete Logarithm Problem in Finite Groups 335

GL(V)/Z(GL(V)) contains the invertible linear maps acting on P(V) (since scalar
matrices act trivially on P(V)). If A ∈ GL(V) we write [A] for the corresponding
class in PGL(V).

Black-Box Groups. The introduction of black-box groups can be traced back to
Babai and Szemeredi [4] as a useful abstraction of computations in groups.

Definition 3 (Black-Box Group). A black-box group G ⊂ {0, 1}n is a
group whose elements are bit strings of length n, endowed with an oracle that
performs the group operations, multiplication and inversion, and can check if
one element is the identity or not (this is equivalent to checking if two elements
are equal or not).

As an additional requirement, for technical reasons we will need our black-
box groups to come equipped with a unique labelling; that is, a function λ on
the bitstrings representing the group that is such that λ(x) = λ(y) if and only
if x and y represent the same group element.

The use of black-box oracles for groups is not new to cryptography. As an
example, Shoup proved lower bounds for generic algorithms solving DLP using
black-box groups [47]. This is a conservative computational model for crypt-
analysis of SDLP-based cryptography, since any construction instantiated on a
particular group will need to be able to perform operations on the base group
G (and Aut(G)) and test the equality of the resulting operations.

The Black-Box Group model is also of interest for computational group the-
orists as a tool to investigate the complexity of several group related problems
such as the Hidden-Subgroup Problem [26], or in relation to “The computational
matrix group project” [34,40].

Of particular relevance is the Constructive Recognition Problem, pro-
posed by Babai and Beals [1, Section 9.2], in which one is asked to find a com-
putationally efficient isomorphism between a simple black-box group and an
explicitly defined simple group. Observe that for the case of cyclic groups of
prime order this problem reduces exactly to DLP since, given φ : G ∼−→ Z/pZ,
we can easily compute logarithms (divisions) in Z/pZ.

Several works [1,2,12,13,27,29,30] have investigated the constructive recog-
nition problem for other families of simple groups; this is commonly done by
reducing it to the case of PSL(2, q) using so-called number theory oracles, i.e.,
oracles for solving discrete logarithm and factoring, to handle large finite-field
computations [2,18]. These algorithms thus run in quantum polynomial time
[46].

2.2 Related Work and Known Results

Broadly speaking, there are two main categories of literature on SDLP: crypto-
graphic constructions based on the Semidirect Product Key Exchange (SDPKE)
and the associated cryptanalysis, and algorithmic analysis of the underlying
SDLP problem itself.

336 C. Battarbee et al.

The first category of literature encompasses a decades-long cat-and-mouse
game between papers suggesting parameters and choices of groups to instantiate
SDPKE [23,24,28,41,42], and works cryptanalyzing the results [16,36–38,43].
These papers occur as responses to each other, in the sense that new proposals
are patches to avoid the attacks of prior works. For a detailed review of the
chronology see [8].

In the same way that the security of DHKE is not precisely equivalent to
DLP, the security of SDPKE is not precisely equivalent to SDLP. The works
mentioned above do not address the complexity of solving SDLP; the first result
in this direction dates to 2022. This and subsequent such results form the second
category of literature mentioned above, which also includes the present paper.
Battarbee et al. [6] pointed out a connection to group actions and later exploited
it [7] to give a subexponential quantum algorithm for SDLP.

Mendelsohn et al. [35] found faster methods for some small parameters. Most
recently, Imran and Ivanyos [25] gave an efficient polynomial-time quantum algo-
rithm to solve SDLP for solvable groups and matrix groups with certain asso-
ciated endomorphisms. Our work is a generalization of this paper to all finite
groups.

Imran and Ivanyos introduce two important notions, which we sketch here.
The first is that, given a group G and a normal subgroup N , in order to solve
SDLP in G, it suffices to solve SDLP in N and G/N . The second is that, if G is
a matrix group, we can show that SDLP reduces to an instance of DLP after the
application of some linear algebraic methods.1 Suppose we can compute a com-
position series of an arbitrary group G; then, provided the composition factors
are suitable matrix groups (or elementary abelian groups, in which SDLP is
predictably easy), we can use the decomposition algorithm inductively to solve
SDLP in the composition factors and to recover a solution of SDLP in the group
that we started in. This breaks, among other things, all the finite solvable groups
(which includes every group proposed for use with SDLP-based cryptography).

Our work can be seen as a more sophisticated version of this method. By
refining the method of computing the appropriate subgroups we can reduce the
solution to solving appropriate instances of SDLP in the simple groups. In addi-
tion, we construct a generalization of the reduction in a matrix group that turns
out to be particularly effective for simple groups. Indeed, because we know that
only the simple groups listed by the classification of simple groups can appear
in this decomposition, and since we can show that each of these is vulnerable
to some method of solving SDLP, we can show that SDLP is easy for any finite
group, resolving a loose conjecture of [25].

For the purpose of describing our algorithms let us recall some of the known
results relating to the structure of SDLP.

Prior Results. One of the main ideas of [25] is to reframe SDLP as an orbit
problem. For each pair (g, φ) in the holomorph of G consider the function ρ(g,φ)

1 Interestingly, this method is somewhat similar to the “linear decomposition” attacks
presented in the analysis of SDPKE.

On the Semidirect Discrete Logarithm Problem in Finite Groups 337

defined by ρ(g,φ)(h) = gφ(h). It is not difficult to check by induction that
ρx
(g,φ)(h) = gφ(g) · · · φx−1(g)φx(h). We therefore get the following equivalent

definition of SDLP.

Definition 4 (SDLP(G, φ, g, h)). Let G be a finite group, and φ ∈ Aut(G)
be one of its automorphisms. Suppose h = ρx

(g,φ)(1G) for some x ∈ N. We define
the set SDLP(G,φ, g, h) to be the set of integers i satisfying

h = ρi
(g,φ)(1G).

The Semidirect Discrete Logarithm Problem, or SDLP, is to determine this set.

We will use both variants interchangeably. Let us also recall some of the results
on the set of solutions to SDLP: the following is a synthesis of ideas found in
[6,7]. In the following, the symbol 1 refers to the integer value 1, and 1G denotes
the group identity; these are (clearly) not the same.

Theorem 3. Let G be a finite group and φ one of its automorphisms. Consider
SDLP for g, h ∈ G. There exists an integer n0 (dependent on g and φ) such that
ρn0

g,φ(1G) = sg,φ(n0) = 1G, and the set

{1G, s(g,φ)(1), ..., s(g,φ)(n0 − 1)} = {1G, ρ(g,φ)(1G), ..., ρn0−1
(g,φ) (1G)}

has size n0, and is exactly the codomain of s(g,φ). We have that one can compute
n0 in quantum polynomial time with a Shor-like period-finding algorithm, and
that the solution set SDLP(G,φ, g, h) is of the form

{t0 + tn0 : t ∈ Z}

where 0 ≤ t0 < n0.

Finally, although some of the ideas of [25] are given in detail in the main
body of the present paper, we will just quote the fact given as [25, Theorem 6]
that one can solve SDLP in an elementary abelian group in time polynomial in
the input size of the group. This will be necessary since several of the results
on simple groups will require that the simple group is non-abelian, and finite
cyclic groups of prime order are the only abelian simple groups. Note also that,
although our more general ideas capture the result of [25] for solving SDLP in
solvable groups, their specific methods may be slightly more efficient in practice
for this particular case.

338 C. Battarbee et al.

3 The Main Reduction

Recall from the discussion in the previous section that Imran and Ivanyos [25]
provide a solution for SDLP in solvable groups by descending a composition
series (using Theorem 3 in their paper), at each step encountering an easy vari-
ant of SDLP in an elementary abelian group. In this section, we significantly
generalize the results of [25], by using their method to completely reduce an
arbitrary instance of SDLP to several instances of SDLP in a simple group. In
particular, Theorem 6 demonstrates that if we know how to compute maximal
normal subgroups, in order to solve some instance of SDLP in a finite group G,
it suffices to solve at most log |G| instances of SDLP in a simple group. The data
describing each of these instances of SDLP can be obtained in time quantum
polynomial in log |G|.

We will defer the proof of this result to the end of the section. We begin by
developing more sophisticated techniques for computing the subgroups required
for [25, Theorem 3], and devise a contingency for the case in which no such
subgroups exist.

3.1 Reduction to SDLP in Simple Groups

Let us review the central “recursion tool” of Imran-Ivanyos [25, Theorem 3]. The
main idea of the recursion tool is to demonstrate that if we can find a normal
subgroup N of G that is invariant under our automorphism, solving SDLP(G,φ)
can be reduced to solving SDLP(N, (φ|N)n0) and SDLP(G/N, φ̄) for some n0,
automorphism φ̄ and suitable elements.

We will state and prove the result in full, in order to review ideas from its
proof that are important in our reduction algorithms. For these purposes, we
first provide the following lemma concerning powers of ρ(g,φ).

Lemma 1. Let g ∈ G, φ ∈ Aut(G). For any integer x, then ρ−x
(g,φ)(h) :=

(ρx
(g,φ))

−1(h) = ρx
(φ−1(g−1),φ−1)(h). Additionally, for any m,n ∈ Z, then ρmn

(g,φ) =
ρm
(ρn

(g,φ)(1G),φn).

Proof. The first statement follows from the observation that (ρ(g,φ))−1(f) =
φ−1(g−1f) = ρ(φ−1(g−1),φ−1)(h).

As ρx
(g,φ)(h) = ρx

(g,φ)(1G)φx(h) it suffices to prove the statement for h = 1G.
Assume first m is positive. If n is also positive then

ρm
(ρn

(g,φ)(1G),φn)(1G) =
m−1
∏

i=0

(φn)i
(

ρn
(g,φ)(1G)

)

= ρmn
g,φ (1G).

While for negative n applying the formula for ρ−x
(g,φ) above yields

ρmn
(g,φ)(1G) = ρ

m(−n)

(φ−1(g−1),φ−1)
(1G) = ρm

(ρ−n

(φ−1(g−1),φ−1)
(1G),φn)

(1G) = ρm
(ρn

(g,φ)(1G),φn)(1G).

On the Semidirect Discrete Logarithm Problem in Finite Groups 339

On the other hand, if m is negative then

ρmn
(g,φ) =

(

ρ−mn
g,φ (1G)

)−1

(1G) =
(

ρ−m
(ρn

(g,φ)(1G),φn)

)−1

(1G) = ρm
(ρn

(g,φ)(1G),φn)(1G).

�
Theorem 4 (Recursion tool, [25]). Let G be a finite group, φ ∈ Aut(G)
and g, h ∈ G. Given a φ-invariant normal subgroup N , set φ to be the induced
automorphism on G/N and φ|N the induced automorphism on N . Then

SDLP(G,φ, g, h) = (t0 + t1n0) + (n1n0)Z,

where
SDLP(G/N, φ, gN, hN) = t0 + n0Z

and
SDLP(N, (φ|N)n0 , ρn0

(g,φ)(1G), (ρt0
(g,φ))

−1(h)) = t1 + n1Z.

Proof. As N is φ-invariant it follows that φ|N ∈ Aut(N) and φ(gN) := φ(g)N
is a well defined automorphism of G/N . In the group G/N , for any f ∈ G, it
follows that

(ρ(g,φ)(f))N = (gφ(f))N = (gN)φ(fN) = ρ(gN,φ)(fN)

and thus inductively it can be shown that (ρx
(g,φ)(f))N = ρx

(gN,φ)
(fN) for any

integer x.
Assume h = ρx

(g,φ)(1G) for some x. Then hN = ρx
(g,φ)(1G)N = ρx

(gN,φ)
(1G/N).

In other words x ∈ SDLP(G/N, φ, gN, hN) = t0 + n0Z. Hence it suffices to
compute the set of all t such that h = ρt0+tn0

(g,φ) (1G).
By applying the second property from Lemma 1,

h = ρt0+tn0
(g,φ) (1G) ⇐⇒ (ρt0

(g,φ))
−1(h) = ρtn0

(g,φ)(1G) = ρt
(ρ

n0
(g,φ)(1G),φn0)

(1G).

Moreover, by Theorem 2.5, the definition of n0 implies that ρn0
(g,φ)(1G)N =

ρn0

(gN,φ)
(1G/N) = 1G/N . In other words ρn0

(g,φ)(1G) ∈ N . Thus h = ρt0+tn0
(g,φ) (1G) if

and only if t ∈ SDLP(N, (φ|N)n0 , ρn0
(g,φ)(1G), (ρt0

(g,φ))
−1(h)). In particular,

SDLP(G,φ, g, h) = t0 + n0(t1 + n1Z) = t0 + n0t1 + n0n1Z.

�
We can now consider applying this tool to reduce the general case of SDLP,

via a composition series, to the case of SDLP in simple groups.
To determine SDLP(G,φ, g, h) via the application of Theorem 4, we need to

construct the following: a φ-invariant normal subgroup N of G; the quotient
G/N ; the induced map φ̄ on the quotient; and the integer n0. We assume that
given N �G, constructing G/N can be done efficiently. Moreover, [25] describes
a general method of evaluating the induced map φ̄. The computation of the
integer n0 can be done with a Shor-like algorithm by Theorem 3. Thus the main
obstacle is the computation of the φ-invariant normal subgroup.

340 C. Battarbee et al.

3.2 Computing Automorphism Invariant Normal Subgroups

The purpose of this section is to describe an algorithm that computes the invari-
ant subgroups. The technique can be understood as building a machine taking
as input some maximal normal subgroup of the group in which we wish to
address SDLP, and outputting a φ-invariant subgroup of the maximal normal
subgroup. The techniques for computing maximal normal subgroups in arbitrary
finite groups are taken from the literature, which does not appear to be entirely
resolved on this subject. For now, we assume we have an oracle Γ (), that on input
of a black-box description of a group G, outputs a black-box description of one
of its maximal normal subgroups. Discussion of the methods in the literature for
implementing such an oracle are delayed to Appendix A.

Our method consists of showing that either we can compute a φ-invariant
normal subgroup from an arbitrary maximal normal subgroup, or G has no
characteristic subgroups (that is, it is “characteristically simple”) - and it is
well known (see [48, Lemma 2.8]) that a group is characteristically simple if and
only if it is isomorphic to Sk, where S is a simple group. In this latter case we
have two sub-cases: either G is abelian, or φ acts transitively on the k factors of
G, allowing a bespoke method of reduction.2

A method of computing φ-invariant normal subgroups from an arbitrary
maximal normal subgroup N is given in [25], and works as follows. Set N1 = N
and for i ≥ 2 define Ni = Ni−1 ∩ φi−1(N). This sequence must eventually
stabilize, say for some integer j ∈ N: it is not difficult to show that Nj is
φ-invariant, and that, since each intersection is a subgroup, we arrive at this
stabilization within log |G| steps. For brevity we will refer to this method as the
“intersection trick”.

Notice that we are not a priori guaranteed that the output of the intersection
trick is non-trivial (certainly the trivial subgroup is φ-invariant). The intersec-
tion trick, however, will not terminate with the trivial subgroup if the maximal
normal subgroup we started with contains a G-characteristic subgroup, since
such a G-characteristic subgroup is also contained in the image of N under any
automorphism, by definition. It would therefore suffice to demonstrate that a
non-characteristically simple group is such that every maximal normal subgroup
contains a characteristic subgroup in G. In fact, we are able to provide this
alternate classification of the characteristically simple groups, as shown below.

Lemma 2. Let G be a finite group. G possesses a non-trivial G-characteristic
subgroup if and only if every maximal normal subgroup N of G contains a non-
trivial G-characteristic subgroup.

Proof. The reverse direction is trivial. Assume then that G is not characteris-
tically simple and contains a maximal normal subgroup N . We show that N
contains a nontrivial characteristic subgroup of G.

Consider the subgroup J (G) defined as the intersection of all maximal nor-
mal subgroups, known as the “Jacobson radical” of G. By definition, J (G) is

2 The situation is actually slightly more complicated than this, as we will see.

On the Semidirect Discrete Logarithm Problem in Finite Groups 341

contained in N and J (G) is characteristic. Hence it can be assumed that J (G)
is trivial, which implies G is a direct product of simple groups by [5, Remark 4.8].

Set G = Sa1
1 × . . . San

n , with Si �∼= Sj for i �= j. As G is not characteristically
simple, n ≥ 2. Assume S1, . . . , Sm are non-abelian and Sm+1, . . . , Sn are abelian,
so that the centre of G is given by Z(G) =

∏n
i=m+1 Sai

i . Additionally, write each
factor as Sai

i = Si,1 × · · · × Si,ai
.

If N is a maximal normal subgroup, then there exists some pair (i, j) such
that Si,j �⊆ N . By normality, [N,Si,j] ≤ N∩Si,j = 1. It follows that G ∼= N×Si,j .
Hence for any k �= i it follows that Sak

k ⊆ N , as otherwise there is some l such
that G ∼= N × Sk,l implying that Sk,l

∼= Si,j . To prove the statement, it thus
suffices to show that for each 1 ≤ k ≤ n the subgroup Sak

k is characteristic in G.
Assume first k ≤ m and φ ∈ Aut(G). Let 1 ≤ j, j′ ≤ ak. If φ(Sk,j) ∩

Sk,j′ = 1 then [φ(Sk,j), Sk,j′] = 1. Thus if φ(Sk,j) ∩ Sk,j′ = 1 for all j′, then
φ(Sk,j) ≤ CG(Sak

k) =
∏

j �=k S
aj

j ; which yields a contradiction as CG(Sak

k) has no
composition factor isomorphic to Sk. Thus there must exist some j′ such that
φ(Sk,j) = Sk,j′ and so φ(Sak

k) = Sak

k .
Finally consider k ≥ m + 1. As the Sk are non-isomorphic groups, each Sak

k

must be the unique Sylow pk subgroup of Z(G) for some prime pk. Therefore
Sak

k is characteristic in G as being characteristic is transitive. ��
Notice that if the intersection trick terminates with the identity, by Lemma 2,

G is characteristically simple. However, there are situations where a maximal
normal subgroup of a characteristically simple group contains a φ-invariant nor-
mal subgroup. Whether or not this happens, in the non-abelian case, is related
to the the automorphism φ. In particular, for S a non-abelian simple group,
Aut(Sk) ∼= Aut(S)k � Sym({1, ..., k}); in other words, every automorphism in
Aut(Sk) can be thought of as possessing a unique permutation component.

Lemma 3. Let G be a non-abelian finite group, and φ one of its automorphisms.
The intersection trick for determining a φ-invariant normal subgroup from a
maximal normal subgroup of G terminates in the trivial subgroup if and only if
the group G ∼= Sk for some non-abelian simple group S with k ∈ N, and the
permutation component of φ is a k-cycle.

Proof. First, we note that the normal subgroups of a non-abelian characteristi-
cally simple group Sk are exactly the subgroups

∏l
j=1 Sij

, where {i1, ..., il} ⊂
{1, ..., k}. In other words, every normal subgroup of Sk corresponds uniquely
with a subset of {1, ..., k}. Clearly, the maximal normal subgroups of Sk corre-
spond to the subsets of {1, ..., k} of size k − 1.

Set G = Sk for S a non-abelian simple group and suppose the permutation
component of φ is a k-cycle. Since the maximal normal subgroup N we give as
input to the intersection trick is of the form

∏k
i=1,i �=j Si for some j ∈ {1, ..., k},

we have that

{φi(N) : i ∈ N} =

⎧

⎨

⎩

k
∏

i=1,i �=j

Si : 1 ≤ j ≤ k

⎫

⎬

⎭

342 C. Battarbee et al.

The intersection of all these subgroups is trivial, and so we are done in this
direction.

Now suppose that the intersection trick terminated in the trivial subgroup.
We have already seen that the group G must, in this case, be characteristically
simple, and so without loss of generality is of the form Sk, where S is a non-
abelian simple group. Consider a maximal normal subgroup N of G. We are
going to argue that if the permutation component of φ, which we will denote σφ,
is not a k-cycle, then N will contain a non-trivial, φ-invariant normal subgroup,
and so the intersection trick could not have had as output the trivial subgroup
- a contradiction.

To see this, consider the orbits of the permutation σφ (that is, the distinct
subsets of {1, ..., k} that are invariant under σφ). Of course, σφ is a k-cycle if and
only if it has a single orbit; suppose that it has strictly more than one. Denote
by IN the size k − 1 subset of {1, ..., k} corresponding to N under the bijection
alluded to above. Because IN has size k−1 and there are two or more orbits, IN

must contain one of the orbits. Consider the normal subgroup corresponding to
this orbit; since the orbit is fixed under the permutation σφ, the corresponding
subgroup, say N ′, is fixed under φ. Now, the φ-invariant normal subgroup N ′ is
contained in N , so the intersection trick will terminate in a subgroup no smaller
than N ′. In particular, the intersection trick did not terminate in the trivial
subgroup, giving the desired contradiction. ��

We are now ready to give the algorithm computing φ-invariant normal sub-
groups, given a maximal normal subgroup. In the case that no φ-invariant normal
subgroup can be found, our algorithm outputs its input as a characteristically
simple group, and determines whether this characteristically simple group is
abelian or not.

Theorem 5. Let G be a finite black-box group, and suppose φ is an automor-
phism of G. Given an oracle computing maximal normal subgroups, Algorithm 1
either computes a non-trivial φ-invariant subgroup of G, or detects that G is
characteristically simple. If characteristic simplicity is detected, the algorithm
also detects whether the group was abelian or not. In any case the algorithm
finishes in time quantum polynomial in log |G|.
Proof. Let N be a maximal normal subgroup of G obtained from the oracle Γ .
If N contains a non-trivial characteristic subgroup of G then, since this charac-
teristic subgroup will also be contained in φi(N) for every i ∈ N, the intersection
trick will not terminate with the trivial subgroup.

If it does terminate with the trivial subgroup, we have already seen that the
group we started with must be characteristically simple. If it is abelian, then,
it is elementary abelian, and there are efficient quantum methods of recognising
elementary abelian groups. If this test is failed we indicate instead that we have
a non-abelian characteristically simple group. ��

Before moving on to the full reduction, we note that in the case that G is
abelian and characteristically simple, the structure of the automorphisms is more

On the Semidirect Discrete Logarithm Problem in Finite Groups 343

Algorithm 1. (Inv): Computing φ-invariant normal subgroups, or detecting
either flavour of characteristically simple group.
Input: G, φ, oracle Γ computing maximal normal subgroups
Output: φ-invariant N � G or G

1: N ← Γ (G)
2: N1 ← N
3: N2 ← φ(N)
4: j ← 2
5: while Nj �= Nj−1 do
6: j ← j + 1
7: Nj+1 ← Nj ∩ φj−1(N)
8: end while
9: if Nj �= {1} then

10: return Nj

11: else if G abelian then
12: G.CS Abelian Flag ← 1 return G
13: else
14: G.CS NonAbelian Flag ← 1 return G
15: end if

complicated than the structure described in Lemma 3, that is, Aut((Z/pZ)n) ∼=
GLn(Fp). In order to avoid dealing with this algebraically, we can now simply
outsource the abelian case to the method of [25] for solving SDLP in an elemen-
tary abelian group. Otherwise, the group and automorphism we started with
have the form described in Lemma 3. We develop an algorithm for handling this
case below.

Lemma 4. Suppose G is a finite, non-abelian, characteristically simple group
and φ is one of its automorphisms. We have that G = Sk for S some non-abelian
simple group and k ∈ N; suppose moreover that the permutation component of
φ is a k-cycle. Denote by [g]i the i-th coordinate of an element in the direct
product group. Provided access to an oracle Θ for solving SDLP in simple groups,
Algorithm 2 solves SDLP(G,φ) efficiently, with at most k2 calls to the oracle.

Proof. First note that by [1, Theorem 5.1], we can decompose G into its non-
abelian simple factors. As such we can talk about projections of G onto its
co-ordinates, and assume knowledge both of the integer k and black box repre-
sentation of the simple factor S.

We know that the permutation component of φ is a k-cycle, so φk must
consist only of co-ordinate-wise application of automorphisms in Aut(S). Call
these permutations to be applied co-ordinate wise φk = (φ1, ..., φk). Set also
(g1, ..., gk) = ρk

(g,φ)(1G).
We wish to find the integers x such that h = ρx

(g,φ)(1G). Of course, any such
integer is of the form i + kt for 0 ≤ i < k. Defining (hi,1, ..., hi,j) = ρ−i

(g,φ)(h), for

344 C. Battarbee et al.

any i ∈ {0, ..., k − 1}, have

h = ρx
g,φ(1G) ⇐⇒ ρ−i(h) = ρkt

(g,φ)(1G)

⇐⇒ (hi,1, ..., hi,k) = ρt
(ρk

g,φ(1G),φk)(1S , ..., 1S)

⇐⇒ (hi,1, ..., hi,k) = (ρt
(g1,φ1)

(1S), ..., ρt
(gk,φk)

(1S))

In other words, given an i ∈ {0, ..., k − 1}, we get k instances of SDLP in S
that we can input to the SDLP oracle Θ. Any value t that solves all k of these
instances is such that x = i+kt has h = ρx

(g,φ)(1G). In order to find the solutions
of this latter instance of SDLP, then, it suffices to check the k problem instances
defined by all k choices of i, giving k2 total calls to the oracle. This procedure
is outlined in Algorithm 2. ��

Algorithm 2. (CSimple): Solving particular instances of SDLP in non-abelian,
characteristically simple groups.
Input: G, φ, g, h
Output: Element of solution set of SDLP(G, φ) for g, h

1: S ← non-abelian simple factor of G
2: k ← number of copies of S
3: (φ1, ..., φk) ← φk

4: Solutions ← {}
5: for i from 0 to k − 1 do
6: hi,1 ← [ρ−i

(g,φ)(h)]1
7: SubSolutions ← Θ(S, φ1, g1, hi,1)
8: for j from 2 to k do
9: hi,j ← [ρ−i

(g,φ)(h)]j
10: SubSolutions ←SubSolutions ∩ Θ(S, φj , gj , hi,j)
11: end for
12: Solutions ← Solutions ∪ {i + k · SubSolutions}
13: end for

3.3 The Decomposition Algorithm

We are now ready to provide our reduction to simple groups.

Theorem 6. Consider SDLP(G,φ) for some finite group G, one of its auto-
morphisms φ, and group elements g, h. Suppose we have an oracle Γ computing
maximal normal subgroups of G. Suppose, moreover, that we have an oracle Θ
that, on input of the data S, ν, g, h for S a simple group, ν one of its automor-
phisms, and g, h ∈ S, outputs the set of solutions of SDLP(S, ψ) for g, h. There
exists an algorithm Solve() that has the following properties: the algorithm ter-
minates in time polynomial in log |G|, having made logarithmically many calls
to Θ; and outputs a solution of SDLP(G,φ). The algorithm Solve() is defined as
in Algorithm 3, where φ, n0, g′, h′, φ̄ and ψ have the same meaning as in the
proof of Theorem 4.

On the Semidirect Discrete Logarithm Problem in Finite Groups 345

Algorithm 3. Solve(G,φ, g, h)
Input: (G, φ, g, h), oracles Γ, Θ
Output: (t, n) such that SDLP (G, φ, g, h) = t + nZ

1: N ← Inv(G, φ) � Algorithm 1
2: if N.CS Abelian Flag == 1 then
3: (t, n) ← solutions obtained from [25] method of solving SDLP in elementary

abelian groups
4: else if N.CS NonAbelian Flag == 1 then
5: (t, n) ← CSimple(G, φ, g, h) � CSimple (Algorithm 2) can access Θ
6: else
7: (t0, n0) ← Solve(G/N, φ̄, ψ(g), ψ(h))
8: (t1, n1) ← Solve(N, φn0 , g′, h′)
9: (t, n) ← (t0 + t1n0, n0n1)

10: end if
11: return (t, n)

Proof. We verify that the algorithm terminates after at most log|G| − 1 inter-
nal repetitions of Solve(). Start with G: if it is not simple, there are two cases.
If the group is characteristically simple, this is detected by the algorithm Inv
defined in Algorithm 1 (which implicitly calls Γ) , and there are two sub-cases.
Either the CS Abelian Flag attribute is set to 1 by Inv, and we can solve the
problem instance by applying the method of [25] for solving SDLP in an ele-
mentary abelian group; or CS NonAbelian Flag is set to 1, and we solve the
problem instance with Algorithm 2. If characteristic simplicity is not detected,
Algorithm 1 computes a φ-invariant subgroup N , and we run Solve() on the
two induced problems defined in N and G/N . For these groups, if they are not
simple, repeat the procedure, and so on.

As each normal subgroup of G/N is of the form M/N and (G/N)/(M/N) ∼=
G/M , it follows that the internal repetitions of Solve() reduces the problem to
solving instances Solve(Ni/Ni−1, φi, gi, hi) for a subnormal series 1 � N1 � · · · �
Nn = G such that Ni/Ni−1 is either abelian or has no φi-invariant subgroup for
suitable automorphisms φi and elements gi and hi. Moreover, as each Ni/Ni−1

has order at least 2 it follows that n ≤ log|G| and thus Solve() must terminate
after at most log|G| internal repetitions.

�

It now remains to develop methods for solving SDLP in simple groups. The
rest of the paper will be devoted to this effort.

4 Reduction to Matrix Power Problem

In this section, we present a rather generic method of solving SDLP—indeed, it is
defined for any group. We build on the ideas of [25, Theorem 8], which provides
a reduction of SDLP in some finite group G, to the matrix power problem in the
case that the group G is a matrix group over a field. Our observation is that,

346 C. Battarbee et al.

by looking at the linear representations of an arbitrary group, there is a sense
in which every group is a matrix group over a field. Moreover, in the case where
φ is inner, we are able to compute a linear map that “mimics” the effect of ρ(g,φ),
thereby allowing us to apply the same techniques given by [25, Theorem 8]. It
turns out that simple groups are well-suited to the application of this method,
because the outer automorphism group of a simple group in general remains
quite small.

Let us first outline the intuition behind the method: first, by Cayley’s theo-
rem, we know that every finite group G admits a faithful linear representation3;
that is, an injective group homomorphism G → GLn(K) for some field K. Now,
GLn(K) lives in the ambient space Mn(K), the matrix algebra of all n×n matri-
ces with entries in the field K. We can think of this space as an n2-dimensional
vector space equipped with the natural addition and scalar multiplication, so we
can imagine that we have a linear map T on this vector space. Suppose that
this map T is such that T ◦ ψ = ψ ◦ ρ(g,φ); we then immediately have that
T i ◦ψ = ψ ◦ρi

(g,φ). It follows that, in order to solve the SDLP instance, it suffices
to find an integer x such that T x · ψ(1G) = ψ(h), where ψ(1G) is a vector in the
n2-dimensional vector space, and · refers to the usual notion of multiplication
of a matrix by a vector. We have arrived at an instance of the so-called matrix
power problem; when the matrices are invertible we have the same reduction
to the period-finding routine of Shor’s algorithm as one has for the standard
discrete logarithm problem, and so we have a solution in quantum polynomial
time.

If instead we have a projective linear representation, i.e., an injective homo-
morphism G → PGLn(K) the same reduction can be applied to projective matri-
ces in PGLn2(K).

Lemma 5. Let G be a finite group, and ψ : G → GLn(K) and ψ : G → PGLn(K)
a (projective) linear representation. Given an instance of SDLP for G and φ,
where φ is an inner automorphism, i.e., φ(g) = mgm−1 for some m ∈ G, define
the linear map T : Mn(K) → Mn(K),M �→ ψ(gm)Mψ(m−1). Then T descends
to a map T : PMn(K) → PMn(K) and

T ◦ ψ = ψ ◦ ρ(g,φ) and T ◦ ψ = ψ ◦ ρ(g,φ) (1)

Proof. Since T is linear, it clearly descends to a map T as described. Let h ∈ G,
then by definition

(T ◦ ψ)(h) = ψ(gm)ψ(h)ψ(m−1) = ψ(gmhm−1) = ψ(gφ(h)) = (ψ ◦ ρ(g,φ))(h)

The projective case follows immediately. �

We delay the discussion of the case in which the automorphism φ is outer.
Armed with T, the reduction to the matrix power problem works as follows.
3 Note that the dimension of the representation implied by Cayley’s theorem is rather

large. For the groups we are interested in we will have to work harder than this to
find lower-dimensional linear representations.

On the Semidirect Discrete Logarithm Problem in Finite Groups 347

Lemma 6. Given a finite group G together with an efficiently computable injec-
tive (projective) linear representation ψ : G → (P)GLn(K), if φ is an inner auto-
morphism, then we can reduce any SDLP instance to an instance of the matrix
power problem in time polynomial in n.

Proof. First suppose ψ is a linear representation. Given h ∈ G, we want to find
x ∈ N such that ρx

(g,φ)(1G) = h. By Lemma 5, if ψ is faithful, this is equivalent to
finding x ∈ N such that T x(a) = b where a = 1n×n (the n × n identity matrix)
and b = ψ(h).

Let W := spanK(T i(a) | i ≥ 0), which is a K-linear subspace of Mn(K). We
define the K-linear map

S : W → W, v �→ Txv

Note that even though we do not know x, we can compute S on W in polynomial
time since we know S(a) = b. Note that (T|W)x = S, and since both S and
T|W are known we can find x by solving the matrix power problem in GLn2(K)
(noting that S and T|W can be regarded as elements in GLn2(K) after a choice
of basis).

In the case that ψ is an injective projective representation, the result follows
similarly, reducing SDLP to the matrix power problem in PGLn2(K). �

Recall also that we did not have a method of computing the crucial map T,
should the automorphism in question not be inner. However, by [25, Proposi-
tion 2], we do have the option of taking the smallest power of the automorphism
that is inner, say y, and instead solving at most y instances of SDLP for G and
φy. It turns out, due to a result of Kohl [33, Theorem 1] that for simple groups
one can expect this power to be small.

Theorem 7 (Kohl). If G is a non-abelian finite simple group, then

|Out(G)| < log2 |G|.

Since Out(G) ∼= Aut(G)/ Inn(G) it follows that for any outer automorphism
φ of a non-abelian finite simple group G there exists an integer x such that
φx ∈ Inn(G); and crucially that this x is no larger than log2 |G|. We conclude the
following.

Corollary 2. Let G be a non-abelian finite simple group, and suppose we have
an efficiently computable non-trivial (projective) linear representation ψ : G →
(P)GLn(K). Then we can solve SDLP in G, for any φ ∈ Aut(G), on a quantum
computer in probabilistic polynomial time in log |G|.
Remark 2. Note that we did not have to insist in the above that the linear
representation was faithful. In fact, any non-trivial representation of a simple
group is faithful, since if the map were not injective it would have non-trivial
kernel and therefore imply a proper normal subgroup of a simple group.

348 C. Battarbee et al.

5 SDLP in Simple Groups

Now that we have an efficient reduction of the general case of SDLP to SDLP in
simple groups, and a method of solving SDLP in simple groups whose complexity
is a function of the faithful dimension in simple groups, let us review the known
results in this area.

The classification of finite simple groups [48] says any finite simple group is
isomorphic to one of the following:

1. A cyclic group of prime order p;
2. A group of even permutations of a finite set of cardinality n ≥ 5, also called

alternating group Altn;
3. A classical group of Lie Type:

Linear : An−1(q) ∼= PSLn(q), n � 2, except PSL2(2) and PSL2(3);
Unitary : 2An−1(q)PSUn(q), n � 3, except PSU3(2);
Symplectic: Cn(q) ∼= PSp2n(q), n � 2, except PSp4(2);
Orthogonal : Bn(q) ∼= PΩ2n+1(q), n � 3, q odd;

Dn(q) ∼= PΩ+
2n(q), n � 4;

2Dn(q) ∼= PΩ−
2n(q), n � 4

where q is a power pa of a prime p;
4. An exceptional group of Lie type:

G2(q), q � 3;F4(q);E6(q); 2E6(q); 3D4(q);E7(q);E8(q)

where q is a prime power, or

2B2

(

22n+1
)

, n � 1; 2G2

(

32n+1
)

, n � 1; 2F4

(

22n+1
)

, n � 1

or the Tits group 2F4(2)′

5. One of 26 sporadic simple groups.

For cyclic groups, SDLP is known to be equivalent to classical DLP, so we need
to focus on the other families of groups. Our main tool for the infinite families is
to show the existence of a linear representation to use Corollary 2, while for the
sporadic groups (and the Tits group) we have a separate discussion in Sect. 5.2.

5.1 Infinite Families

For alternating groups and groups of Lie type, we show that they have a known
efficient linear representation. Thus, if we have them in their “natural repre-
sentation” (the explicit representation used in their textbook definitions), by
Corollary 2 there is a quantum polynomial-time algorithm to solve SDLP.

However, it is possible that, even if we know the isomorphism class of a
simple group, an isomorphism to the natural representation of the simple group
may still be unknown or hard to compute. A classical example of this is elliptic

On the Semidirect Discrete Logarithm Problem in Finite Groups 349

curves of prime order, which are known to be cyclic groups but require difficult
discrete logarithm computations to actually map points to modular integers in
a homomorphic way.

This is known in the group theory literature as the Constructive Recog-
nition Problem [1, Section 9.2]; hence, for each family, we will discuss how
to go from a simple black-box group G to an efficient linear representation. By
efficient we mean that the complexity is polynomial in the string length of the
black-box group elements and in the logarithm of the target group cardinality.

Alternating Groups. Alternating groups are the group of even permutations
of a finite set of cardinality n. Since these are permutations, they act on any n-
dimensional vector space by permuting the entries, and thus can be represented
in GLn(K). Additionally, thanks to [27, Theorem 1], there is a probabilistic
algorithm in time O(n log2(n)N) to compute an isomorphism from any black-
box group to the permutation representation of Altn, where N is the string
length of the black-box group and a maximal n is provided. As a consequence
of Corollary 2, we have the following result.

Lemma 7. If G is a simple black-box group isomorphic to any alternating group
Altn, for some known maximal n, we can solve SDLP for G in probabilistic
polynomial time in n log |G| on a quantum computer.

Groups of Lie Type. Following [22, Section 2], if S is a finite simple group
of Lie type, then there exists an algebraic group H ≤ GLn(F) over an alge-
braically closed field F and a Steinberg endomorphism σ of H such that
S ∼= CH(σ)/Z(CH(σ)). Note that there are 8 small cases where this group is not
simple, however the only new non-abelian simple group which arises from these
cases is the Tit’s group 2F4(2) (see [22, Definition 2.2.8 and Theorem 2.2.10]),
which will be considered alongside the sporadic simple groups. Given a family
of simple groups of Lie type εΓm(q) for any suitable ε and prime power q, the
dimension n of the underlying algebraic group H ≤ GLn(Fq) is determined by
Γm:

Γm Am Bm Cm Dm G2 F4 E6 E7 E8

n m + 1 2m + 1 2m 2m 14 52 78 133 248

Thus they are naturally described as subgroups of PGLn(Fq) (or GLn(Fq) if the
centre is trivial). This means that we can solve SDLP for such groups using a
quantum computer as a consequence of Corollary 2.

Sadly, in contrast to the case of alternating groups, there is no plain
polynomial-time algorithm to solve the constructive recognition problem, even
if extensive literature has been written on it.

A series of works of Brooksbank and Kantor have proven that for all the
families of classical groups (linear [15], unitary [13], symplectic [12] and orthog-
onal [14]), summarized in [21], we can efficiently compute isomorphisms to the
natural representations of the groups under the availability of:

350 C. Battarbee et al.

1. So called number theory oracles, computing discrete logarithms and factoring
in polynomial time;

2. An oracle that, for any input black-box group G isomorphic either to SL(2, q)
or PSL(2, q), produces in time polynomial in log(q) an effective isomorphism
SL(2, q) → G.

Similarly, in [29,30] the authors show how to compute, in polynomial time,
isomorphisms for groups of exceptional Lie type, with the exception of large Ree
groups 2F4

(

22n+1
)

and even characteristic Steinberg triality groups of type
3D4(2e), assuming the availability of number theory oracles and SL(2, q) ora-
cles as for classical types.

Since, thanks to Shor’s algorithm [46], we know that quantum computers can
implement efficient number theory oracles, we can combine the previous results
in the following lemma.

Lemma 8. On a quantum computer, if G is a simple black-box group isomor-
phic to any group of Lie Type of characteristic q and dimension n, with the
exception of 2F4

(

22n+1
)

and 3D4(2e), we can reduce SDLP for G in probabilis-
tic polynomial time in n and log(q) to the constructive recognition problem for
the group SL(2, q).

Constructive Recognition of SL(2, q) Given its relevance for the general
formulation of the problem, several works have studied SL(2, q). For instance,
the authors in [19] show how to compute an efficient isomorphism when the
black-box group is a subgroup of the general linear group GLd(qi), given discrete
logarithm oracles.

In [2, Lemma 2.10], the authors are able to generalize the result even further,
for the much wider class of black-box groups of quotients of matrix groups by
recognizable normal subgroups, showing that SL(2, q) can be constructively rec-
ognized in polynomial time having access to number theory oracles.

For general black-box groups, the problem has been solved in [31] for even
characteristic and in [9] for the case of small characteristic p ≡ 1 mod 4. For
a general field, the research is partially open: actually, in the preprint [10], the
authors show how to compute an isomorphism in polynomial time between the
black-box group and SL2(K), where K is black-box field isomorphic to Fq, this last
isomorphism can be clearly computed via the solution of discrete logarithms over
K. Although these last results would suffice to solve the problem, we await further
review of these results among the community before drawing this conclusion
definitively.

5.2 Sporadic Groups

There are 26 finite simple groups that do not fall into one of the infinite families
and the Tits Group 2F4(2)′. By the definition of ρ(g,φ), it suffices to find x ≤
maxg∈G(ord(g))·maxφ∈Aut(G)(ord(φ)). The ATLAS of finite groups [20] provides
a complete list of element orders for sporadic groups and their automophism

On the Semidirect Discrete Logarithm Problem in Finite Groups 351

group. In particular, it follows that maxg∈G(ord(g)),maxg∈G(ord(g)) ≤ 119 < 27

for each of these 27 groups.

Lemma 9. For any sporadic finite simple group G and automorphism φ ∈
Aut(G), there is a brute force algorithm to solve SDLP for G,φ with at most
214 multiplications in the holomorph of G.

Adapting Shanks’ Baby-Step Giant-Step Algorithm. Adjusting Shanks’
Baby-Step Giant-Step (BSGS) algorithm [45] to our setting is a reasonably sim-
ple task. Knowing a modest-size upper bound N for the possible values of x,
this can be a practical way to find x. Algorithm 4 shows the SDLP variant of
the BSGS algorithm, and it is easy to verify that the algorithm stores O(

√
N)

elements in the holomorph G � Aut(G) and recovers the secret exponent x in
O(

√
N) operations in G � Aut(G).

Algorithm 4. Baby-step giant-step algorithm in G � Aut(G).
Input: (g, φ) ∈ G � Aut(G), h = (g, φ)x, N ∈ N with x ≤ N ;
Output: the solution of x of the input SDLP instance.

1: n ←
⌈√

N
⌉

2: (s, t) ← ((g, φ)n, (1, id))
3: T ← [(0, t)] � Initialize table
4: for (j ← 1; j ≤ n; j + +)
5: t ← t · s � Giant step
6: Store (t, j) in T .
7: end for
8: (y, i) ← (h, 0).
9: while (y,) is not in T do

10: (y, i) ← (y · (g, φ)−1, i + 1) � Baby step
11: end while
12: return jn − i where (y, j) is in T .

We illustrate the algorithm with SDLP over M.

Example 1. We implemented our BSGS algorithm in approximately 30 lines of
Python using the mmgroup Python library [44], which offers an efficient imple-
mentation of M. In all of our experiments, the running time did not exceed 5 s
on a 2022 Macbook Air with 16 GB of RAM.

5.3 Determining the Isomorphism Type of a Black Box Simple
Group

Note that for the alternating group, the recognition algorithm requires as input
a maximum n such that G could be isomorprhic to Altn, while the recognition
algorithms for groups of Lie type require the isomorphism type of the black box

352 C. Battarbee et al.

group. Therefore an important step to apply Lemma 7 and Lemma 8 requires
finding out which recognition algorithm needs to be implemented on a given
black box simple group. It turns out that nearly all simple groups (and charac-
teristically simple) are characterised by their order.

Theorem 8. [32, Theorem 6.1] Let S and T be non-isomorphic finite simple
groups. If |Sa| = |T b| for some natural numbers a and b, then a = b and S and
T either are A2(4) and A3(2) or are Bn(q) and Cn(q) for some n ≥ 3 and some
odd prime power q.

Once a black box simple groups order |S| is known, it can be tested to
which simple group does it coincide and then run the corresponding recognition
algorithm, while if there is a collision it is only between two groups and thus
both corresponding recognition algorithms could be run. For sporadic simple
groups (and the Tits group), this is a direct test against 27 fixed values and for
alternating groups this requires finding n such that |S| = n!. For finite groups of
Lie type their orders are of the form qN

m

∏n
i=1(q

di −εi) and thus it suffices to find
the valid values for q, N , n, m, di and εi. In particular, determining the simple
groups with order equal to that of a given black box group is polynomial in
log|S|.

6 Conclusion

We conclude by giving a comprehensive overview of our results, and discussing
the consequences for SDLP. We have also summarized the flow of our argument
visually in Fig. 1; one can take this diagram as a map of the paper.

Consider a finite, black-box group G. Then, in quantum polynomial time (in
log |G|), we can reduce any SDLP in G instance to at most log |G| instances of
SDLP in a simple group by using Sect. 3. As a corollary of the Classification of
Finite Simple Groups, once the isomorphism type is known we can efficiently
study each possible instance separately, employing two main attack tools: for
infinite families, the results from Sect. 4; and for sporadic groups, an adapted
version of the Baby-Step Giant-Step algorithm (Algorithm 4).

We see that, if the groups are given in their natural representations we can
find linear representations and apply Corollary 2 to produce a solution to SDLP
in the corresponding simple group S in quantum polynomial time in log |S|, so
SDLP on simple groups is no harder than the problem of computing an efficient
linear representation starting from a black-box group. Even if not conclusive, the
extensive group theory literature on the solution of the constructive recognition
problem in probabilistic quantum polynomial time is enough evidence to con-
clude that SDLP on finite groups is not a reliable candidate for the construction
of quantum resistant primitives.

We highlight that, from Fig. 1, we could get also constructive quantum proba-
bilistic polynomial-time algorithms for solving SDLP in a finite, black-box group
G if we solve these last open questions:

On the Semidirect Discrete Logarithm Problem in Finite Groups 353

1. Provide constructive recognition algorithms for large Ree groups 2F4

(

22n+1
)

and even characteristic Steinberg triality groups of type 3D4(2e);
2. Have a clean, peer-reviewed discussion of the Constructive Recognition prob-

lem for SL(2, q) on quantum computers.
3. Resolve the gaps in the literature on the computation of maximal normal

subgroups (discussed in the appendix).

We close with some high-level remarks. It is perhaps not too surprising, that
an arbitrary instance of SDLP reduces to SDLP instances in finite simple groups.
However, the fact that all of these finite simple groups admit efficient methods of
solving SDLP relies on the property that simple groups have low dimension and
very small outer-automorphism groups. Recalling that the method of decompo-
sition into finite simple groups could only fail when no characteristic subgroups
were present, it is also rather unfortunate that this scenario coincides with the
group being a direct product of simple groups, from which a different method of
reduction is possible. The insecurity of SDLP in finite groups, in other words,

Is G solvable?

Use [25] reduction. Use Algorithm 3.

Which type of finite simple group is S (or Si)? See Sect. 5.3

SDLP reduces
to DLP.

Lemma 7.
Lemma 8 and
[10] with DLP.

Lemma 9.

Yes No

If Algorithm 1 returns G, consider
S where G ∼= Sk. Else, consider
output S1, . . . , Sδ.

Cyclic

Alternating Lie Type

Sporadic

Fig. 1. Visual summary of a possible roadmap for a general SDLP instance over a finite
group.

354 C. Battarbee et al.

does not appear to result from some error in cryptographic design, but instead
from fundamental properties of the finite groups themselves.

Acknowledgments. This collaboration was initiated during the “Post-Quantum
Group-Based Cryptography” workshop at the American Institute of Mathematics
(AIM), April 29-May 3, 2024. The authors are indebted to the workshop organiz-
ers Delaram Kahrobaei and Ludovic Perret and the AIM team for bringing this group
together and creating a stimulating and collaborative atmosphere.

We want to thank Ray Perlner for spotting problems in the reasoning of an earlier
version of this paper, and bringing those to our attention. We would also like to Gábor
Ivanyos, with whom we had helpful correspondence. We also would like to acknowledge
support by the following organizations: CB is supported by ONR Grant 62909-24-1-
2002. GB is supported by SNSF Consolidator Grant CryptonIs 213766. DCST was
partially supported by a grant from the Simons Foundation (712530, DCST). DJ is
supported by an NSERC Alliance Consortia Quantum Grant (ALLRP 578463 – 22).
LM is supported by an NSERC Canada Graduate Scholarship (Master’s). NH is sup-
ported by a gift from Google. RS is supported by NATO SPS project G5985. EP is
supported by NCAE grant H98230-22-1-0328.

A Appendix: Finding Maximal Normal Subgroups

The task of finding a maximal normal subgroup depends on the particular imple-
mentation of the black-box group G. In general, if we know the particular struc-
ture of the group G, we may be able to recover them immediately from it. This
can be done even with little knowledge, since from any subgroup S we can con-
struct the smallest normal subgroup containing it via computing the normal
closure 〈SG〉 in linear time as explained in [3].

In the literature, several techniques are known to solve this task more sys-
tematically, via computing a composition series, in this way the first element
in the series (starting from G) is our desired normal subgroup. However, this
branch of literature typically wishes to achieve much stronger results, in partic-
ular without using quantum computers - we do not impose this limitation upon
ourselves. To perform this calculation, aided by a quantum computer, we can:

– Use [25] if every non-Abelian composition factor of G possesses a faithful
permutation representation of degree polynomial in the input size;

– Otherwise, [1, Theorem 1.1] gives us a quasi-composition series for G. Note
that [1] requires a superset of the primes dividing the order of the group |G| to
solve the problem of computing order of group elements, with a quantum com-
puter we can solve both these tasks. This result provides a quasi-composition
chain {1} � Gm−1 � · · · � G1 � G, and tells us if G/G1 is abelian, or simple
and nonabelian. In the latter case, we have found a maximal normal sub-
group N = G1. In the former case, if A = G/G1 has the unique encoding
property, we can use [26, Theorem 6] on it, since abelian groups are solv-
able, i.e. ν(G) = 1, and the procedure runs in quantum polynomial time. In
this way we get the maximal normal subgroup A1 � A from the composition

On the Semidirect Discrete Logarithm Problem in Finite Groups 355

series, and A1G1 will be a maximal normal in G by the correspondence the-
orem. However, the general results from [1], does not immediately imply the
unique-encoding property requested, so additional work may be required to
solve this problem for the general case, even if in more concrete cases this
may be practical.

In general, we do not expect that these problems should be of some funda-
mental computational difficulty. We leave the full resolution of the computation
of maximal normal subgroups to further work.

References

1. László Babai and Robert Beals. A polynomial-time theory of black box groups i.
London Mathematical Society Lecture Note Series, pages 30–64, 1999

2. László Babai, Robert Beals, and Ákos Seress. Polynomial-time theory of matrix
groups. In Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, page 55-64, New York, NY, USA, 2009. Association for
Computing Machinery

3. László Babai, Gene Cooperman, Larry Finkelstein, Eugene Luks, and Ákos Seress.
Fast monte carlo algorithms for permutation groups. In Proceedings of the twenty-
third annual ACM symposium on Theory of computing, pages 90–100, 1991

4. László Babai and Endre Szemerédi. On the complexity of matrix group problems
i. In 25th Annual Symposium onFoundations of Computer Science, 1984., pages
229–240. IEEE, 1984

5. Reinhold Baer. Der reduzierte Rang einer Gruppe. Journal für die reine und ange-
wandte Mathematik, 0214 0215: 146–173, 1964. URL http://eudml.org/doc/150612

6. Christopher Battarbee, Delaram Kahrobaei, Ludovic Perret, and Siamak F. Sha-
handashti. A subexponential quantum algorithm for the semidirect discrete loga-
rithm problem, 2023

7. Christopher Battarbee, Delaram Kahrobaei, Ludovic Perret, and Siamak F. Sha-
handashti. Spdh-sign: Towards efficient, post-quantum group-based signatures. In
Thomas Johansson and Daniel Smith-Tone, editors, Post-Quantum Cryptography,
pages 113–138, Cham, 2023. Springer Nature Switzerland

8. Christopher Battarbee, Delaram Kahrobaei, and Siamak F Shahandashti. Semidi-
rect product key exchange: The state of play. Journal of Algebra and Its Applica-
tions, page 2550066, 2023

9. Alexandre Borovik and Sukru Yalcinkaya. Steinberg presentations of black box
classical groups in small characteristics, 2013

10. Alexandre Borovik and Şükrü Yalçınkaya. Natural representations of black box
groups encrypting sl2(Fq), 2020

11. Alexander Bors. A bound on element orders in the holomorph of a finite group,
2015

12. Peter A. Brooksbank. Fast constructive recognition of black box symplectic groups.
Journal of Algebra, 320 (2): 885–909, 2008. ISSN 0021-8693. Computational Alge-
bra

13. Brooksbank, Peter A.: Fast constructive recognition of black-box unitary groups.
LMS Journal of Computation and Mathematics 6, 162–197 (2003)

14. Brooksbank, Peter A., Kantor, William M.: Fast constructive recognition of black
box orthogonal groups. Journal of Algebra 300(1), 256–288 (2006)

http://eudml.org/doc/150612

356 C. Battarbee et al.

15. Brooksbank, Peter A., Kantor, William M.: On constructive recognition of a black
box psl (d, q). Groups and computation 3, 95–111 (1999)

16. Brown, Daniel, Koblitz, Neal, Legrow, Jason: Cryptanalysis of ‘make’. J. Math.
Cryptol. 16(1), 98–102 (2015)

17. Childs, Andrew M., Ivanyos, Gábor.: Quantum computation of discrete logarithms
in semigroups. J. Math. Cryptol. 8(4), 405–416 (2014)

18. Marston Conder and Charles R. Leedham-Green. Fast recognition of classical
groups over large fields. Groups and computation, III (Columbus, OH, 1999), 8:
113–121, 2001

19. Conder, Marston, Leedham-Green, Charles R., O’Brien, Eamonn: Constructive
recognition of PSL(2, q). Trans. Amer. Math. Soc. 358(3), 1203–1221 (2006)

20. Conway, John H., Curtis, Robert T., Norton, Simon P., Parker, Richard A., Wilson,
Robert A.: Atlas of finite groups. Oxford University Press, Eynsham (1985)

21. Dietrich, Heiko, Leedham-Green, Charles R., O’Brien, Eamonn A.: Effective black-
box constructive recognition of classical groups. Journal of Algebra 421, 460–492
(2015)

22. Daniel Gorenstein, Richard. Lyons, and Ron Solomon. The classification of finite
simple groups. Number 3. Part I. American Mathematical Society, Providence, RI,
1998

23. Grigoriev, Dima, Shpilrain, Vladimir: Tropical cryptography ii: extensions by
homomorphisms. Communications in Algebra 47(10), 4224–4229 (2019)

24. Maggie Habeeb, Delaram Kahrobaei, Charalambos Koupparis, and Vladimir Shpil-
rain. Public key exchange using semidirect product of (semi)groups. In Interna-
tional Conference on Applied Cryptography and Network Security, pages 475–486.
Springer, 2013

25. Muhammad Imran and Gábor Ivanyos. Efficient quantum algorithms for some
instances of the semidirect discrete logarithm problem. Designs, Codes and Cryp-
tography, 5 2024

26. Gábor Ivanyos, Frédéric Magniez, and Miklos Santha. Efficient quantum algorithms
for some instances of the non-abelian hidden subgroup problem. Proceedings of the
13th Annual ACM Symposium on Parallel Algorithms and Architectures, pages
263–270, 2001

27. Sebastian Jambor, Martin Leuner, Alice C Niemeyer, and Wilhelm Plesken. Fast
recognition of alternating groups of unknown degree. Journal of Algebra, 392: 315–
335, 2013

28. Delaram Kahrobaei and Vladimir Shpilrain. Using semidirect product of (semi)
groups in public key cryptography. In Arnold Beckmann, Laurent Bienvenu, and
Nataša Jonoska, editors, Pursuit of the Universal, pages 132–141, Cham, 2016.
Springer International Publishing

29. Kantor, W.M., Magaard, K.: Black box exceptional groups of Lie type. Trans.
Amer. Math. Soc. 365(9), 4895–4931 (2013)

30. Kantor, W.M., Magaard, K.: Black box exceptional groups of lie type ii. Journal
of Algebra 421, 524–540 (2015)

31. Kantor, William M., Kassabov, Martin: Black box groups isomorphic to pgl (2,
2e). Journal of Algebra 421, 16–26 (2015)

32. Kimmerle, Wolfgang, Lyons, Richard, Sandling, Robert, Teague, David N.: Com-
position factors from the group ring and artin’s theorem on orders of simple groups.
Proceedings of the London Mathematical Society 3(1), 89–122 (1990)

33. Stefan Kohl. A bound on the order of the outer automorphism group of a finite
simple group of given order, 2003. Available at https://stefan-kohl.github.io/
preprints/outbound.pdf

https://stefan-kohl.github.io/preprints/outbound.pdf
https://stefan-kohl.github.io/preprints/outbound.pdf

On the Semidirect Discrete Logarithm Problem in Finite Groups 357

34. Leedham-Green, Charles R.: The computational matrix group project. Groups and
computation 3, 229–248 (2001)

35. Andrew Mendelsohn, Edmund Dable-Heath, and Cong Ling. A Small Serving of
Mash: (Quantum) Algorithms for SPDH-Sign with Small Parameters. Cryptology
ePrint Archive, Paper 2023/1963, 2023. URL https://eprint.iacr.org/2023/1963

36. Chris Monico. Remarks on MOBS and cryptosystems using semidirect products,
2021

37. Chris Monico and Ayan Mahalanobis. A remark on MAKE – a Matrix Action Key
Exchange, 2020

38. Myasnikov, Alexei, Roman’kov, Vitalǐı: A linear decomposition attack. Groups
Complexity Cryptology 7(1), 81–94 (2015)

39. NIST. Post-Quantum Cryptography Standardization, 2017. URL: https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography

40. Eamonn A O’Brien. Algorithms for matrix groups. London Math. Soc. Lecture
Note Ser, 388: 297–323, 2011

41. Rahman, Nael, Shpilrain, Vladimir: Make: A matrix action key exchange. J. Math.
Cryptol. 16(1), 64–72 (2022)

42. Nael Rahman and Vladimir Shpilrain. MOBS (Matrices Over Bit Strings) public
key exchange. Cryptology ePrint Archive, Paper 2021 /560, 2021. URL https://
eprint.iacr.org/2021/560

43. Vitalĭı Roman’kov. Linear decomposition attack on public key exchange protocols
using semidirect products of (semi) groups, 2015

44. Martin Seysen. Python implementation of the monster group. GitHub repository,
2024. URL https://github.com/Martin-Seysen/mmgroup

45. Daniel Shanks. Class number, a theory of factorization, and genera. In Proceedings
of Symposia in Pure Mathematics, 1971

46. Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, 1994

47. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, pages 256–266,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg

48. Robert A. Wilson. The Finite Simple Groups, volume 251 of Graduate Texts in
Mathematics. Springer, 2009

https://eprint.iacr.org/2023/1963
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eprint.iacr.org/2021/560
https://eprint.iacr.org/2021/560
https://github.com/Martin-Seysen/mmgroup

Quantum Circuits of AES
with a Low-Depth Linear Layer

and a New Structure

Haotian Shi1,2 and Xiutao Feng1(B)

1 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing, China

{shihaotian,fengxt}@amss.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. In recent years quantum computing has developed rapidly.
The security threat posed by quantum computing to cryptography makes
it necessary to better evaluate the resource cost of attacking algorithms,
some of which require quantum implementations of the attacked crypto-
graphic building blocks. In this paper we manage to optimize quantum
circuits of AES in several aspects. Firstly, based on de Brugière et al.’s
greedy algorithm, we propose an improved depth-oriented algorithm for
synthesizing low-depth CNOT circuits with no ancilla qubits. Our algo-
rithm finds a CNOT circuit of AES MixColumns with depth 10, which
breaks a recent record of depth 16. In addition, our algorithm gives low-
depth CNOT circuits for many MDS matrices and matrices used in block
ciphers studied in related work. Secondly, we present a new structure
named compressed pipeline structure to synthesize quantum circuits of
AES, which can be used for constructing quantum oracles employed in
quantum attacks based on Grover’s and Simon’s algorithms. When the
number of ancilla qubits required by the round function and its inverse
is not very large, our structure will have a better trade-off of D-W cost.
Moreover, our encryption oracle will have the lowest depth to date. We
then give detailed encryption circuits of AES-128 under the guidance of
our structure and make some comparisons with other circuits. Finally,
the encryption part and the key schedule part have their own application
scenarios. The Encryption oracle used in Simon’s algorithm built with
the former will have smaller round depth. For example, we can construct
an AES-128 Encryption oracle with T -depth 33, while the previous best
result is 60. A small variant of the latter, along with our method to make
an Sbox input-invariant, can avoid the allocation of extra ancilla qubits
for storing key words in the shallowed pipeline structure. Based on this,
we achieve an encryption circuit of AES-128 with the lowest TofD-W
cost 130720 to date.

Keywords: Quantum circuit · Depth · AES · Encryption oracle

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 358–395, 2025.
https://doi.org/10.1007/978-981-96-0944-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_12&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_12

Quantum Circuits of AES 359

1 Introduction

Quantum computers provide a great potential of solving certain important infor-
mation processing tasks that are intractable for any classical computer. Shor’s
algorithm [53] showed that a sufficiently large quantum computer allows to fac-
tor numbers and compute discrete logarithms in polynomial time, which rep-
resents an exponential speed-up compared to classical algorithms and can be
devastating to many public-key encryption schemes in use today.

The possible emergence of large-scale quantum computing devices in the near
future has brought new security threats and raised concerns about post-quantum
security. Not only the public-key cryptosystem, the security of the symmetric-key
cryptosystem is also under threat. A trivial application of Grover’s algorithm [21]
results in a quadratic speedup of the exhaustive search attack. Simon’s algorithm
[55] answers the question of how to find the period of a periodic function with
n input bits in O(n) quantum queries. As a result, many encryption structures
and the most widely used modes of operation for authentication and authen-
ticated encryption were attacked by using Simon’s algorithm [29,31]. Both of
these two algorithms require the quantum oracle of the symmetric building block
to be attacked. Moreover, the National Institute of Standards and Technology
(NIST) used the complexity of the quantum circuit for AES with a bound of
depth called MAXDEPTH as a baseline to categorize the post-quantum public-
key schemes into different security levels in the call for proposals to the stan-
dardization of post-quantum cryptography1. Both these reasons give rise to the
growing appeals for studying the quantum implementations of symmetric-key
building blocks as well as how to optimize them. This helps understand the
quantum security of current encryption schemes and guides future post-quantum
encryption designs.

The synthesis and optimization of quantum circuits have been studied for
many years [4,5,27,44,50,57]. Given an n-qubit unitary operator and an avail-
able gate set G, synthesis algorithms find one of its implementations described
as a sequence of G quantum gates in G with width (number of qubits) W , full
depth FD and T -depth TD. The optimization of G and W is related to the
saving of resources and qubits, while the optimization of FD, TD is also con-
cerned due to the phenomenon of quantum decoherence. In addition, it is worth
noting that there is a lot of work on optimizing quantum circuits on some noisy
intermediate-scale quantum (NISQ) devices (see [42,58,60] for an incomplete
list). In the process of quantum computation, since it has been difficult to isolate
qubits for a long time, qubits would interact unintentionally with external ele-
ments, which would distort the results. Assuming that two non-overlapping gates
can run in parallel, the running time of the circuit is related to its depth. There-
fore, the proper execution of complex algorithms can be significantly facilitated
by optimizing the depth of quantum circuits since the decoherence time is very
limited. The reduction of T -depth is more important in fault-tolerant computa-
tions where the running time is dominated by T -depth [19].

1 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

360 H. Shi and X. Feng

Recent research on quantum implementation of symmetric ciphers mainly
focuses on AES due to its popularity and importance. The main concerns are
the structure, AES MixColumns and AES S-box. At the same time, there is also
related work focusing on quantum implementations of other symmetric building
blocks [62]. One research line is to optimize the width. Grassl et al. proposed the
first quantum circuit of AES under the so-called zig-zag structure with low width
[20]. Zou et al. proposed the improved zig-zag structure [63], and then Huang
et al. presented the OP-based round-in-place structure with a similar idea [22].
Jaques et al. first proposed the straight-line structure of key schedule process
with no ancilla states and first adopted the pipeline structure [24]. Furthermore,
Jang et al. proposed the shallowed pipeline structure to reduce the full depth
[23]. Li et al. directly designed an in-place quantum circuit of AES S-box with
low width and constructed a straight-line circuit of AES with the lowest width
to date [35]. During the research on quantum circuits of AES, many researchers
studied low-width quantum circuits of AES S-box.

The other research line is to reduce the circuit depth. In Clifford+T circuits,
T -depth is the main concern since Clifford gates are much cheaper than the T
gate. The pipeline structure, first mentioned in reversible logic implementations
of AES in [17], is straightforward to provide a low T -depth circuit of AES in
many studies. To synthesize a low T -depth AES S-box, usually a low Toffoli-
depth Sbox which produces some redundant states is designed. Jaques et al.
constructed an Sbox with Toffoli-depth 6, and then gave a quantum circuit of
AES-128 with T -depth 120 [24]. Li et al. [34] proposed an Sbox with Toffoli-
depth 4. Huang et al. also gave an Sbox with Toffoli-depth 4, and further gave
one with Toffoli-depth 3, which is the theoretical minimum. Therefore, the T -
depth of quantum circuit of AES-128 is reduced to 60 [22]. The width of Sbox
was further reduced by Jang et al.’s and Liu et al.’s techniques [23,38], while the
saving of qubits made the optimized Sbox no longer input-invariant.

Full depth is a forward-looking time-cost measure for quantum circuits, so
optimizing the depth of a CNOT circuit can reduce the full depth of the entire
circuit. CNOT circuits which consist only of CNOT gates appear as subcircuits
of larger circuits, such as quantum oracles of symmetric ciphers, stabilizer cir-
cuits [1], and CNOT+T circuits. Patel et al. and Jiang et al. proposed methods
to generate CNOT circuits with asymptotic optimal gate count and space-depth
trade-off, respectively [27,41]. For specific matrices, Xiang et al.’s method [59] is
based on some reduction rules for matrix decomposition, can effectively reduce
the number of gates of given CNOT circuits and provides CNOT circuits with
the smallest CNOT gates to date for many MDS matrices and matrices used in
block ciphers. A lot of work on quantum circuits of AES (see [22,23,35,63] for
an incomplete list) adopted the implementation of AES MixColumns with 92
CNOT gates provided by Xiang et al.’s method. Its depth estimation given by
the Q# resource estimator is 30. However, their method does not take the circuit
depth into account. Zhu et al. defined the exchange-equivalence of sequences, and
proposed a framework of optimizing the depth of a given CNOT circuit [61]
by exploring the possibility of exchanging CNOT gates. They started the

Quantum Circuits of AES 361

optimization with the results of Xiang et al.’s method and gave a better estima-
tion of depth 28 for AES MixColumns. Recently Liu et al. proposed a method
for computing the depth of given quantum circuits and provided a circuit of AES
MixColumns with depth 16 by computing the depth of many search results of
Xiang et al.’s method. Some CNOT circuits of AES MixColumns with ancilla
qubits are synthesized on the basis of optimized low-depth classical circuits,
and the state-of-art classical circuit of AES MixColumns with minimum depth
3 requires 99 XOR gates [51]. In addition, de Brugière et al. proposed a depth-
oriented greedy method and a block algorithm for small and middle scale matri-
ces, respectively [18]. However, their methods have not been tested on the linear
layers of many cryptographic building blocks.

1.1 Our Contributions

This paper mainly focuses on optimizing quantum circuits of AES and gives
improvements in several aspects.

Improved Greedy Algorithm for Finding Low-Depth CNOT Circuits
with No Ancilla Qubits. We first notice that related works of providing CNOT
circuits of AES Mixcolumns either adopted non-depth-oriented search methods
or determined the depth based on existing circuits. Instead, we use a depth-
oriented search method. Since de Brugière et al. proposed a depth-oriented cost-
minimization greedy algorithm that is suitable for random small scale matrices,
we first apply their algorithm to AES Mixcolumns and find a circuit with depth
12, which is much better than a recent record of depth 16 in [38]. We then
propose an improved greedy algorithm based on de Brugière et al.’s algorithm
and successfully find a circuit with depth 10, which can be used to reduce the
full depth of quantum circuits of AES. The improvement of our algorithm is
reflected in three aspects. First, in addition to considering the logarithm of each
row’s Hamming weight, we also consider the square of each row’s Hamming
weight, which gives priority to rows or columns that are “far from being done”
and is beneficial to reduce the circuit depth in many cases. Second, we treat
two cases of row and column operations differently when evaluating the cost,
that is, each column’s Hamming weight is considered when column operations
are performed. Finally, we give an equivalent condition of determining whether
a matrix can be implemented with depth 1 to better handle sparse matrices. As
applications, our improved greedy method provides low-depth CNOT circuits for
many MDS matrices and matrices used in block ciphers (see Table 3, 4). Except
for some matrices with depth 3, all the results are much better than those in [61].
De Brugière et al.’s algorithm is also applied to these matrices for comparison.

Compressed Pipeline Structure for Quantum Circuits of AES. We
observe that the pipeline structure has a low depth but too many intermedi-
ate states, while the OP-based round-in-place structure has fewer intermediate
states but a greater depth. To combine the advantages of the above two struc-
tures, we propose a new structure named compressed pipeline structure, which
computes new states and eliminates intermediate states in parallel for qubit

362 H. Shi and X. Feng

reuse. If the round function is taken as a unit, our structure will have lower
D-W cost than the above two structures when the number of ancilla qubits of a
round function is small enough. To give detailed quantum circuits of AES-128,
we propose iterative round functions for the encryption circuit under the guid-
ance of our structure. Since two consecutive roundkeys are needed in the round
functions, we also present a new circuit for the key schedule of AES-128 which
provides linear components of consecutive two roundkeys in one round. Both
cases of NCT-based circuit and qAND-based circuit are considered. Our circuit
only needs such quantum circuits of AES S-box where the output register can
only be set to |0〉 initially and has lower TD-W or TofD-W cost when the num-
ber of ancilla qubits of AES S-box is small enough. The cost for the AES Grover
oracle can be evaluated by referring to the cost of the encryption circuit.

The AES-128 Encryption Oracle with Lower T -Depth. The encryption
circuit in our structure can be used to construct the Encryption oracle employed
in Simon’s algorithm with simplified cleaning of redundant states. If the round
function is taken as a unit, our constructed Encryption oracle will have depth
r+1, which is almost half of the previous best result 2r. When it comes to AES-
128, the AES-128 Encryption oracle can be constructed with smaller T -depth.
Since the redundant states of the encryption circuit can be cleaned by |c〉 with
one layer of AES S-box, the AES-128 Encryption oracle can be constructed with
T -depth 33, which breaks the previous record of T -depth 60 in [22].

Key Schedule of the Shallowed Pipeline Structure with Input-
Invariant Sbox. In the key schedule of the shallowed pipeline structure, 10×32
qubits need to be allocated for storing the input register of low Toffoli-depth
Sbox which cannot keep the input register unchanged. We find that adding
some CNOT gates can make such Sbox input-invariant without increasing the
Toffoli-depth and ancilla qubits, which ensures that the information of the input
register is not lost. Based on this, we propose a new key schedule for the shal-
lowed pipeline structure which is actually a small variant of the key schedule in
the compressed pipeline structure. It can avoid the allocation of extra 10 × 32
qubits for storing key words and can be used to synthesize a quantum circuit of
AES-128 with the lowest TofD-W cost 130720 to date.

All the source codes and results of this paper are available at https://gitee.
com/Haotian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-
a-new-structure.

1.2 Organization

In Sect. 2 we introduce some background knowledge about quantum computa-
tion. In Sect. 3 we introduce some existing methods for optimizing the depth
of CNOT circuits. Our new method and its application on some matrices are
illustrated in Sect. 4. In Sect. 5 we propose our compressed pipeline structure
for iterative building blocks and show its application in Encryption oracles and
Grover oracles. Specific quantum implementations of AES in different scenarios
and the resource costs are given in Sect. 6. We conclude our work in Sect. 7.

https://gitee.com/Haotian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-a-new-structure
https://gitee.com/Haotian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-a-new-structure
https://gitee.com/Haotian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-a-new-structure

Quantum Circuits of AES 363

2 Preliminaries

2.1 Notations

We assume that the reader is familiar with AES [16]. Some notations used
throughout the paper are listed as follows:

Table 1. Some notations used throughout the paper.

Notation Definition

F2 The finite field with two elements 0 and 1

⊕ The XOR computation

GL(2, n) The set of all n × n invertible matrices over F2

GF(n,F2) The finite field with 2n elements

In The n-by-n identity matrix over F2

E(i + j) The resulting matrix by adding the j-th row to the i-th row of In
(type-3 elementary matrix in GL(2, n))

E(i, j) The CNOT gate of adding the i-th qubit to the j-th qubit

E(i ↔ j) The resulting matrix by exchanging the i-th and j-th row of In
(type-1 elementary matrix in GL(2, n)), or the swapping of the
i-th and j-th qubits

|u〉 A state vector u

S(x) The function of AES S-box

OR The quantum oracle: |x〉 |y〉 �→ |x〉 |y ⊕ R(x)〉
OR−1 The quantum oracle: |x〉 |y〉 �→ |x〉 |y ⊕ R−1(x)〉
kl
j The l-th (start from zero) 32-bit word of the j-th roundkey, or

W4j+l in the key schedule of AES

2.2 Quantum Computation

The simplest quantum system is a single qubit state. It can be described as a
unit vector |u〉 in a Hilbert Space H = C

2 and has two computational basis
states |0〉 and |1〉. Then |u〉 = α |0〉 + β |1〉, where |α|2 + |β|2 = 1. An n-qubit
state |u〉 can be described as a unit vector in H⊗n, and a computational basis
state can be described as a state of n-bit 0/1 string: |x1x2 . . . xn〉.

Several typical quantum gates include X,S, T, CNOT and Toffoli gates. In
this paper we mainly focus on quantum circuits which compute classical vec-
torial boolean functions, so the input states we are concerned with are only
computational basis states. The X gate, CNOT gate and Toffoli gate all act on
computational basis states as shown in Fig. 1:

364 H. Shi and X. Feng

Fig. 1. Circuits of X gate, CNOT gate and Toffoli gate. The changed qubit is called
the target qubit.

One can see that the roles they play in quantum computation are NOT gate,
XOR gate and AND gate in classical computation, respectively.

There is another quantum gate called a quantum AND gate (qAND in short)
which simulates the functionality of a classical AND gate. It differs from the
Toffoli gate in that the target qubit must be |0〉. This gate together with its
adjoint is illustrated in Fig. 2.

Fig. 2. The quantum AND gate together with its adjoint.

2.3 Optimization Goals

Due to the limited decoherence time and qubit resources, it is crucial to reduce
the time cost and storage cost in quantum circuits. In circuits containing X,
CNOT and Toffoli gates, the metrics of width (W), Toffoli depth (TofD), and
TofD-W cost are crucial for evaluating the cost. In practice, the Toffoli gate
can be decomposed with T -depth 3/4 and full depth 9/8, respectively, using 0
ancilla qubit [5], or decomposed with T -depth 1 using 4 ancilla qubits [49]. If
the target qubit of a Toffoli gate is identically equal to |0〉, the Toffoli gate can
be replaced by qAND with T -depth 1 using 1 ancilla qubit and its adjoint can
be replaced by qAND† with T -depth 0 using 0 ancilla qubit. As is shown in [40],
the Clifford gates are much cheaper than the T gate. Therefore, T -depth (TD)
is a key parameter to measure the running time of a circuit. At the same time, a
forward-looking perspective assumes that each gate has a unit depth and defines
the full depth (FD) as a time-cost metric.

Quantum Circuits of AES 365

This paper mainly deals with quantum circuits of AES-128, including encryp-
tion circuits and Encryption oracles. Specifically, the encryption circuit is defined
as:

|x〉 |k〉 |0〉 �→ |x〉 |k′〉 |Enck(x)〉 ,

where Enck(x) is the encryption of message x under the seed key k. In many
cases the k′ in |k′〉 is the roundkey of the last round. Note that |x〉, |k〉 can be
in a superposition state. The encryption oracle differs from it in that the key
register does not exist since the seed key is pre-fixed. It is defined as:

|x〉 |0〉 �→ |x〉 |Enc(x)〉 ,

where Enc(x) is the encryption of message x. In this paper, “quantum circuit”
is seen as a general term for both two cases above.

3 State-of-Art Heuristics for Optimizing the Depth
of CNOT Circuits

In this section, we first introduce some background knowledge of CNOT circuits.
We then introduce some existing methods for optimizing the depth of CNOT
circuits, including methods for handling existing circuits [38,61] and the depth-
oriented greedy algorithm [18].

3.1 CNOT Circuits

A CNOT circuit is a quantum circuit that contains only CNOT gates. One can
see from Fig. 1 that a CNOT gate adds one boolean tuple to another, so for an
n-qubit system, the CNOT gate E(i, j) controlled by the i-th qubit and targeting
on the j-th qubit can be seen as the type-3 elementary matrix E(j + i). Actually
the linear layer of a cipher is an n-bit reversible linear boolean function and
can be interpreted as an invertible matrix A in GL(2, n). Therefore, the CNOT
circuit of a linear layer A can be synthesized by referring to a proper form of
matrix decomposition of A. Recall that the general form of matrix decomposition
is illustrated below as Theorem 1:

Theorem 1. Any A in GL(2, n) can be expressed as a product of type-1 and
type-3 elementary matrices.

Note that the only type-2 matrix in GL(2, n) is the identity matrix and
therefore does not appear in the matrix decomposition. It is easy to see that the
type-3 elementary matrices can be adjacent by the following swapping Property
1, as shown in Theorem 2.

Property 1. E(i+j)E(k ↔ l) = E(k ↔ l)E(fk,l(i)+fk,l(j)), E(k ↔ l)E(i+j) =
E(fk,l(i) + fk,l(j))E(k ↔ l), where

fk,l(x) =

⎧
⎪⎨

⎪⎩

k, if x = l;
l, if x = k;
x, else.

(1)

366 H. Shi and X. Feng

Theorem 2. Any A in GL(2, n) can be expressed as

A = PE(i1 + j1)E(i2 + j2) . . . E(iL + jL), (2)

where P is a permutation matrix.

Since the swapping of two qubits can be realized by rewiring for free, it is
easy to convert a decomposition of A in Theorem 2 to a CNOT circuit of A
and vise versa. Based on this, Xiang et al. defined the sequential XOR (s-XOR)
metric which describes the minimum gate cost of implementing A by updating
input variables to output variables:

Definition 1 (s-XOR). [59] Let M ∈ GL(n,F2) be an invertible matrix.
Assume (x1, x2, . . . , xn) are the n input bits of M . It is always possible to per-
form a sequence of XOR instructions xi = xi ⊕ xj with 1 ≤ i, j ≤ n, such that
the n input bits are updated to the n output bits. The s-XOR count of M is
defined as the minimum number of XOR instructions to update the inputs to the
outputs.

Xiang et al. proposed some reduction rules to reduce the number of type-3
elementary matrices in a matrix decomposition and obtained in-place imple-
mentations of the many constructed MDS matrices and matrices used in block
ciphers with minimum XOR gates up to date [59]. The specific results of their
method can serve as a fairly good starting point for optimizing the quantum
depth of the corresponding CNOT circuits.

3.2 Computing the Depth of Given Circuits

Many efforts have been done on optimizing the depth of given CNOT circuits.
Zhu et al. proposed an algorithm named One-way-opt, which involves iteratively
extracts a layer of CNOT gates by exploring gates that can be exchanged forward
and can run in parallel with the gates of the current layer [61]. One-way-opt is
executed twice in both forward and backward directions of sequences. They
compared their results with those given by the Q# resource estimator, which
only explores the moving of parallelable gates. Recently, Jang et al. also adopted
the idea of reordering gates to optimize the depth of linear layers [23]. Liu et
al. proposed an algorithm FINDDEPTH to quickly determine the full depth of
a given CNOT circuit [38]. It works by recording the updated qubits (target
qubits) and used qubits (control qubits) of previous CNOT gates in each depth
layer to determine the minimum depth of the current gate.

3.3 Greedy Method

De Brugière et al. proposed a depth-oriented greedy method to find low-depth
CNOT circuits of invertible linear layers [18]. It is a cost-minimization algorithm,
that is, a cost function needs to be defined to evaluate the cost of reducing the

Quantum Circuits of AES 367

matrix A to a permutation matrix, and then a strategy for exploring effective
elementary transformations is designed according to the cost function.

The definition of the cost function is the only concern in the optimization of
CNOT gate counts, while things are a little bit different when it comes to the
optimization of the depth. Suppose a cost function to minimize has been defined
to guide the search, the depth-oriented algorithm will find a series of elementary
transformations of row layers and column layers to transform the target matrix
A into a permutation matrix, as follows:

Ed
id

Ed
id−1 · · · Ed

1 · · · E1
i1E

1
i1−1 · · · E1

1AF 1
1 F 1

2 · · · F 1
j1 · · · F d

1 F d
2 · · · F d

jd
= P,

where Et
1, E

t
2, . . . , E

t
it

and F t
1 , F

t
2 , . . . , F

t
jt

for t = 1, 2, . . . , d are layers of ele-
mentary row (column) operations that can act in parallel when converted to
quantum CNOT gates, and P is a permutation matrix. Then one decomposition
form in Theorem 2 of A is deduced as follows:

A = P̃ Ẽ1
1 · · · Ẽ1

i1−1Ẽ
1
i1 · · · Ẽd

1 · · · Ẽd
id−1Ẽ

d
id

F d
jd

F d
jd−1 · · · F d

1 · · · F 1
j1F

1
j1−1 · · · F 1

1 ,

where P̃ , Ẽp
q are obtained by Property 1. This decomposition corresponds to a

CNOT circuit of A with depth 2d or 2d − 12. One can see that unlike the case
of the gate optimization, the depth-oriented algorithm searches row and column
operations which reduce the cost function to generate a row layer and a column
layer (sometimes only one row or column layer). Specifically, the authors defined
two sets Lr and Lc, which record the recently applied row and column operations
that can act in parallel. In each iteration of choosing an operation, only available
row or column operations can be chosen, which are defined as follows:

Definition 2 (Available operation). The available row (column, respectively)
operations meet the following two conditions:

– Reduce the cost function.
– Can act in parallel with recent operations in Lr (Lc, respectively).

If no available row or column operations exist, one resets Lr, Lc to empty. Each
time a non-empty Lr or Lc is reset to empty, the depth count is increased by
one. The algorithm ends when the cost function is equal to its minimum, that is,
the current matrix is a permutation matrix, or when the depth counter exceeds a
certain threshold, that is, the algorithm falls into a local minima.

Then for the definition of the cost function, the authors considered four
choices to guide the optimization of the gate count in [13] and the depth in [18]:

(1) hsum(A) =
∑

i,j

aij ;

(2) Hsum(A) = hsum(A) + hsum(A−1);

(3) hprod(A) =
∑

i

log2(
∑

j

aij);

(4) Hprod(A) = hprod(A) + hprod(A−1).

2 id or jd may equal to 0, or Ẽd
1 , · · · , Ẽd

id−1, Ẽ
d
id

, F d
jd

, F d
jd−1, · · · , F d

1 can act in parallel.

368 H. Shi and X. Feng

These four cost functions roughly estimate the cost of decomposition through
the sparsity of a matrix A, and reach their minimum when A is a permutation
matrix. Therefore, they can guide the search in the cost-minimization process.
hsum is a rough estimation since there can be too many operations which lead
to the same cost, and the remaining cost functions have two major improve-
ments over hsum. On the one hand, the inverse of the current matrix is taken
into account, which was first proposed in [47]. Since a row operation on A is
equivalent to a corresponding column operation on A−1, adding the cost of the
inverse matrix can provide a more balanced estimation of the distance to a per-
mutation matrix. On the other hand, the logarithm of every row’s Hamming
weight is taken into account, which was first presented in [13]. hprod gives pri-
ority to “almost done” rows such that the overall efficiency of elimination is
guaranteed. Note that in cost-minimization algorithms one may end up with a
sparse matrix where the rows and columns have few nonzero entries with com-
mon indices. This type of matrix represents a local minima from which it might
be difficult to escape. Both these two considerations can help to avoid getting
stuck in a local minima and can lead to better results.

According to their experiments with random matrices, this depth-oriented
greedy method behaves well for small n (roughly n < 40). When n is larger, it
performs worse than their block algorithm and often falls into a local minima.
Their block algorithm [18] and Jiang et al.’s algorithm [27] have asymptotic
optimal bounds and can handle larger matrices better.

4 Our Method and Its Applications

In this section, we first propose an improved greedy algorithm for finding low-
depth CNOT circuits. Then we apply our algorithm to different linear building
blocks with sizes of 16 × 16 and 32 × 32 that have been studied in [61]. Since the
original greedy method in [18] is not applied to these matrices, we also apply
their method to these matrices for comparison.

4.1 Our Method

Our method is based on the framework of de Brugière et al.’s greedy method
[18], and differs from it in three aspects. First, in addition to considering the
logarithm of each row’s Hamming weight, we also consider the square of each
row’s Hamming weight. Second, we treat two cases of row and column operations
differently when evaluating the cost, that is, each column’s Hamming weight is
considered when column operations are performed. Finally, we add a judgement
of whether the current matrix can be implemented with depth 1 to better handle
sparse matrices.

We first make an intrinsic observation about the problem of synthesizing low-
depth CNOT circuits. Though not strict, the larger Hamming weight of a row
i, the more potential gates need to be done on the row i. Therefore, prioritizing
the rows or columns with larger Hamming weights might be a preferable choice

Quantum Circuits of AES 369

to obtain lower circuit depth. Intuited by this, we propose a new cost function
hsq which is based on the square of every row’s Hamming weight:

hsq(A) =
∑

i

(
∑

j

aij)2.

We also notice that focusing on the Hamming weight of the rows ignores the effect
of the column operations. So we propose two cost functions Hsqr,Hsqc which are
based on hsq to evaluate row operations and column operations respectively:

Hsqr(A) = hsq(A) + hsq((A−1)T);

Hsqc(A) = hsq(AT) + hsq(A−1).

Note that the cost of the corresponding transformation of the inverse matrix is
under consideration. In our method, the cost after row operations is evaluated
by Hsqr(A), and the cost after column operations is evaluated by Hsqc(A). In
addition, the cost of the current matrix is defined as the maximum evaluation of
Hsqr and Hsqc to explore more possibilities.

According to our experiments, using row and column cost functions based
on hprod will sometimes yield better results than using row and column cost
functions based on hsq, which means that hsq is not the best choice for all
matrices. So in practice, we also use cost functions Hprodr and Hprodc defined as
follows:

Hprodr(A) = hprod(A) + hprod((A−1)T);

Hprodc(A) = hprod(AT) + hprod(A−1).

In our algorithm, we adopt a hybrid strategy of randomly using Hprodr,Hprodc

or Hsqr,Hsqc, since both cases are likely to give the best result.
In addition, we give an equivalent condition to test whether a matrix can

have depth 1. This helps determine whether the last searched Lr and Lc can be
implemented in parallel, since the original algorithm can only find this better
case with probability 2

2t , where t is the total number of CNOT gates in the last
searched Lr and Lc.

Theorem 3. Suppose the implementation of a permutation matrix is free. Given
an invertible matrix An×n on F2, A can be implemented with depth 1 if and only
if the following conditions hold:

– (a) The Hamming weights of all A’s rows are less than or equal to 2.
– (b) For any two rows i, j of A with Hamming weight 2, aikajk = 0 for all k.

Proof. It is easy to see that a set of row operations on a permutation matrix can
be interpreted as a set of column operations and vice versa. So we only need to
consider the parallelism of row operations to reduce a matrix to a permutation
matrix.

Necessity. It is easy to see that target rows of type-3 matrices have Hamming
weight 2 and other rows have Hamming weight 1. (b) holds since the reduced
matrix is a permutation matrix.

370 H. Shi and X. Feng

Sufficiency. Without loss of generality, assume that the i-th row has Hamming
weight 2 for 0 ≤ i < l, and other rows have Hamming weight 1. For each i
such that ai,pi

= 1, ai,qi = 1, there exists only one corresponding row ti with
Hamming weight 1 such that either ati,pi

= 1 or ati,qi = 1, since A is invertible.
Applying E(ti, i) for 0 ≤ i < l gives the implementation with depth 1. �

Detailed steps of our improved greedy algorithm are illustrated as Algorithm
1. The running time of this algorithm is dominated by evaluating the cost of all
possible row or column operations. Suppose the considered matrix A is n by n.
Ignoring the limitation of parallelism, at most n2 row operations and n2 column
operations need to be evaluated. Since A−1 can be computed first and updated
according to the corresponding operations on A, the cost of the resulting matrix
can be computed in O(n) times based on the cost of A. Therefore, the complexity
of determining of an operation to be done for a current matrix is upper bounded
by O(n3). Similar to de Brugière et al.’s greedy method, our algorithm behaves
well for small scale matrices (roughly n < 40), and our often falls into a local
minima when n is larger. Our algorithm is repeated tens of thousands of time
for a matrix and the best result is recorded.

4.2 Application to AES MixColumns

We first focus on CNOT circuits of AES MixColumns. Previous researchers syn-
thesized quantum circuits of AES MixColumns with different methods. Grassal
et al. found one circuit with depth 39 by the LUP decomposition method [20].
Zou et al. adopted the same circuit, while Jaque et al. obtained a circuit with
depth 1113 [24]. Xiang et al.’s reduction framework produced a circuit with 92
CNOT gates and depth 41 [59], while Q#’s estimation of this circuit is 30,
and Zhu et al. studied the exchange-equivalent sequence of this circuit [61] and
obtained a new circuit with depth 28. Recently Liu et al. proposed a method for
computing the depth of quantum circuits and then used it to evaluate many cir-
cuits generated by Xiang et al.’s method. They obtained a circuit with 98 CNOT
gates and depth 16 [38]. If ancilla qubits are allowed, some CNOT circuits with
low depth can be designed by converting optimized classical circuits (see [8,32,39]
for an incomplete list) into quantum style. For example, Liu et al. converted the
classical circuit in [32] with 105 XOR gates and classical depth 3 into quantum
style with depth 11 and 105 ancilla qubits. Jang et al. optimized the circuit built
upon the work in [32] and obtained an out-of-place circuit with 64 ancilla qubits
and depth 8 [23].

3 In the Eurocrypt’20 paper [24], the authors remarked that they could not reproduce
the result although they used the same technique. The authors of [23] analyzed that
the reason may come from the encoding issue.

Quantum Circuits of AES 371

Algorithm 1. Improved greedy algorithm for synthesizing low-depth CNOT
circuits.
Input: An invertible matrix An×n

Output: A depth d and a vector of layers Layers that implement A with length d.
Layers ← ∅, Layersr ← ∅, Layersc ← ∅;
Lr ← ∅, Lc ← ∅;
List ← ∅;
B ← A;
Randomly determine Hr, Hc ← Hsqr, Hsqc or Hprodr, Hprodc.
cost ← max{Hr(B), Hc(B)};
can one ← False; � If the current matrix can be implemented with depth 1.
d ← 0;
while True do

cost ← max{Hr(B), Hc(B)};
mincost ← the minimum resulting cost of all available row operations (can act in parallel with

those in Lr) of adding the i-th row to the j-th row of B(denoted {i, j, 0}), and if not can one, all
available column operations (can act in parallel with those in Lc) adding the i-th column to the
j-th coloumn of B (denoted {i, j, 1}); � If the current matrix can be implemented with depth 1,
only row operations need to be considered.

List ← {All operations which can lead to the cost of the resulting matrix being mincost};
if mincost == cost then

if not can one and Can-depth-one(A) then
can one ← True; � If so, only row operations are considered in the next iteration.

end if
if Lr.size() then

d ← d + 1, Layersr.push back(Lr), Lr .clear();
end if
if Lc.size() then

d ← d + 1, Layersc.push back(Lc), Lc.clear();
end if
if cost = 2n then

break;
end if
if d >= 100 then

return d, ∅; � Too large d means the matrix may fall into a local minima.
end if

else
Randomly choose one operation {i, j, op} that minimizes the cost function of the resulting

matrix, add {i, j, op} to Lr if op == 0, or Lc if op == 1;

B ← E(j + i)1−opBE(i + j)op;
end if
List.clear();

end while
Record a permutation P , satisfying P (i) == j if B[i][j] == 1;
for i from 0 to (Layerc.size() - 1) do

l ← ∅;
for j from 0 to (Layerc[i].size() - 1) do

{t, c, op} ← Layerc[i][j], l.push back({c, t});
end for
Layers.push back(l);

end for
for i from (Layerr.size() - 1) down to 0 do

l ← ∅;
for j from 0 to (Layerr[i].size() - 1) do

{c, t, op} ← Layerc[i][j], l.push back({P [c], P [t]});
end for

end for
return d, Layers;

372 H. Shi and X. Feng

We observe that related works of providing CNOT circuits of AES Mix-
Columns either adopt non-depth-oriented search methods or determine the depth
based on existing circuits. Instead, we use depth-oriented search algorithms to
generate low-depth CNOT circuits with no ancilla qubits. We first apply the
greedy algorithm in [18] with cost function Hprod to AES MixColumns and
obtain a circuit with depth 12 and 128 gates. Then our improved greedy algo-
rithm finds a circuit with depth 10 and 131 gates. It can be used to reduce the
full depth of quantum circuits of AES without increasing the circuit width. The
comparison with previous results is shown in Table 2.

Table 2. Comparison of CNOT circuits of the AES MixColumns matrix.

Source # CNOT W FD

[8,39] 206 135 13

[32] 210 137 11

[23] 169 96 8

[24] 277 32 111

[20,63] 277 32 39

[59] 92 32 30

[61] 92 32 28

[38] 98 32 16

[18] 128 32 12

This paper 131 32 10

4.3 Applications to Many Proposed Matrices

Following the work of [61], we apply our method to various matrices in the
literature including:

– some matrices used in block ciphers [2,6,7,9–12,15,16,25,28,48,52];
– some MDS matrices which are constructed in [14,26,33,37,45,46,54].

Based on the CNOT circuits of these matrices provided by Xiang et al.’s
method, Zhu et al. evaluated their move-equivalent sequence depth by Q#
[43], and investigated their exchange-equivalent sequences. Except for a few
small-scale matrices, we can find much better results with lower depths for these
matrices. For the matrices used in block ciphers, we have succeeded in reducing
the circuit depth for all of them except for a few matrices that already have
CNOT circuits with small depth (see Table 3). For the many constructed MDS

Quantum Circuits of AES 373

matrices, we can optimize the depth of CNOT circuits for all of them (see
Table 4). Overall, our improved greedy algorithm gives the best results with
the lowest depth for all of the matrices4.

Table 3. Comparison of the depth/gate count of CNOT circuits for matrices used in
block ciphers.

Cipher Size Q# [61] This paper [18]

AESa [16] 32 30/92 28/92 10/131 12/128

ANUBIS [10] 32 26/98 20/98 10/119 14/136

CLEFIA M0 [52] 32 30/98 27/98 10/110 13/126

CLEFIA M1 [52] 32 21/103 16/10310/128 13/127

FOX MU4 [28] 32 55/136 48/13621/265 21/200

QARMA128 [6] 32 6/48 5/48 3/48 3/48

TWOFISH [48] 32 37/111 29/11115/175 18/187

WHIRLWIND M0 [9] 32 65/183 51/18328/331 28/286

WHIRLWIND M1 [9] 32 69/190 54/19022/290 25/279

JOLTIK [25] 16 20/44 17/44 7/52 9/48

MIDORI [7] 16 3/24 3/24 3/24 3/24

SmallScale AES [15] 16 20/43 19/43 10/62 11/59

PRIDE L0 [2] 16 3/24 3/24 3/24 3/24

PRIDE L1 [2] 16 5/24 5/24 3/24 3/24

PRIDE L2 [2] 16 5/24 5/24 3/24 3/24

PRIDE L3 [2] 16 6/24 6/24 3/24 3/24

PRINCE M0 [12] 16 6/24 6/24 3/24 3/24

PRINCE M1 [12] 16 6/24 6/24 3/24 3/24

QARMA64 [6] 16 6/24 5/24 3/24 3/24

SKINNY [11] 16 3/12 3/12 3/12 3/12
a A recent result of 16/98 is given in [38]

4 Note that for a few matrices, implementations with the same depth but fewer gates
can be searched using de Brugière et al.’s algorithm. Therefore, their algorithm
could be used in combination with our algorithm in order to search for better low
depth CNOT circuits.

374 H. Shi and X. Feng

Table 4. Comparison of the depth/gate count of CNOT circuits for many constructed
MDS matrices.

Matrices Size Move-eq [61] This paper [18]

4 × 4 matrices in GF(4, F2)

[14] 16 23/41 21/41 10/59 12/57

[26] 16 24/41 18/41 9/49 9/48

[37] 16 27/41 26/41 11/63 12/65

[54] 16 25/44 22/44 11/59 11/59

[33] 16 29/44 27/44 11/62 12/65

[26] (Involutory) 16 15/41 14/41 9/54 13/54

[54] (Involutory) 16 19/44 16/44 7/52 9/48

[33] (Involutory) 16 27/44 25/44 7/52 9/48

[45] (Involutory) 16 12/38 11/38 8/46 8/44

4 × 4 matrices in GF(8, F2)

[14] 32 56/144 47/14418/208 20/188

[26] 32 26/82 22/82 9/100 9/96

[37] 32 67/121 54/12121/235 23/203

[33] 32 55/104 42/10413/164 16/167

[54] 32 23/90 20/90 10/112 11/118

[45] 32 47/114 40/11420/218 20/190

[26] (Involutory) 32 18/83 14/83 9/102 13/108

[54] (Involutory) 32 18/91 16/91 8/101 9/96

[33] (Involutory) 32 19/87 19/87 8/99 8/98

[45] (Involutory) 32 19/93 18/93 10/121 12/119

8 × 8 matrices in GF(4, F2)

[46] 32 54/183 44/18329/351 33/302

[54] 32 59/170 49/17028/349 29/286

[54] (Involutory) 32 47/185 37/18529/337 30/300

8 × 8 matrices in GF(8, F2)

[54] (Involutory) 64 50/348 37/34822/484 25/412

5 The Compressed Pipeline Structure for Iterative
Primitives

In this section, we first introduce some structures used for quantum circuits of
AES in previous work. Then we propose a new structure named compressed
pipeline structure. Finally we make some comparisons in different levels and
introduce its application in the Grover oracle and the Encryption oracle.

Quantum Circuits of AES 375

5.1 Existing Structures

Many structures have been proposed to synthesize quantum circuits of AES.
Some of them are based on out-of-place round functions, including the pipeline
structure Sp, the zig-zag structure Sz and the out-of-place based (OP-based in
short) round-in-place structure Si. These structures treat the round function
and its inverse as a unit. Therefore, the metric “round depth” - the number of
layers of the round function - is then used to describe the depth of a structure,
and the width of a structure is closely related to the number of intermediate
states and the number of parallel round functions.

The pipeline structure, which is first mentioned in reversible logic implemen-
tations of AES in [17], was proposed by Jaques et al. in [24]. It has low round
depth and large width and is used to construct low T -depth quantum circuits of
AES in [22–24,38]. The zig-zag structure was first put forward by Grassal et al.
in [20] to reduce the number of intermediate states. It is used to construct low-
width circuits of AES in [3,20,30]. To further reduce the number of intermediate
states, Zou et al. presented the improved zig-zag structure [63], and Huang et al.
proposed the OP-based round-in-place structure to construct in-place circuits on
the basis of out-of-place circuits. Denote the j-th round function Rj which sat-
isfies Rj(cj−1) = cj , then the out-of-place oracle ORj

takes |x〉 |y〉 as input and
outputs |x〉 |y ⊕ Rj(x)〉. The input register and output register is distinguished
by notation Rj,i and Rj,o respectively. For simplicity, the key schedule and the
ancilla qubits are omitted. Sp and Sz compute the desired output |c〉 along with
some redundant states, as illustrated in Fig. 3, 4, respectively. The construction
of the in-place function in Si is shown in Fig. 5.

Fig. 3. The pipeline structure Sp.

There are also some other structures which do not take the out-of-place
round function as a unit. On the one hand, an in-place round function can be
directly designed without out-of-place round functions. For example, Li et al.
proposed an in-place quantum circuit of AES S-box with only 8 ancilla qubits,
and then used it to synthesize a quantum circuit of AES under the straight-line
structure, which has the lowest width to date [35]. On the other hand, some out-
of-place round functions themselves can be decomposed into computation and

376 H. Shi and X. Feng

Fig. 4. The zig-zag structure Sz.

Fig. 5. OP-based round-in-place function in Si.

uncomputation. The shallowed pipeline structure proposed by Jang et al. delays
the uncomputation of one round function (if exists) to the next round in the
pipeline structure to reduce the full depth [23]. Liu et al. improved this structure
by sharing the ancilla qubits of the computation and uncomputation to save
qubits [38].

5.2 Compressed Pipeline Structure

In this section we propose the compressed pipeline structure.
We first make some observations on existing structures. Though the pipeline

structure has the lowest round depth, too many qubits store the intermediate
states. At the same time, the zig-zag structure and its improvements clean some
intermediate states to save qubits, but at a cost of almost twice the round depth
of the pipeline structure. To combine the advantages of the above two structures,
we propose a strategy of computing new states and eliminating intermediate
states in parallel.

Specifically, when cj+1 (j ≥ 1) is generated, the register storing cj−1 can
be cleaned by OR−1

j−1
in parallel and then can be reallocated in further use.

In fact, our structure can be thought of as adding the clean process to the
pipeline structure, hence the name compressed pipeline structure denoted by
Scp. Since the input register of both OR−1

j−1
and ORj

is the same, |cj〉 is copied
by CNOT gates so that OR−1

j−1
and ORj

can act in parallel. Therefore, our
structure requires four intermediate message registers, while a round function
and its inverse function need to be executed in parallel. Scp is illustrated in
Fig. 6.

Quantum Circuits of AES 377

Fig. 6. The compressed pipeline structure Scp. For convenience, the copy of the |cj〉
state is simplified as “split into two parts”.

5.3 Comparison of Different Structures

In this subsection, we will compare the round depth and width of different struc-
tures that takes the round function as a unit and illustrate the use of our Scp in
two scenarios: the Grover oracle and the Encryption oracle.

We first clarify some parameters for the different structures. Suppose ORj
has

round depth 1 and needs α ancilla qubits. Since the components of ORj
, OR−1

j

are almost the same, it is reasonable to regard them as having the same cost.
Suppose the round function iterates for r rounds, and one message register needs
n qubits. The width of the key schedule is set to k′ to show the difference from
the other structures, because in our structure, the parallel execution of a round
function with its inverse means that two consecutive roundkeys are required.

The comparison with previous structures under the above parameters is out-
lined in Table 5. Since we treat the round function as a unit, only the comparison
between Sp,Sz,Si with our Scp are considered.

Table 5. The comparison of different structures, where t is the minimal number such
that

∑t
i=1 i > r.

Structure Round depth Width

Sp r k + (r + 1)n + α

Sz ≈ 2r k + tn + α ≈ k +
√

2rn + α

Si 2r k + 2n + α

This paper r k′ + 4n + 2α

Our Scp has the same round depth r as Sp, and at the same time needs 4
message registers instead of r+1 message registers in Sp. Therefore, our Scp will

378 H. Shi and X. Feng

have lower width than Sp and lower D-W cost than Sz,Si if α and k′ are small
enough.

Circuits for Grover Oracles. We first consider the Grover oracle: |y〉 |q〉 →
|y〉 |q ⊕ f(y)〉, where f(y) is a boolean function which outputs one bit 1 or 0. An
exhaustive key search Grover oracle has input state |k〉, and the correctness of
the key is verified by some plaintext-ciphertext pairs. For simplicity we consider
the case of one pair (m0, c0). Denote an encryption circuit as C∗, the Grover
oracle works as follows:

– C∗ computes |c〉 with |m0〉 and |k〉.
– A comparison process compares |c〉 with |c0〉 to decide whether to flip |q〉.
– Do the uncomputation with C†

∗.

It can be seen that the cost of the Grover oracle is almost twice that of the
encryption circuit. Therefore, the cost of Grover oracles with different structures
can be evaluated directly by referring to the cost of different encryption circuits
in Table 5.

Since uncomputation of recovering m is necessary in the Grover oracle, the
depth of the Grover oracle is dominated by that of C∗. Thus, Sp is used to
construct low-depth circuits of the Grover oracle in related research. Our circuit
Scp greatly reduces the use of message registers to store intermediate states and
will have lower width than Sp if the number of ancilla qubits required in round
functions is small enough.

Circuits for Encryption Oracles. We then consider the Encryption oracle defined
in [29]: |m〉 |0〉 → |m〉 |Enc(m)〉, where m is the plaintext and Enc(m) is the
encryption of m with a pre-fixed key. Encryption oracles allows the input regis-
ter to be in a superposition

∑
m |m〉, and then the output will be a superposition∑

m |m〉 |Enc(m)〉. Note that the key register is not needed in the Encryption
oracle since the roundkeys can be precomputed classically and the AddRound-
Key can be realized by applying X gates on specified qubits. The construction of
Encryption oracles using Sp,Sz or Si is shown in Fig. 7.

Fig. 7. The Encryption oracles based on different structures

We show that our structure Scp can be used to construct an Encryption oracle
that has a smaller round depth. The round depth of an Encryption oracle using

Quantum Circuits of AES 379

Si is 2r since there is no redundant intermediate states, and the round depth
of an Encryption oracle using Sp/Sz is twice the round depth of Sp/Sz since
uncomputation is needed to clean redundant states. However, the advantage of
our structure is that Scp can greatly reduce the cost for cleaning redundant
states. Since |cj−1〉 is cleaned by |cj〉, the remaining redundant states contains
only |cr−1〉, which can be cleaned by |c〉 using R−1

r . Thus, the round depth of
an Encryption oracle using Scp and R−1

r is only r + 1, almost half the previous
record. The comparison with previous results is outlined in Table 6.

Table 6. The depth and width of Encryption oracles with different structures

Encryption oracle Sp Sz Si This paper

round depth 2r ≈ 4r 2r r + 1

width (r + 1)n + α ≈ √
2rn + α (1 + 2)n + α (1 + 4)n + 2α

6 Quantum Circuits of AES

In this section we give several kinds of detailed quantum circuits of AES under
the guidance of our structure in Sect. 5, including an Encryption oracle, encryp-
tion circuits under our structure and improved encryption circuits under the
shallowed pipeline structure. The depth 10 circuit of AES MixColumns in Sect. 4
are used in all circuits to reduce the full depth, and the different circuits for AES
S-box are introduced in Subsect. 6.1. Encryption circuits for the encryption part
and the key schedule of AES-128 are specified in Subsect. 6.2, and the cost is
compared with other circuits in different cases in Subsect. 6.35. In Subsect. 6.4 we
synthesize an Encryption oracle of AES-128 with the lowest T -depth to date,
and in Subsect. 6.5 we give an improved encryption circuit under the shallowed
pipeline structure with the lowest TofD-W cost to date.

6.1 Quantum Circuits of AES S-Box

We first introduce some knowledge on quantum circuits of AES S-box. The C2

circuit of AES S-box defined by C2 : |x〉 |y〉 �→ |x〉 |y ⊕ S(x)〉 is the main concern
for out-of-place implementations, since C1 circuits defined by C1 : |x〉 |0〉 �→
|x〉 |S(x)〉 are special cases of C2 circuits and are easier to design. The C3 circuit
defined by C3 : |S(x)〉 |x〉 �→ |S(x)〉 |0〉 can be efficiently constructed on a C1

circuit with a few more CNOT gates by the method in [22]. Moreover, some C2

circuits of AES S-box can be decomposed into Sbox and SubS†. The Sbox circuit

5 The main difference between the encryption circuit of AES-128, AES-192 and AES-
256 lies in the key schedule. The key schedules and the cost analysis for encryption
circuits of AES-192 and AES-256 are presented in Appendix B.

380 H. Shi and X. Feng

is defined by Sbox: |x〉 |0〉 |y〉 �→ |x′〉 |r〉 |y ⊕ S(x)〉, where |r〉 is the redundant
state. Sbox can be decomposed into two parts denoted by SubS and SubC. SubS
takes |x〉 |0〉 as input and outputs |x′〉 |r〉, where |r〉 contains linear components
of S(x). Then SubC adds them to |y〉 to get |y ⊕ S(x)〉.

Many researchers have studied low Toffoli-depth Sboxes, which is illustrated
in Table 7. In these related works, the target qubit of each Toffoli gate in SubS is
always a new qubit |0〉, so the Toffoli gates can be replaced by qAND gates with
T -depth 1, and SubS† can be realized with T -depth 0 using qAND†. Therefore,
these related works can be used to synthesize low T -depth qAND-based C2

circuits of AES S-box.
Note that the input register of some Sboxes can remain unchanged while

others cannot. An Sbox is defined to be input-invariant if it can keep the input
register unchanged, which means the information of the input register |x〉 is not
lost before SubS† or Sbox† is done. We observe that, the reason why some Sboxes
are not input-invariant is that the input register is updated by some ancilla qubits
with CNOT gates to save qubits, and these ancilla qubits themselves are also
updated. It is worthy to note that the updating of |x〉 can be uncomputed with
only CNOT gates, as the target qubit of all Toffoli gates is always a new qubit
|0〉 in related works of low Toffoli-depth Sboxes. Therefore, adding some CNOT
gates can make this kind of Sbox input-invariant without increasing the number
of ancilla qubits and the Toffoli-depth (see Table 7 for our results). The full depth
is also not increased when the Toffoli gates are decomposed.

Table 7. Some low TofD Sboxes

Source #CNOT #1qClifford #Toffoli TofD Ancilla qubits Input-invariant

[24] 186 4 34 6 120 ✔

[22] 214 4 34 4 120 ✔

[22] 356 4 78 3 182 ✔

[38] 168 4 34 4 74 ✘

This paper 179 4 34 4 74 ✔

[38] 196 4 34 4 60 ✘

This paper 207 4 34 4 60 ✔

[23] 313 4 78 3 136 ✘b

[23] 162 4 34 4 68a ✘b

a The full depth of this circuit is smaller when the Toffoli gates are decomposed.
b Since the authors do not give specific implementations, we cannot give detailed
costs for their input-invariant versions

The process of finding a sequence of CNOT gates added to a given low Toffoli-
depth Sbox to make it input-invariant can be integrated into an algorithm. It
involves recording the qubits whose updatings should be memorized. All the
input qubits are recorded at the beginning, and each qubit used to update a

Quantum Circuits of AES 381

recorded qubit is recorded. Finally, a sequence of uncomputing the memorized
updatings is returned. The detailed process is illustrated in Algorithm 2. Note
that in order not to increase the Toffoli-depth, this algorithm is only suitable
for such low Toffoli-depth Sboxes where the updating of input qubits is related
with only CNOT gates.

Some C1 circuits for low-width Toffoli-based circuits are also studied, see
Table 8 for some recent works. If these C1 circuits are used for AES S-box, our
encryption circuit of AES-128 in Subsect. 6.3 will have the lowest TofD-W/TD-
W cost compared to other structures which take the round function as a unit.

Table 8. Some Toffoli-based C1 circuits of AES S-box

Source #CNOT #1qClifford #Toffoli Toffoli-depth Ancilla qubits

[36] 193 4 57 24 5

[36] 195 4 57 22 6

[35] 197 4 44 32 4

Algorithm 2 Make an Sbox input-invariant.
Input: An NCT-based circuit C = {g0g1 . . . gt−1} of an Sbox with input qubits

|x0x1 . . . x7〉, ancilla qubits |r0r1 . . . rm−1〉 and output qubits |y0y1 . . . y7〉. The updat-
ing of input qubits in the input Sbox should be related with only CNOT gates.

Output: A sequence of CNOT gates which is added to the Sbox to make it input-
invariant.
seq ← [];
for i from 0 to m − 1 do

updated[i] ← 0;
end for
for i from 0 to t − 1 do

if gi is not a CNOT gate then
Continue;

end if
Let a be the control qubit and b be the target qubit of gi.
if b is some |xi〉 or some |rj〉 with updated[j] = 1 then

seq.append(gi);
if a is some |rj〉 then

updated[j] ← 1;
end if

end if
end for
seq.reverse();
return seq;

382 H. Shi and X. Feng

6.2 Round Function and Key Schedule

In this subsection we give the detailed circuits of the iterative functions that
we define for the encryption circuit and key schedule of AES-128. For AES-192
and AES-256, the main difference lies in the key schedule, which is illustrated
in Appendix B.

For the encryption circuit, we define the beginning function B and the j-
round function Fj which are shown in Fig. 8. For simplicity, the result of applying
multiple AES S-boxes on a qubit register |x〉 is denoted by |S(x)〉 throughout the
rest of the paper. B and Fj acts as follows:

B : |m〉 |0〉 |0〉 |0〉 �→ |c0〉 |S(c0)〉 |c1〉 |0〉 ,

Fj : |cj−1〉 |S(cj−1)〉 |cj〉 |0〉 �→ |cj〉 |S(cj)〉 |cj+1〉 |0〉 .
(3)

As a result, our encryption circuit is synthesized by connecting B,F1, F2, . . . , F9.
Note that Ccp does not strictly adhere to the structure Scp in Fig. 6. One can see
that outputs of AES S-box are copied for cleaning the inputs in the next round,
which saves the cost of the inverse of linear layers, and that our circuit Ccp is
more compact, has clear linear and nonlinear layers, and has fewer linear layer
components of AES than the circuit which adhere strictly to Scp. In a nonlinear
layer, 16 C1 circuits and 16 C3 circuits are executed in parallel for the encryption
circuit.

We then present a new key schedule circuit which is suitable with our new
encryption circuit, since in Fj , two consecutive roundkeys |kj〉 , |kj+1〉 should
be able to be computed simultaneously by CNOT gates. Instead of storing
|kj〉 , |kj+1〉 in eight 32-qubit registers, we store linear components of two consec-
utive roundkeys registers to save qubits. The linear components of two consec-
utive roundkeys |kj〉 , |kj+1〉 include |k0

j 〉 |k1
j 〉 |k2

j 〉 |k3
j 〉 |S(k3

j)〉, and the computa-
tion of |kj〉 , |kj+1〉 with CNOT gates is based on the dependence of consecutive

Fig. 8. Circuits of B and Fj . Si, So and S−1
i , S−1

o stand for the input and output
registers of C1 circuits and C3 circuits, respectively. MixColmuns no longer acts on the
first message register in F9. ShiftRows are omitted for simplicity throughout the rest
of the paper.

Quantum Circuits of AES 383

roundkeys illustrated below:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k0
j+1 = Constj+1 ⊕ S(kj

3) ⊕ k0
j

k1
j+1 = Constj+1 ⊕ S(kj

3) ⊕ k0
j ⊕ k1

j

k2
j+1 = Constj+1 ⊕ S(kj

3) ⊕ k0
j ⊕ k1

j ⊕ k2
j

k3
j+1 = Constj+1 ⊕ S(kj

3) ⊕ k0
j ⊕ k1

j ⊕ k2
j ⊕ k3

j

, (4)

where Constj+1 is the (j + 1)-th round constant.
By the dependence of consecutive roundkeys, we construct a circuit of key

schedule which can compute linear components of two consecutive roundkey
states with six 32-qubit registers. The beginning iteration K0 and the j-th iter-
ation Kj act as follows:

K0 : |k0
0〉 |k1

0〉 |k2
0〉 |k3

0〉 |0〉 |0〉 �→ |k0
0〉 |k1

0〉 |k2
0〉 |k3

0〉 |S(k3
0)〉 |0〉

Kj : |k0
j−1〉 |k1

j−1〉 |k2
j−1〉 |k3

j−1〉 |S(k3
j−1)〉 |0〉 �→ |k0

j 〉 |k1
j 〉 |k2

j 〉 |k3
j 〉 |S(k3

j)〉 |0〉 .
(5)

The circuit of Kj is illustrated in Fig. 9, and the circuit of K0 is omitted
due to its simplicity. In the nonlinear layer of Kj , 4 C1 circuits and 4 reversed
C1 circuits are executed in parallel. Therefore, Fj and Kj can be synchronized.
It is easy to see that |kj〉 |kj+1〉 can be computed by the linear components with
depth 5, thus a small increase in the depth of AddRoundKey trades for key
register savings.

Fig. 9. The j-th iteration Kj of the key schedule.

Moreover, only five 32-qubit registers are enough if one uses the qAND-based
Sbox, since Sbox† can clear the redundant states without increasing the T -depth.
The beginning iteration K

′
0 and the j-th iteration K

′
j acts as follows:

K
′
0 : |k0

0〉 |k1
0〉 |k2

0〉 |k3
0〉 |0〉 |0〉 �→ |k0

0〉 |k1
0〉 |k2

0〉 |k3
0〉 |r0〉 |0〉

Kj : |k0
j−1〉 |k1

j−1〉 |k2
j−1〉 |k3

j−1〉 |rj−1〉 |0〉 �→ |k0
j 〉 |k1

j 〉 |k2
j 〉 |k3

j 〉 |rj〉 |0〉 (6)

384 H. Shi and X. Feng

The corresponding circuit K
′
j is shown in Fig. 10. |rj−1〉 and |rj〉 are the redun-

dant states within the computations of |S(kj−1)〉 and |S(kj)〉, respectively. Simi-
larly, K0’s corresponding circuit K

′
0 needs 4 Sboxes. It is worthy to note that the

Sbox is actually input-invariant, which is easy to achieve based on our analysis
in Subsect. 6.1.

Fig. 10. K
′
j with Sbox and Sbox†. The dashed line represents the ancilla qubits of

qAND-based Sbox.

6.3 Encryption Circuits of AES-128

In this subsection we give detailed encryption circuits of AES-128, which can
be constructed with the iterative circuits Fj , B,Kj ,K

′
j defined by us. Fj runs

in parallel with Bj , where Kj add specific 32-qubit registers to the message
registers by CNOT gates. See Fig. 11 for the heiararchy of our encryption circuit
of AES-128.

Fig. 11. Our encryption circuit of AES-128. The arrows indicate the AddRoundKey
process at the beginning or end of Kj .

Denote our circuit under Scp as Ccp, and the circuit under Sp and Si as
Cp and Ci, respectively. We then compare the cost of our Ccp with Cp, Ci in
both Toffoli-based and qAND-based AES S-box scenarios. For different circuits,
the number of qubits required for the key registers and message registers, parallel

Quantum Circuits of AES 385

C1, C2 circuits6 and layers of AES S-box are shown in Table 9. One can see that
our circuit Ccp do not need C2 circuits.

Table 9. Costs of encryption circuits of AES-128 for different structures

Circuits Cp Ci Ccp with Kj Ccp with K
′
j

Qubits of key registers 128 128 192 160

Qubits of message registers 128 × 11 128 × 2 128 × 4 128 × 4

C1 circuits in parallel 16 16 40 36

C2 circuits in parallel 4 2 0 0

Layers of AES S-box 10 20 10 10

The cost of different structures can be computed when the number of ancilla
qubits and the Toffoli/T -depth of AES S-box are determined. For simplicity of
comparison, assume that both C1 and C2 circuits require m ancilla qubits. In case
of using Toffoli-based AES S-box, our circuit needs fewer ancilla qubits than Cp

when m < 42, and has lower TofD-W cost than Ci when m < 16. So our circuit
will have lower TofD-W -cost with state-of-art low-width AES S-box. In case of
using qAND-based Sbox, our circuit needs fewer ancilla qubits than Cp when
m < 54, and has lower TD-W cost than Ci for all m > 0. In conclusion, among
the structures which take the round function as a unit, our compressed pipeline
structure can provide different encryption circuits with better TofD/TD-W
trade-offs when the width of AES S-box is small. An encryption circuit using
[36]’s low-width S-Box with more balanced TofD and W is given in Table 107.

Since a Grover oracle is composed of an encryption circuit, its dagger and a
small comparison process, the choice of parameters to make the TD-W cost of
Grover search lower is basically consistent with the above analysis.

6.4 AES Encryption Oracle with Lower T -Depth

In this subsection we synthesize Encryption oracles of AES using the encryption
part of our encryption circuit Ccp.

As introduced in Subsect. 5.3, previous researchers synthesized AES-128
Encryption oracles which cannot break the limit of 2 × 10 layers of AES S-box.
Since the roundkeys can be precomputed in the Encryption oracle, the redun-
dant states of our circuit Ccp only include |c9〉 |S(c9)〉, which can be cleaned
with only one layer of AES S-box. The clear function C shown in Fig. 12 takes
6 Since a C3 circuit can be constructed by a C1 circuit with a few more CNOT gates

using the method in [22], we regard them as the same type of C1 circuits.
7 So far the circuit under the improved compressed pipeline structure with our

improvement of the input-invariant Sbox has the lowest TofD-W cost, since Sbox†

in the round function oracle is delayed to the next round and the technique of com-
bined Sbox and Sbox† can save many qubits.

386 H. Shi and X. Feng

|c9〉 |S(c9)〉 |c〉 |0〉 as input and outputs |0〉 |0〉 |c〉 |0〉. Therefore, the AES-128
Encryption oracle can be constructed with (10 + 1) layers of AES S-box.

Fig. 12. The clear function C.

Using the qAND-based C1 circuits and C3 circuits with T -depth 3, we con-
struct an AES-128 Encryption oracle with T -depth 33, which breaks the previous
record of T -depth 60 in [22]. In the same way, an AES-192 (AES-256, respec-
tively) Encryption oracle can be synthesized with T -depth 39 (45, respectively).

Since in AES-like Hashing the roundkeys are actually constants, our circuit
can also be used to construct quantum oracles of AES-like Hashing with lower
T -depth.

6.5 Key Schedule of the Shallowed Pipeline Structure with Lower
Width

In this subsection we give an encryption circuit with the lowest TofD-W cost
to date under the shallowed pipeline structure. This encryption circuit uses an
improved key schedule with our design of input-invariant Sbox in Subsect. 6.1.

Jang et al. proposed the shallowed pipeline structure which delays the clean-
ing of redundant states by SubS† to the next round to reduce the full depth [23].
Then, Liu et al. improved the structure by sharing the ancilla qubits in Sbox
and SubS† [38] to save qubits. They both adopted the straight line structure
for the key schedule, where |kj−1〉 will be updated by |kj〉 in the j-th round.
As introduced in Subsect. 6.1, the Sbox given in [22] with unoptimized width
is input-invariant, but the Sbox given in [38] with optimized width is no longer
input-invariant, which leads to the lose of information in the input register.
Since Sbox and SubS† need |k3

j 〉 and |k3
j−1〉 for each j, respectively, Jang et al.

allocated 32 additional qubits for storing |k3
j−1〉 when using the input-invariant

Sbox. Since the Sbox used by Liu et al. has smaller width but is no longer input-
invariant, 10 × 32 qubits are allocated for storing all |k3

j−1〉 with 1 ≤ j ≤ 10. We
show that the extra allocation of qubits for storing keywords is not necessary.

On the one hand, we have succeeded to make a low Toffoli-depth Sbox input-
invariant with a few more CNOT gates in Subsect. 6.1. On the other hand,
by the dependence of consecutive roundkeys in Eq. 4 used in Kj ’s, we have
k3

j−1 = k2
j ⊕k3

j . Therefore, unchanged |k3
j 〉 and the feasibility of computing |k3

j−1〉

Quantum Circuits of AES 387

Fig. 13. K
′′
j for the shallowed pipeline structure. SubSi represents the input register

of SubS, and SubSr represents the register that will store the redundant state.

with |k2
j 〉 , |k3

j 〉 means that the allocation of extra qubits for the key schedule in
[23,38] is unnecessary. Our K ′′

j ’s for the shallowed pipeline structure which are
similar to Kj ’s only need 128 qubits for the key registers and work as follows:

K ′′
0 : |k0

0〉 |k1
0〉 |k2

0〉 |k3
0〉 |0〉 �→ |k0

1〉 |k1
1〉 |k2

1〉 |k3
1〉 |r0, 0〉 .

K ′′
j : |k0

j 〉 |k1
j 〉 |k2

j 〉 |k3
j 〉 |rj−1, 0〉 �→ |k0

j+1〉 |k1
j+1〉 |k2

j+1〉 |k3
j+1〉 |rj , 0〉 .

(7)

Using our K ′′
j and our input-invariant Sbox, we achieve an encryption circuit

of AES-128 under the shallowed pipeline structure with the lowest TofD-W cost
130720 to date8. A comparison with previous results is shown in Table 10.

7 Conclusion

In this work, quantum circuits of AES are studied and optimized. We first pro-
pose an improved greedy algorithm based on de Brugière et al.’s greedy algo-
rithm. When applied to many MDS matrices and matrices used in block ciphers,
our improved greedy algorithm gives the best results with the lowest depth for
all of them. For example, our improved method finds an in-place CNOT circuit
of AES MixColumns with depth 10, which breaks the recent record of depth
16 and helps to reduce the full depth of AES. To further optimize quantum
circuits of AES, we propose a new compressed pipeline structure for iterative
building blocks whose round function can be taken as a unit. The Encryption
oracle under the compressed pipeline structure will have the lowest round depth
to date, and the encryption circuit under our structure will have better depth-
width trade-off when the number of ancilla qubits of a round function is small
8 We contacted the author of [23] and learned that their not-yet-public circuit of

Sbox with 68 ancilla qubits makes the combined Sbox and SubS† require 93 ancilla
qubits. Our circuit uses the input-invariant version of Sbox and has a maximum
width of 3268 which is internally optimized via ProjectQ [56].

388 H. Shi and X. Feng

Table 10. Comparison of encryption circuit metrics from various sources

Source #CNOT #X #Toffoli TofD W TofD-W cost

[20] 166,548 1,456 151,552 12,672 984 12,469,248

[3] 192,832 1,370 150,528 – 976 –

[35] 53,360 1,072 16,688 12,168 264 3,212,352

[30] 107,960 1,570 16,940 1,880 864 1,624,320

[63] 128,517 4,528 19,788 2,016 512 1,032,192

[22] (p = 9) 126,016 2,528 17,888 1,558 374 582,692

[35] 53,496 1,072 16,664 1,472 328 482,816

[22] (p = 18) 126,016 2,528 17,888 820 492 403,440

[23] 81,312 800 12,240 40 6,368 254,720

[36] (m = 16) 77,984 2,224 19,608 476 474 225,624

This paperc 96,364 2,172 21,660 220 944 207,680

[38] (out-of-place) 75,024 800 12,920 40 4,823 192,920

[38] (in-place) 65,736 800 12,920 40 3,667 146,680

[23] 63,868 816 12,380 40 3,428 137,120

This papera 67,150 800 12,920 40 3,368 134,720

This paperb 64,750 800 12,920 40 3,268 130,720
a Using our improved shallowed pipeline structure and the input-
invariant version of combined Sbox and Sbox† in [38].
b Using our improved shallowed pipeline structure and the input-
invariant version of combined Sbox and Sbox† with fewer qubits in
[23].
c Using our compressed pipeline structure and the C1 circuit in [36]
with TofD 22 and 6 ancilla qubits.

enough. Detailed encryption circuits of AES under the guidance of our structure
are given and compared with other circuits. Then an AES-128 Encryption ora-
cle with T -depth 33 is synthesized. Finally, the shallowed pipeline structure is
improved in two aspects of the key schedule and the Sbox, which leads to an
encryption circuit with the lowest TofD-W cost. Further optimization of the
Sbox is left as a future work. Our methods in this paper can be used to optimize
quantum circuits of other iterative building blocks.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the quality of the paper. This
research was supported by National Key Research and Development Project under
Grant No. 2018YFA0704705 and CAS Project for Young Scientists in Basic Research
(Grant No. YSBR-035).

Quantum Circuits of AES 389

A The Depth 10 Implementation of AES MixColumns

Table 11. The implementation of AES MixColumns with quantum depth 10. (i, j)
stands for the CNOT gate adding the i-th qubit to the j-th qubit. The outputs
|y0〉 , |y1〉 , . . . , |y31〉 are represented by 0, 17, 18, 27, 28, 21, 22, 15, 16, 25, 26, 3, 20, 29,
30, 7, 24, 1, 10, 19, 12, 5, 6, 31, 8, 9, 2, 11, 4, 13, 14, 23, respectively.

Operation Operation Operation Operation Operation Operation

Depth 1 (16, 0) (22, 23) (3, 23) (1, 18) (13, 21)

(12, 28) (24, 8) Depth 4 (8, 24) (9, 26) (12, 20)

(20, 4) (26, 18) (20, 27) (17, 1) (14, 23) (24, 9)

(19, 3) (15, 23) (22, 31) (31, 19) (31, 8) (19, 27)

(27, 11) (2, 10) (16, 17) (22, 30) (29, 13) (8, 17)

(21, 5) (29, 5) (10, 18) (7, 4) (28, 12) (26, 18)

(13, 29) (3, 11) (4, 21) (2, 12) (11, 4) Depth 10

(6, 22) (25, 17) (25, 9) (25, 18) (6, 15) (21, 5)

(30, 14) (1, 9) (7, 0) (5, 21) (20, 27) (13, 29)

(23, 31) (22, 14) (29, 6) Depth 7 (16, 25) (30, 14)

(15, 7) Depth 3 (2, 26) (23, 24) (0, 24) (6, 22)

(18, 2) (17, 26) (11, 19) (7, 18) (10, 3) (15, 7)

(26, 10) (18, 19) (3, 23) (1, 2) Depth 9 (23, 31)

(24, 1) (20, 13) (8, 24) (16, 9) (31, 7) (27, 3)

(0, 8) (31, 12) Depth 5 (22, 19) (29, 5) (20, 4)

(9, 25) (11, 3) (18, 26) (31, 20) (2, 10) (19, 11)

(16, 17) (8, 9) (27, 12) (10, 27) (22, 14) (12, 28)

Depth 2 (21, 30) (17, 9) (5, 13) (15, 23) (9, 25)

(31, 7) (28, 4) (7, 3) (28, 29) (4, 28) (26, 2)

(19, 27) (2, 27) (31, 15) (25, 26) (3, 11) (18, 10)

(12, 20) (7, 25) (22, 8) Depth 8 (25, 1) (24, 16)

(13, 21) (14, 6) (23, 20) (5, 22) (30, 6) (8, 0)

(4, 28) (29, 15) (24, 16) (7, 17) (0, 16) (17, 1)

(30, 6) (24, 16) Depth 6

B The Key Schedules and Cost Analysis of Our
Compressed Pipeline Structure for AES-192
and AES-256

The key schedule of AES is based on 32-bit words. Denote the master key by
W0,W1, . . . ,Ws−1, where s = 4, 6, 8 for AES-128, AES-192 and AES-256, respec-

390 H. Shi and X. Feng

Fig. 14. The key schedule of our compressed pipeline structure for AES-192. Si and
So stands for the input and output registers of 4 S-boxes, and Cj stands for Constj .

tively. Except the given words (i.e., the words in the master key), 44, 52, 60 words
are required by AES-128, AES-192 and AES-256, respectively. For all AES-128,
AES-192 and AES-256, ki

j equals W4j+i and is the i-th 32-bit word of the j-th
roundkey.

For AES-128, the word Wi can be calculated by the following equation:

Wi =

{
Wi−4 ⊕ SubWord(RotWord(Wi−1)) ⊕ Const(i/4), if i ≡ 0 mod 4,

Wi−4 ⊕ Wi−1, otherwise,

where i = 4, 5, ..., 43.
For AES-192, the word Wi can be calculated by the following equation:

Wi =

{
Wi−6 ⊕ SubWord(RotWord(Wi−1)) ⊕ Const(i/4), if i ≡ 0 mod 6,

Wi−6 ⊕ Wi−1, otherwise,

where i = 4, 5, ..., 51.
For AES-256, the word Wi can be calculated by the following equation:

Wi =

⎧
⎪⎨

⎪⎩

Wi−8 ⊕ SubWord(RotWord(Wi−1)) ⊕ Const(i/8), if i ≡ 0 mod 8,

Wi−8 ⊕ SubWord(Wi−1) if i ≡ 4 mod 8,

Wi−8 ⊕ Wi−1, otherwise,

where i = 4, 5, ..., 59.
Fewer additional key registers are needed for AES-192’s and AES-256’s key

schedules compared to AES-128’s. For AES-192’s key schedule, only 1 additional
32-bit key register is needed. The circuits of the first 5 rounds are shown below

Quantum Circuits of AES 391

Fig. 15. The key schedule of our compressed pipeline structure for AES-256. Si and
So stands for the input and output registers of 4 S-boxes, and Cj stands for Constj .

in Fig. 14, and the following rounds are designed similarly. In each round, there
is one layer of 4 parallel S-boxes. Note that the 8 key registers needed after Ki

are W4i,W4i+1,W4i+2, . . . ,W4i+7. W4i+2, . . . ,W4i+7 are computed in the circuit,
and for W4i,W4i+1 we have:

– W4i+1 = W4i+6 ⊕ W4i+7;
– W4i = W4i+5 ⊕ W4i+6, if 4i mod 6 �= 0;
– W4i is stored in the first key register and cleaned in the next round, if 4i mod

6 = 0.

One can see that the additional key register is necessary due to the case of 4i
mod 6 = 0, if only one layer of S-boxes is allowed in each round.

For AES-256’s key schedule, no additional 32-bit key registers are needed.
The circuits of K1,K2 are shown below in Fig. 15, and the following rounds are
designed similarly. Note that the circuit of K0 is an identity. In each round, there
is one layer of 4 parallel S-boxes. After Ki the 8 key registers store two consec-
utive roundkeys exactly.

The resource costs of different structures for encryption circuits of AES-192
and AES-256 are given in Table 12 and Table 13, respectively. The bound m for
better trade-offs of our AES-192 and AES-256 are more relaxed than AES-128
since the extra costs of key schedules are smaller. For AES-192, our circuit needs
fewer ancilla qubits than Cp when m < 70, and has lower TofD-W cost than
Ci for all m; For AES-256, our circuit needs fewer ancilla qubits than Cp when
m < 88, and has lower TofD-W cost than Ci for all m.

392 H. Shi and X. Feng

Table 12. Costs of encryption circuits of AES-192 for different structures

Circuits Cp Ci our Ccp

Qubits of key registers 192 192 224

Qubits of message registers 128 × 13 128 × 2 128 × 4

C1 circuits in parallel 16 16 32

C2 circuits in parallel 4 2 4

Layers of AES S-box 12 24 12

Table 13. Costs of encryption circuits of AES-256 for different structures

Circuits Cp Ci our Ccp

Qubits of key registers 256 256 256

Qubits of message registers 128 × 15 128 × 2 128 × 4

C1 circuits in parallel 16 16 32

C2 circuits in parallel 4 2 4

Layers of AES S-box 14 28 14

References

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical
Review A 70(5), 052328 (2004)

2. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.:
Block ciphers–focus on the linear layer (feat. pride). In: Advances in Cryptology–
CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I 34. pp. 57–76. Springer (2014)

3. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum information processing 17, 1–30 (2018)

4. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of clif-
ford+ T circuits via matroid partitioning. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 33(10), 1476–1489 (2014)

5. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32(6), 818–830 (2013)

6. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Transactions
on Symmetric Cryptology pp. 4–44 (2017)

7. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In: Advances in Cryptology–
ASIACRYPT 2015: 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29–
December 3, 2015, Proceedings, Part II 21. pp. 411–436. Springer (2015)

8. Banik, S., Funabiki, Y., Isobe, T.: Further results on efficient implementations of
block cipher linear layers. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 104(1), 213–225 (2021)

9. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new
cryptographic hash function. Designs, codes and cryptography 56, 141–162 (2010)

Quantum Circuits of AES 393

10. Barreto, P.S.: The Anubis block cipher. NESSIE (2000)
11. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,

Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Advances in Cryptology–CRYPTO 2016: 36th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II 36. pp. 123–153. Springer (2016)

12. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., et al.: Prince–a low-latency
block cipher for pervasive computing applications. In: Advances in Cryptology–
ASIACRYPT 2012: 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Pro-
ceedings 18. pp. 208–225. Springer (2012)

13. de Brugière, T.G., Baboulin, M., Valiron, B., Martiel, S., Allouche, C.: Gaussian
elimination versus greedy methods for the synthesis of linear reversible circuits.
ACM Transactions on Quantum Computing 2(3), 1–26 (2021)

14. Christof, B., Thorsten, K., Gregor, L.: Lightweight multiplication in gf (2n) with
applications to mds matrices; crypto 2016. lncs 9814 (2016)

15. Cid, C., Murphy, S., Robshaw, M.J.: Small scale variants of the AES. In: FSE.
vol. 3557, pp. 145–162. Springer (2005)

16. Daemen, J., Rijmen, V.: The design of Rijndael, vol. 2. Springer (2002)
17. Datta, K., Shrivastav, V., Sengupta, I., Rahaman, H.: Reversible logic implemen-

tation of AES algorithm. In: 2013 8th International Conference on Design & Tech-
nology of Integrated Systems in Nanoscale Era (DTIS). pp. 140–144. IEEE (2013)

18. De Brugiere, T.G., Baboulin, M., Valiron, B., Martiel, S., Allouche, C.: Reducing
the depth of linear reversible quantum circuits. IEEE Transactions on Quantum
Engineering 2, 1–22 (2021)

19. Fowler, A.G.: Time-optimal quantum computation. arXiv preprint arXiv:1210.4626
(2012)

20. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s algo-
rithm to AES: quantum resource estimates. In: International Workshop on Post-
Quantum Cryptography. pp. 29–43. Springer (2016)

21. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

22. Huang, Z., Sun, S.: Synthesizing quantum circuits of AES with lower T-depth
and less qubits. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 614–644. Springer (2022)

23. Jang, K., Baksi, A., Kim, H., Song, G., Seo, H., Chattopadhyay, A.: Quantum
analysis of AES. Cryptology ePrint Archive (2022)

24. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover ora-
cles for quantum key search on AES and LowMC. In: Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Pro-
ceedings, Part II 30. pp. 280–310. Springer (2020)

25. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1. 3. CAESAR Round 2 (2015)
26. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of

lightweight building blocks. IACR Transactions on Symmetric Cryptology 2017(4),
130–168 (2017)

27. Jiang, J., Sun, X., Teng, S.H., Wu, B., Wu, K., Zhang, J.: Optimal space-depth
trade-off of CNOT circuits in quantum logic synthesis. In: Proceedings of the

http://arxiv.org/abs/1210.4626

394 H. Shi and X. Feng

Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 213–229.
SIAM (2020)

28. Junod, P., Vaudenay, S.: FOX: a new family of block ciphers. In: Selected Areas in
Cryptography: 11th International Workshop, SAC 2004, Waterloo, Canada, August
9-10, 2004, Revised Selected Papers 11. pp. 114–129. Springer (2005)

29. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Advances in Cryptology–
CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part II 36. pp. 207–237. Springer
(2016)

30. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
the advanced encryption standard as a quantum circuit. IEEE Transactions on
Quantum Engineering 1, 1–12 (2020)

31. Leander, G., May, A.: Grover meets simon–quantumly attacking the FX-
construction. In: Advances in Cryptology–ASIACRYPT 2017: 23rd International
Conference on the Theory and Applications of Cryptology and Information Secu-
rity, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 23. pp. 161–178.
Springer (2017)

32. Li, S., Sun, S., Li, C., Wei, Z., Hu, L.: Constructing low-latency involutory MDS
matrices with lightweight circuits. IACR Transactions on Symmetric Cryptology
pp. 84–117 (2019)

33. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS
matrices. In: Fast Software Encryption: 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers. pp. 121–139.
Springer (2016)

34. Li, Z., Cai, B., Sun, H., Liu, H., Wan, L., Qin, S., Wen, Q., Gao, F.: Novel quantum
circuit implementation of advanced encryption standard with low costs. Science
China Physics, Mechanics & Astronomy 65(9), 290311 (2022)

35. Li, Z., Gao, F., Qin, S., Wen, Q.: New record in the number of qubits for a quantum
implementation of AES. Frontiers in Physics 11, 1171753 (2023)

36. Lin, D., Xiang, Z., Xu, R., Zhang, S., Zeng, X.: Optimized quantum implementation
of aes. Quantum Information Processing 22(9), 352 (2023)

37. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Fast Soft-
ware Encryption: 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers. pp. 101–120. Springer (2016)

38. Liu, Q., Preneel, B., Zhao, Z., Wang, M.: Improved quantum circuits for AES:
Reducing the depth and the number of qubits. In: International Conference on
the Theory and Application of Cryptology and Information Security. pp. 67–98.
Springer (2023)

39. Liu, Q., Wang, W., Fan, Y., Wu, L., Sun, L., Wang, M.: Towards low-latency
implementation of linear layers. IACR Transactions on Symmetric Cryptology pp.
158–182 (2022)

40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

41. Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible cir-
cuits. Quantum Inf. Comput. 8(3), 282–294 (2008)

42. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018)

43. Q#, M.: Quantum development https://devblogs.microsoft.com/qsharp/
44. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits-a survey.

ACM Computing Surveys (CSUR) 45(2), 1–34 (2013)

https://devblogs.microsoft.com/qsharp/

Quantum Circuits of AES 395

45. Sarkar, S., Syed, H.: Lightweight diffusion layer: Importance of Toeplitz Matrices.
IACR Transactions on Symmetric Cryptology 2016(1), 95–113 (2016)

46. Sarkar, S., Syed, H.: Analysis of Toeplitz MDS Matrices. In: Australasian Confer-
ence on Information Security and Privacy. pp. 3–18. Springer (2017)

47. Schaeffer, B., Perkowski, M.: A cost minimization approach to synthesis of linear
reversible circuits. arXiv preprint arXiv:1407.0070 (2014)

48. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish:
A 128-bit block cipher. NIST AES Proposal 15(1), 23–91 (1998)

49. Selinger, P.: Quantum circuits of T-depth one. Physical Review A 87(4), 042302
(2013)

50. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. In:
Proceedings of the 2005 Asia and South Pacific Design Automation Conference.
pp. 272–275 (2005)

51. Shi, H., Feng, X., Xu, S.: A framework with improved heuristics to optimize low-
latency implementations of linear layers. IACR Transactions on Symmetric Cryp-
tology 2023(4), 489–510 (2023)

52. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block
cipher CLEFIA. In: Fast Software Encryption: 14th International Workshop, FSE
2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers 14.
pp. 181–195. Springer (2007)

53. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. IEEE (1994)

54. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Fast Software Encryption: 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers 22. pp. 471–493. Springer (2015)

55. Simon, D.R.: On the power of quantum computation. SIAM journal on computing
26(5), 1474–1483 (1997)

56. Steiger, D.S., Häner, T., Troyer, M.: Projectq: an open source software framework
for quantum computing. Quantum 2, 49 (2018)

57. Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit
depth for quantum state preparation and general unitary synthesis. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (2023)

58. Wu, B., He, X., Yang, S., Shou, L., Tian, G., Zhang, J., Sun, X.: Optimization
of CNOT circuits under topological constraints. arXiv preprint arXiv:1910.14478
(2019)

59. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of
linear layers. IACR Transactions on Symmetric Cryptology pp. 120–145 (2020)

60. Zhang, A., Feng, X., Xu, S.: Size optimization of CNOT circuits on NISQ. arXiv
preprint arXiv:2210.05184 (2022)

61. Zhu, C., Huang, Z.: Optimizing the depth of quantum implementations of linear
layers. In: International Conference on Information Security and Cryptology. pp.
129–147. Springer (2022)

62. Zou, J., Li, L., Wei, Z., Luo, Y., Liu, Q., Wu, W.: New quantum circuit implemen-
tations of SM4 and SM3. Quantum Information Processing 21(5), 181 (2022)

63. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
AES with fewer qubits. In: Advances in Cryptology–ASIACRYPT 2020: 26th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part II 26. pp.
697–726. Springer (2020)

http://arxiv.org/abs/1407.0070
http://arxiv.org/abs/1910.14478
http://arxiv.org/abs/2210.05184

Quantum Algorithms for Fast Correlation
Attacks on LFSR-Based Stream Ciphers

Akinori Hosoyamada1,2(B)

1 NTT Social Informatics Laboratories, Tokyo, Japan
akinori.hosoyamada@ntt.com

2 NTT Research Center for Theoretical Quantum Information, Atsugi, Japan

Abstract. This paper presents quantum algorithms for fast correla-
tion attacks, one of the most powerful techniques for cryptanalysis on
LFSR-based stream ciphers in the classical setting. Typical fast correla-
tion attacks recover a value related to the initial state of the underlying
LFSR by solving a decoding problem on a binary linear code with the
Fast Walsh-Hadamard Transform (FWHT). Applying the FWHT on a
function in the classical setting is mathematically equivalent to apply-
ing the Hadamard transform on the corresponding state in quantum
computation. While the classical FWHT on a function with �-bit inputs
requires O(�2�) operations, the Hadamard transform on �-qubit states
requires only a parallel application of O(�) basic gates. This difference
leads to the exponential speed-up by some quantum algorithms, includ-
ing Simon’s period finding algorithm.

Given these facts, the question naturally arises of whether a quantum
speedup can also be achieved for fast correlations by replacing the clas-
sical FWHT with the quantum Hadamard transform. We show quantum
algorithms achieving speed-up in such a way, introducing a new attack
model in the Q2 setting. The new model endows adversaries with a quite
strong power, but we demonstrate its feasibility by showing that certain
members of the ChaCha and Salsa20 families will likely be secure in the
new model. Our attack exploits the link between LFSRs’ state update
and multiplication in a fine field to apply Shor’s algorithm for the dis-
crete logarithm problem. We apply our attacks on SNOW 2.0, SNOW
3G, and Sosemanuk, observing a large speed-up from classical attacks.

Keywords: Symmetric-key cryptography · Quantum cryptanalysis ·
Fast correlation attacks · LFSR-based stream ciphers

1 Introduction

While research and standardization of post-quantum public-key cryptosystems
have been steadily progressing in the past decade [62], research on quantum
security of symmetric-key cryptography has also been advancing. Starting with
the early results of Grover’s algorithm [39] for speeding up the exhaustive key
search and the BHT algorithm [17] for speeding up collision search, a wide
c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, pp. 396–430, 2025.
https://doi.org/10.1007/978-981-96-0944-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_13&domain=pdf
https://doi.org/10.1007/978-981-96-0944-4_13

Quantum FCA on LFSR-Based Stream Ciphers 397

variety of attack techniques have been proposed, including those breaking some
schemes in polynomial time with Simon’s algorithm pioneered by Kuwakado and
Morii [50,51], Kaplan et al. [48], and Santoli and Scaffner [67]. A more recent
research [14] has revealed that, even in the most conservative attack model, sim-
ply doubling the size of a secret key does not necessarily ensure the same level
of security as in the classical setting. Another line of research started in [25,44]
has shown more rounds of some hash functions are broken in the quantum set-
ting than in the classical setting, which underscores the importance of studying
quantum attacks on symmetric key cryptography.

Whereas some quantum attacks are based on ideas completely different from
classical attacks, others attempt to speed up classical attacks through quantum
computation (e.g., [13,49]). A large speed-up is sometimes obtained, while in
other cases, an attack classically faster than the generic attack turns out to be
slower than the quantum generic attack. To better understand security in the
quantum setting, it is important to investigate how the efficiency and the validity
of each classical attack change.

There are two attack models in the quantum setting, which are called Q1
and Q2 [49]. Q1 assumes that an adversary has a quantum computer, but oracles
remain unchanged from the classical setting. In contrast, Q2 assumes both are
quantum and that an oracle allows quantum superposition queries. The assump-
tion of Q2 is strong, but Q2 attacks are still quite worth studying. If the key
length of a target scheme is sufficiently long, Q2 attacks can be converted into
Q1 by emulating the quantum oracle after getting all the outputs of the classi-
cal oracle (full codebook). Quite powerful Q1 attacks are sometimes developed
from Q2 attacks [11,14].

Quantum Fourier transforms (QFTs) play a crucial role in achieving exponen-
tial speedups in specific quantum algorithms, such as Shor’s [72] and Simon’s [74].
There are various types of QFTs, depending on the base group. For example,
Shor’s algorithm utilizes QFT over the cyclic group of a large order. Meanwhile,
Simon’s algorithm uses a QFT over (Z/2Z)⊕n for some n, which is referred to as
the Hadamard transform. This transform is mathematically equivalent to the
Walsh-Hadamard Transform (WHT) in classical computation.

The WHT has strong relationships with several classical attack techniques,
particularly linear cryptanalysis [55]. Linear correlations of block ciphers can
be obtained by applying the WHT, and the Fast-Walsh Hadamard Transform
(FWHT) is commonly employed to accelerate key recovery [23]. It naturally
raises the question of whether these traditional methods can be combined with
the Hadamard transform to achieve quantum speedups. In fact, a recent work
showed a framework to combine the quantum Hadamard transform and the
classical linear key recovery attack with FHWT [69].

An important class of attacks closely linked with linear cryptanalysis is (fast)
correlation attacks on LFSR-based stream ciphers. Correlation attacks, initially
proposed by Siegenthaler [73], exploit linear correlations between keystreams
output by a target cipher and the underlying LFSR’s output sequence. An
enhanced version, today known as the fast correlation attack, was later given by
Meier and Staffelbach [57]. Having been continually improved ever since [18,20–
22,37,46,47,58,59,75,81,83,84], the fast correlation attack is currently the most

398 A. Hosoyamada

effective method for attacking various LFSR-based ciphers. For major ciphers
such as SNOW 3G [31], research is being done to see how efficient the fast cor-
relation attack can be, even if it is slower than the generic attack [35–37,65,80].

Roughly speaking, fast correlation attacks aim to recover the initial state
of the underlying LFSR (or a related value) by solving the decoding problem
of a linear code. Typical attacks perform the decoding quickly by applying the
FWHT [22]. Given the aforementioned result on linear cryptanalysis in the quan-
tum setting, the question naturally arises whether an interesting quantum attack
can also be obtained for fast correlation attacks by replacing the classical FWHT
with the Hadamard transform.

Based on the above motivation, this paper studies the quantum speedup of
fast correlation attacks on LFSR-based stream ciphers. We focus on the setting
where the decoding problem is defined over a binary code and a one-pass decod-
ing algorithm with FWHT is applied, as this has been widely applied to various
ciphers.

Technical Overview and Our Contributions. Before outlining our contri-
butions, we briefly overview the basics of classical attacks.

Classical Fast Correlation Attacks on LFSR-Based Stream Ciphers. Typical
LFSR-based stream ciphers are composed of an initialization phase and a
keystream generation phase. The initialization phase takes a secret key K and
an IV as input, non-linearly mixing them and loading the resulting values into
internal registers. Following that, the keystream generation phase computes
keystream bits, updating the internal states at each clock. Encryption and
decryption are performed by XORing the keystream bits to a message or a
ciphertext, as done in the counter mode. By the initial state, we denote the
state right after the initialization phase.

As mentioned earlier, fast correlation attacks recover a value related to the
LFSR’s initial state by solving a decoding problem. In the simplest case, when
there is a linear approximation with correlation c between the key stream output
by the cipher and the output sequence of the underlying binary LFSR of length
�, a binary linear code is defined such that a message of � bits (the initial state of
the LFSR) is encoded to a codeword of length N � �/c2. The basic idea is that
if we regard the keystream as the encoded message with some noise added and
decode it, correcting the errors, then we obtain the original message, namely the
initial state of the LFSR.

Decoding is performed in the following manner. First, a certain function Ψ(x)
with �-bit inputs (determined according to the binary code and keystream bits)
is computed for all x. Second, the WHT of the function Ψ , denoted by W(Ψ),
is computed using FWHT with O(�2�) operations. For each decoded message
candidate x, the larger the value ((W)(Ψ))(x)2 is, the more likely it is that x is
the correct result. In particular, the decoding result is identified to be the x that
gives the maximum value of ((W)(Ψ))(x)2. The computational complexity is
O(N + �2�) in total.

Quantum FCA on LFSR-Based Stream Ciphers 399

The decoding complexity �2� too large in most cases, making the attack
slower than the exhaustive key search. To address the issue, a preprocessing pro-
cedure is usually performed in advance to reduce the dimension of the code (i.e.,
the parameter �), thereby reducing the decoding complexity. However, the pre-
processing procedure is usually heavy, and reducing the dimension increases the
data complexity N . Hence, the preprocessing procedure and the number of
dimensions to reduce are carefully adjusted to balance the computational com-
plexity of preprocessing, the amount of data N , and the decoding complexity.

Next, we explain our results in the quantum setting.

Attempt in Q1. First, we try to obtain a quantum speed-up in the Q1 model by
naturally extending classical attacks.

At the beginning of the attack, we obtain N bits of a keystream segment
required to mount the attack (for some N). Next, we prepare a quantum state
|ψ〉 corresponding to the function Ψ(x). We show that the state |ψ〉 can be pre-
pared with a complexity Õ(N) in typical cases. Then, we apply the Hadamard
transform to |ψ〉. The resulting quantum state H⊗�|ψ〉 is a quantum superpo-
sition of the message candidates |x〉, among which the one with the largest
quantum amplitude is the correct message. To find the correct x, we apply
the Quantum Amplitude Amplification (QAA) technique. The Boolean func-
tion required to apply QAA, denoted by f , can be chosen depending on the
structure of the attack target. If the decoding problem is defined from a linear
approximation with correlation c, the bit length of LFSR is �, and the compu-
tational complexity to compute f is Tf , then the attack complexity becomes
O(N + 2�/2Tf/

√
Nc2).

This is a quite natural extension of the classical attacks. However, we observe
that applying the above algorithm to speed up existing classical attacks does not
yield a quantum attack faster than the Grover search. Rather, we suspect it is
quite hard to mount a fast correlation attack that is faster than the generic
attack in the Q1 setting, or more fairly non-trivial techniques will be required.
So, we focus on Q2 attacks.

Attack in Q2. An important feature of stream ciphers is that they can generate
an exponentially long keystream from a single IV. In the Q2 setting, we first
introduce a new attack model and security notion that reflects this feature well.
Very roughly, the model allows an adversary to query the positions of keystream
bits as well as IVs in quantum superposition. Although this attack model is very
strong, we show that it is feasible in that some stream ciphers, such as some
members of Chacha and Salsa20 families [8,9], are likely to achieve the security
notion.

We then show a quantum decoding algorithm in the Q2 model. The under-
lying idea is the same as in Q1, but we make a non-trivial observation that the
preparation of the quantum state |ψ〉 can be performed very efficiently using
Shor’s algorithm.

Recall that, in the Q1 attack, we first prepared the state |ψ〉 with both data
and time complexity about N , which is exponentially large in usual scenarios. In

400 A. Hosoyamada

the Q2 setting, our strong attack model allows us to reduce the data complexity
(i.e., the number of queries) from O(N) to O(1).

Our key observation is that even the time complexity can be reduced from
O(N) to polynomial time using Shor’s algorithm. In preparing the state |ψ〉, we
need to solve the following problem: Given an arbitrary x, find an index i such
that x equals to the i-th column of the generating matrix G of the code used in
the attack. G is typically determined from the LFSR’s state update matrix and
linear correlation masks. By leveraging the fact that the LFSR’s state update
corresponds to the multiplication of an element generating (F2�)×, we find that
the problem is reduced to a discrete logarithm problem in a typical case and can
be efficiently solved with Shor’s algorithm.

As in the Q1 attack, QAA is applied to the state H⊗�|ψ〉 to amplify the
quantum amplitude of the correct message. For all attack targets, we utilize the
quantum counting algorithm to implement a Boolean function for QAA, similar
to Kaplan et al.’s approach for quantum linear distinguishers [49]. As a result,
the computational complexity of the attack is O(�4/c2) when the attack is based
on a code defined from a linear approximation with absolute correlation c. The
value of c is large enough for some ciphers (around 2−20 in some cases) to achieve
faster attacks than the exhaustive key recovery with Grover’s algorithm.

As applications, we show attacks on the ISO/IEC standard SNOW 2.0 [28,
45], SNOW 3G specified by 3GPP [31], and Sosemanuk in the eSTREAM port-
folio [5,26]. For SNOW 2.0, our attack works with time and query complex-
ity 259.3 and 289.3, respectively. This is the first attack on the 256-bit key
version of SNOW 2.0 faster than the Grover search1. When our technique is
applied to SNOW 3G, the resulting time and query complexity become 2102.9

and 272.9, respectively. This is slower than the Grover search but significantly
faster than classical attacks. (As mentioned earlier, research of attacks on SNOW
3G has actively been continued to determine how efficient fast correlation
attacks can be [35–37,65,80], even though they are slower than the exhaustive
key search.) About Sosemanuk, the time and query complexity of our attack
becomes 2101.11 and 273.15, respectively. This is slower than the quantum guess-
and-determine attack in the Q1 model by Ding et al. [24], but faster than the
Grover search when the key length is long (e.g., 256-bit). See also Table 1.

The quantum state H⊗�|ψ〉 appearing our attacks can be regarded as an
analogy of the correlation state in the quantum linear key recovery attack by
Schrottenloher [69], as the amplitude of each basis state |x〉 in H⊗�|ψ〉 is, in
fact, proportional to the correlation between a binary sequence derived from
keystream and the codeword corresponding to x. Still, the techniques used in
the two attacks are quite different. The linear key recovery attack utilizes the
Hadamard operator to compute some functions’ convolutions, performing (clas-
sical and) manual computation on the Walsh-Hadamard transform of a public
function and exploiting a target cipher’s structure in which a subkey is XORed

1 A previous work [24] showed an attack on SNOW 2.0 running in time about 288, but
it requires exponentially many qubits (as large as 288) and in fact slower than the
generic attack by the parallelized Grover search. More details are given in Remark 5.

Quantum FCA on LFSR-Based Stream Ciphers 401

Table 1. Comparison of attack complexity. The previous works define the time com-
plexity unit as the time to perform arithmetic operations such as modular additions
and finite field multiplications or, more ambiguously, as the time required to run the
targeted cipher once. We regard the time complexity of an attack as the depth of the
quantum circuit implementing it, where the depth is measured in T -gates and oracle
gates.

Target Key Length Attack
Model

Time Data/Query Ref./Note

SNOW 2.0 128/256 Classical
Q2

2162.86

289.3
2159.62

259.3
[37]

Sect. 6

SNOW 3G 128 Classical
Q2

2174.95

2102.9
2170.81

272.9
[35]

Sect. 6

Classical 2134.8 2135 [83]

Sosemanuk 0 ≤ κ ≤ 256 Q2 2101.11 273.15 Sect. 6

Q1 ≈ 288 ≈ 176 [24]

Any κ Q1/Q2 ≈ 2κ/2 ≈ κ Generic attack
(Grover’s algorithm [39])

into a state. On the other hand, such convolution and manual computation of
the Walsh-Hadamard transform do not appear in our attack, and Shor’s algo-
rithm for discrete logarithms is utilized to prepare the state, exploiting the rela-
tionship between LFSRs’ state update and multiplication in a finite field.

Related Works. Independently and concurrently, Einsele and Semira also men-
tioned studies on quantum speed-up of fast correlation attacks [27], but only a
short abstract is publicly available. In particular, concrete attack models or
attack algorithms are not explained.

Paper Organization. Section 2 describes the notation, promises, and well-
known basic results used in later chapters. Section 3 reviews classical fast cor-
relation attacks. Section 4 discusses attacks in Q1. Section 5 introduces a new
attack model and security notion, and Sect. 6 shows attacks in Q2.

2 Preliminaries

Unless otherwise noted, we assume all the vectors are row vectors. For any
m and n, we naturally identify elements in F

m
2n with those in F

mn
2 , and mn-

bit strings. For x and y in F
m
2 , 〈x,y〉F2 denotes their formal inner product.

The linear correlation between two binary sequences x = (x0, . . . , xN−1) and
y = (y0, . . . , yN−1) is defined by

Cor(x,y) :=
#{i : xi = yi} − #{i : xi �= yi}

N
.

402 A. Hosoyamada

We identify Boolean functions f : {0, . . . , N − 1} → F2 with binary sequences
(f(0), . . . , f(N − 1)). The linear correlation between two Boolean functions
Cor(f, g) is naturally defined through this identification. The Walsh-Hadamrd
transform of a function F : Fn

2 → C, denoted by W(F), is the function from
F

n
2 to C defined as2

(W(F)) (z) =
1√
2n

∑

x∈F
n
2

(−1)〈x,z〉F2 F (x).

2.1 Quantum Computation

This paper assumes the readers are familiar with quantum computation (refer
to, e.g., [64] for the basics). We adapt the quantum circuit model as a model
for quantum computation, assuming arbitrary circuits composed of a finite num-
ber of Clifford+T gates, quantum oracle gates (only in the Q2 model), and quan-
tum Random Access Memory (qRAM) gates. Here, the quantum oracle gate of a
function f : Fm

2 → F
n
2 is the (m+n)-qubit gate such that, given a quantum state

of the form
∑

x,y αx,y|x, y〉 as an input, outputs the state
∑

x,y αx,y|x, y ⊕ f(x)〉.
About qRAM, this paper assumes a quantum-accessible classical memory is
available to an adversary. Namely, for an arbitrarily created list of classical data
(x1, . . . , xn), the adversary is given quantum oracle access to the function i 	→ xi.
CNOT gates are assumed to operate on an arbitrary pair of qubits in a circuit.
Quantum error correction is assumed to be perfectly performed with its cost
being ignored. All the measurements are performed in the computational basis.

How to Evaluate Attack Costs. We always measure the depth of quantum circuits
by calculating the depth in T gates, oracle gates, and qRAM gates. We regard
the running time of a quantum circuit as its depth in this measure. When consid-
ering an attack on an LFSR-based stream cipher, we assume that the number of
qubits available for an adversary is in a small polynomial of the underlying
LFSR’s bit length to enable a fair comparison with the generic key-recovery
attack using Grover’s algorithm [39] without parallelization.

Quantum Amplitude Amplification. Let U be a unitary operator acting on
n-qubit quantum states, f : Fn

2 → F2 be a Boolean function, and p be the proba-
bility that an x satisfying f(x) = 1 is obtained when the quantum state U |0n〉 is
measured. The Quantum Amplitude Amplification (QAA) technique [16] ampli-
fies the probability p by making O(p−1/2) quantum queries to f with O(p−1/2)
applications of U and U† as follows.

Proposition 1 (Plain QAA). Let Sf (resp., S0) be the unitary operators that
multiplies the basis state |x〉 by (−1)f(x) (by (−1) iff x = 0n), and define a uni-
tary operator Q(U, f) := −US0U

†Sf . When the quantum state (Q(U, V))i
U |0n〉

2 We adopt the definition with the coefficient 1/
√

2n to make it consistent with the
Hadamard operators in the quantum setting.

Quantum FCA on LFSR-Based Stream Ciphers 403

is measured, an x satisfying f(x) = 1 is obtained with probability sin2 ((2i + 1)
arcsin

(√
p
))

, which is at least max(1 − p, p) when i :=
⌊

π
4 arcsin(

√
p)

⌋
.

QAA with Certainty. If an adversary knows the exact value of p, then the
QAA can be modified in such a way to obtain a good state with certainty, by
modifying U to slightly lower the probability p to make (π/(4 arcsin(

√
p))−(1/2))

be an integer [16]. In this paper, we assume the cost of this modification is
negligible compared to implementing U and U† themselves, and QAA returns
an x satisfying f(x) = 1 by applying U , U†, and Sf at most arcsin(

√
p) ≤ p−1/2

times (if an adversary knows the exact value of p).

QAA Without Knowing p. When applying the plain QAA in Proposition 1,
the success probability does not become large enough not only if i is too small
but also if i is too large. For instance, if i ≈ 2 ·

⌊
π

4 arcsin(
√

p)

⌋
, then the success

probability may be as small as p.
However, it is not necessarily easy to find the exact value of p, when it is

practically too hard to compute the value
⌊

π
4 arcsin(

√
p)

⌋
exactly. Even in such a

case, an x satisfying f(x) = 1 can be found by running the plain QAA multiple
times with random i as follows [15,16].

Algorithm QAAw/oKp.

1. Let α := 1 and λ := 6/5.
2. Choose i from {0, 1, . . . , α − 1} uniformly at random.
3. Run the plain QAA with i iterations and measure the entire state, i.e.,

(Q(U, f))iU |0n〉. Let x be the measurement result.
4. If f(x) = 1, return x as the output. Otherwise, set α := min

{
λ · α,

√
2n

}
and

go to Step 2.

Proposition 2 (QAA without knowing p [15,16]). Suppose p ≤ 3/4. Then,
the algorithm QAAw/oKp returns x satisfying f(x) = 1 with an expected number
of applications of Q(U, f) at most (9/2)p−1/2.

Grover’s algorithm [39] is the special case of QAA when U = H⊗n.

Quantum Counting Algorithm. Let QFTq denote the quantum Fourier
transform over Z/qZ. For any unitary operator W acting on n-qubit states
and any positive integer q that is a power of 2, let Λq(W) be the operator
acting on (log q + n)-qubit states such that Λq(W)|i〉|x〉 = |i〉(W i|x〉). Here,
0 ≤ i ≤ q − 1 and x ∈ F

n
2 . For a unitary operator U and a Boolean function

f : Fn
2 → F2, define the probability p and the operator Q(U, f) as in Proposi-

tion 1. In addition, let Calcn,q be the unitary operator that, given a (classical)
value θ, computes 2n · sin2(πθ/q) and write the result into an additional register.
Now, consider running the following algorithm without measurement.

Algorithm QC. Prepare |0log2 q〉|0n〉 as the initial state. Apply (QFTq ⊗ H⊗n),
Λq(Q(H⊗n, f)), and then (QFT †

q ⊗In) in sequential order. Finally, apply Calcn,q,

404 A. Hosoyamada

taking input from the left log q-bit register and writing the output into an aux-
iliary register.

Proposition 3 ([16]). Let Z := |f−1(1)|. If the above algorithm QC is run and
the auxiliary register is measured, then a value Z̃ satisfying

∣∣∣Z − Z̃
∣∣∣ ≤ 2π

√
Z(2n − Z)/q + (2n · π2)/q2 (1)

is obtained with probability at least 0.8.

The depth to implement QC is typically dominated by that of Λq(Q(H⊗n, f)),
which makes exactly q queries to f . We can show that Λq(Q(H⊗n, f)) can be
implemented on a quantum circuit of depth at most about q · Df by using n
auxiliary qubits, where Df is the depth to implement the quantum oracle of f .
Hence, the depth of QC is also at most about q · Df , and the amount of the
auxiliary qubits needed is at most the number of qubits required to compute
Calqn,q. See Section B of the full version of this paper [42] for more details.

2.2 LFSR Basics

Let Fq be a finite field of order q. The LFSR on Fq of length L with a feedback
polynomial f(x) := cLxL + cL−1x

L−1 + · · · c1x + 1 ∈ Fq[x] generates an infinite
sequence (st)t≥0 in Fq from an initial state s(0) = (s0, . . . , sL−1) ∈ F

L
q as

st+L :=
∑

1≤i≤L

cist+L−i for t ≥ 0,

maintaining the internal state s(t) := (st, . . . , st+L−1) at time t. The state update
can be regarded as a linear map over Fq, and s(t+1) = s(t) · M holds for

M :=

⎛

⎜⎜⎜⎝

0 0 · · · 0 cL

1 0 · · · 0 cL−1

...
. . .

...
...

0 0 · · · 1 c1

⎞

⎟⎟⎟⎠ . (2)

A well-known fact is that the period of LFSR sequences and internal states
becomes the longest (i.e., qL − 1) when f is a primitive polynomial.

Throughout the paper, we only consider LFSRs whose feedback polynomial
f is primitive and assume that q is a power of 2.

The reciprocal polynomial of f is called the characteristic polynomial of the
LFSR, which we denote by f∗(x) (that is, f∗(x) = xLf(1/x)). As we assume
that f is primitive (and thus irreducible), so is f∗. Hence, the quotient ring
F := Fq[x]/(f∗(x)) becomes a field, which is isomorphic to F

L
q as vector spaces

over Fq. Let ξ : FL
q → F be the isomorphism defined by

ξ(a) =
∑

0≤i≤L−1

ai · αi (3)

Quantum FCA on LFSR-Based Stream Ciphers 405

for a = (a0, . . . , aL−1) ∈ F
L
q , where α := x + (f∗(x)) ∈ F is a generator ele-

ment of F over Fq. Since q is assumed to be a power of 2, some straightforward
calculations show

ξ(a · M�) = ξ(a) · α. (4)

Since f∗ is not only irreducible but also primitive, α is a generator of the
multiplicative group F× ∼= Z/(qL − 1)Z, and so β · αi �= β holds for arbitrary
β ∈ F \ {0} and i = 1, . . . , qL − 2. From this fact and Eq. (4),

a · (
M�)i �= a for i = 1, . . . , qL − 2 (5)

follows for a ∈ F
L
q \ {0}.

3 Classical Fast Correlation Attack

This section briefly reviews classical fast correlation attacks related to our results.
We focus on so-called one-pass algorithms working using FWHT [22] that can be
regarded as a decoding procedure for a binary linear code, as it has been most
widely applied. First, we explain the simplest case where LFSR sequences them-
selves are correlated with keystreams in Sect. 3.1. Then, Sect. 3.2 explains how
the attack idea is extended to more general cases. Section 3.3 gives a brief sum-
mary and a note on the amount of necessary data. Throughout the section, we
assume an adversary is given a keystream segment produced from a single pair of
a key and an IV. See, e.g., [2,19,56], for more details on classical fast correlation
attacks.

3.1 Simplest Case

Suppose a stream cipher is built upon a single LFSR of length L over F2 and
we have an N -bit keystream segment z = (z0, z1, . . . , zN−1) ∈ F

N
2 . Our goal is

to recover the initial state s(0) ∈ F
L
2 of the LFSR. Once s(0) is recovered, it is

often easy to determine the entire initial state, and even the master secret key
is recovered in some cases.

In the simplest case, the fast correlation attack models that the keystream
z is obtained by transmitting the LFSR sequence s = (s0, . . . , sN−1) ∈ F

N
2

generated from s(0) through a Binary Symmetric Channel (BSC). Namely, it
regards as if ei := zi ⊕ si were an independent random error bit for each i (see
Fig. 1), expecting that the error bit sequence e = (e0, . . . , eN−1) is highly biased.
Note that e is biased iff the squared linear correlation Cor(s,z)2 is large. For
ease of explanation, we assume ei is biased to 0 and (the expected value of) the
correlation c := ExK,IV [Cor(s,z)] is close to 1.

In this model, the problem of recovering s(0) from z can be regarded as a
decoding problem with respect to a binary linear code. Let G be the binary L×N
matrix of which the i-th column vector is M i−1 · (1, 0, . . . , 0)�. Then s = s(0)G
holds by definition of LFSR. (Multiplication by M corresponds to clocking the
LFSR once, and so multiplying by G generates the sequence s = (s0, . . . , sN−1).)
In addition, G is full-rank if N is sufficiently large. Especially, G can be regarded

406 A. Hosoyamada

Fig. 1. LFSR-based cipher modeled as a BSC.

as a generating matrix of an [N,L] binary linear code C, where encoding a
message vector corresponds to multiplying G from right. The initial state s(0)

corresponds to an original message before the encoding, and the LFSR sequence
s = s(0)G to the codeword of C after the encoding. From this perspective,
recovering s(0) from z = s⊕e is equivalent to correcting errors and recovering the
original message.

Concretely, s(0) is recovered by maximum likelihood decoding, which can be
realized roughly as follows.

1. For each candidate message x ∈ F
L
2 , compute and store the squared linear

correlation Cor(xG,z)2 between the codeword xG ∈ C (⊂ F
N
2) and z.

2. If x = s(0), the value Cor(xG,z)2 = Cor(s,z)2 will be large by assumption.
On the other hand, it will be small for a random x �= s(0). With this in mind,
output x with the largest Cor(xG,z)2 as the decoding result.

For each x, computing Cor(xG,z)2 requires O(N) operations because we have
to check whether (xG)i = zi for i = 0, . . . , N − 1. Hence this procedure requires
O(2L ·N) operations in total. To achieve a high success probability, N ≥ Ω(L/c2)
is necessary due to Shannon’s noisy-channel coding theorem, and some statistical
analysis shows that N = O(L/c2) is indeed sufficient (we will elaborate this later
in Sect. 3.3).

By applying the Fast Walsh-Hadamard Transform (FWHT), the decoding
complexity drops from O(N ·2L) to O(N+L2L). Define a function Ψ : FL

2 → C by

Ψ(w) :=
∑

0≤i≤N−1:
w=the (i+1) -th column of G

(−1)zi . (6)

Compute and store Ψ(w) for all w, which can be done with O(N) operations
and O(2L) memory. Then, apply the FWHT to compute and store the value
(W(Ψ))(x) for all x, which requires O(L2L) operations. Now, some straightfor-
ward calculations3 show

3 By definition of Ψ , W, and Cor, it immediately follows that both sides are equal to
1

2L/2

∑
w,i(−1)〈x ,gi〉F2⊕ziδw,gi , where gi is the (i + 1)-th column of G.

Quantum FCA on LFSR-Based Stream Ciphers 407

(W(Ψ))(x) =
N

2L/2
· Cor(xG,z).

Hence, the first step of the aforementioned decoding procedure can be performed
with O(N + L2L) operations.

3.2 More General Cases

Modern stream ciphers are well-designed so that keystreams themselves are not
strongly correlated with LFSR sequences, and the above attack does not work.
Yet, almost the same idea is applicable if there is another code relating initial
states and keystreams.

For instance, suppose

• there are (1) the generating matrix G of an [N, �] binary code for some �, (2)
a binary sequence ζ := (ζ0, . . . , ζN−1) computed from a keystream segment,
and (3) a value σ(0) ∈ F

�
2 that is related to the initial value s(0), such that

• (the absolute value of the expected value of) the correlation c :=
∣∣ExK,IV

[

Cor
(
σ(0)G, ζ

)]∣∣ is large.

Then, the aforementioned decoding algorithm with FWHT works in exactly
the same way, except that now the decoding algorithm recovers σ(0) and the
parameters and variables such as L and zi are replaced with � and ζi, etc. The
decoding complexity with FWHT becomes O(N + �2�), and N ≥ Ω(�/c2) is
required for a sufficiently high success probability. Once σ(0) is recovered, at
least the keystream is distinguished from random, and sometimes it is possible
to recover the entire initial state and even the master secret key of the cipher.

A typical way to find such an alternative code is to search for a linear approx-
imation between internal states of an LFSR and keystreams. Suppose that an
attack target is based on an LFSR of length L over F2n for some n, and that
the LFSR sequence (resp., keystream) is denoted by s0, s1, · · · ∈ F2n (resp.,
z0, z1, · · · ∈ F2n). As before, let s(i) := (si, . . . , si+L−1) ∈ F

L
2n be the internal

state of the LFSR at time i. Assume there are an index set Ilfsr ⊂ Z≥0 and
linear masks {Γj}j∈Ilfsr

⊂ F
L
2n for the LFSR’s internal states (resp., an index set

Iks ⊂ Z≥0 and linear masks {Λj}j∈Iks
⊂ F2n for keystreams) such that the linear

approximation ⊕

j∈Ilfsr

〈s(i+j),Γj〉F2 ≈
⊕

j∈Iks

〈zi+j ,Λj〉F2 (7)

holds with an absolute correlation c � 0 for every i. Below, we explain how to
define G, ζ, and σ(0) such that

∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ ≈ c from the above
linear approximation.

408 A. Hosoyamada

Define Γ ∈ F
L
2n by Γ :=

⊕
j∈Ilfsr

(
Γj · (

M�)j
)

. Then we have

〈s(0),Γ · (M�)i〉F2 = (the left hand side of (7)).

With this in mind, setting � := L · n (and identifying F
L
2n with F

�
2), define

• G as the � × N binary matrix of which the i-th column is M i−1 · Γ �,
• σ(0) := s(0), and
• ζ = (ζ0, . . . , ζN−1) by ζi := (the right hand side of (7)).

Then, Eq. (7) can be rewritten as

(σ(0)G)i ≈ ζi,

which implies
∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ ≈ c.
Usual attacks further convert the above G into another matrix G′ to reduce

the code’s dimension and the decoding complexity, at the cost of a decrease in
the (squared) correlation and an increase in the data complexity. This is usually
done by solving some k-sum problems with Wagner’s k-tree algorithm [77].

3.3 Summary and Note on the Size of N

To mount fast correlation attacks, an attacker first looks for an � × N matrix
G, along with a binary sequence ζ = (ζ0, . . . , ζN−1) that can be computed from
a keystream segment, such that c :=

∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ is large for some
σ(0) ∈ F

�
2 that depends on the (secret) initial value s(0) of the LFSR. Here, G is

public and the adversary can compute it offline.
Once finding such G, ζ, and σ(0), the adversary performs maximum likelihood

decoding of ζ with respect to the [N, �] binary linear code of which the generating
matrix is G. The decoding can be realized with O(N +�2�) operations as follows.

1. Compute all the values
of the function Ψ(z) :=

∑
0≤i≤N−1:z=the (i + 1)-th column of G(−1)ζi and store

them into a memory.
2. Apply the FWHT on Ψ(z). Now, the values (W(Ψ))(x) = N

2�/2 · Cor(xG, ζ)
are stored in the memory for all x.

3. Output x such that Cor(xG, ζ)2 is significantly larger than others.

G and ζ are typically derived from linear approximations between LFSR
sequences and keystreams.

Very roughly and intuitively, σ(0) corresponds to (a linear transformation of)
the initial state of LFSR, σ(0)G to the output sequence of LFSR, and ζ to the
key stream. If ζ is linearly approximated by σ(0)G, then ζ can be regarded as
the result of encoding σ(0) with a code corresponding to G and sending through
a noisy channel. Hence, σ(0) (and thus the initial state of the LFSR) can be
recovered by the most likelihood decoding, using FWHT as above.

Quantum FCA on LFSR-Based Stream Ciphers 409

About the Size of N . Here we explain why N = O(�/c2) is sufficient to
achieve a large success probability. Let us call σ(0) the correct decoding results,
and x ∈ F

�
2 such that x �= σ(0) incorrect decoding results. We heuristically

assume that, for an incorrect x, the correlation Cor(xG, ζ) is approximated by
the linear correlation of two random binary sequences of length N , as done in
classical attacks. Then the following claim holds.

Claim Suppose N ≥ 8�/c2 and � ≥ 1. Then we have

Pr
K,IV

[
There is x �= σ(0) such that Cor(xG, ζ)2 ≥ c2/4

]
� (2/e)�, (8)

Pr
K,IV

[
Cor(σ(0)G, ζ)2 ≥ c2/2

]
� 0.95. (9)

Especially, the decoding algorithm succeeds with a sufficiently high probability.

See Section C of the full version of this paper [42] for why it is plausible to regard
that this claim holds.

4 Quantam Fast Correlation Attack in the Q1 Model

This section studies quantum speed-up of the decoding procedure of fast corre-
lation attacks with the FWHT in the Q1 model. In fact, it later turns out that
it seems hard to achieve a fast correlation attack that is faster than the Grover
search in the Q1 model by speeding-up existing classical attacks. Yet, we show a
Q1 algorithm here to make it the starting point of a more complex Q2 attack in
Sect. 6, and to see why achieving a meaningful speed-up of existing classical fast
correlation attacks seems hard in Q1.

As in the classical setting, we assume that a keystream segment generated
from a single key and IV pair is given to an adversary. We consider the general
cases reviewed in Sect. 3.2, and use the same notations.

Below, we first describe a rough idea of the quantum attack in Sect. 4.1, and
then provide the formal details in Sect. 4.2. Section 4.3 provides discussions on
applications and some observations.

4.1 Overview and Rough Idea

Our idea is to perform quantum analogue of the operations in the classical decod-
ing procedure in a natural way.

• We first prepare the quantum counter part of the function Ψ , namely the
quantum state

|ψ〉 :=
∑

w∈F
�
2

Ψ(w)√∑
w |Ψ(w)|2 |w〉. (10)

How we can prepare |ψ〉 is a non-trivial question, but we show that a unitary
operator U satisfying U |0�〉 = |ψ〉 can be realized as an efficient quantum
algorithm, given that some data are precomputed and stored in qRAM in
advance.

410 A. Hosoyamada

• Second, we apply the Hadamard tranform on the entire state. Since the Walsh-
Hadamard transform on classical functions is mathematically the same as the
Hadamard transform on quantum states, we get

H⊗�|ψ〉 =
∑

x∈F
�
2

(W(Ψ))(x)√∑
w |Ψ(w)|2 |x〉 =

∑

x∈F
�
2

N · Cor(xG, ζ)√∑
w |Ψ(w)|2 · 2�/2

|x〉. (11)

Measuring this state, we obtain an x with a probability proportional to the
squared correlation Cor(xG, ζ)2. Namely, we will obtain the correct decoding
result σ(0) with a higher probability than incorrect results. However, the
probability to obtain σ(0) is usually still too small.

• Thus, we amplify the probability of obtaining a correct result with QAA. To
apply QAA, we must implement a unitary operator computing the Boolean
function f : Fn

2 → F2 such that f(x) = 1 iff x = σ(0). How to choose and
implement f can depend on the internal structure of the target cipher.

4.2 Formal Details

First, we explain some precomputaiton required for later steps. Second, we show
how to prepare the state |ψ〉 in Eq. (10). Third, we provide a formal description
and analysis of the entire attack algorithm.

We denote the i-th column vector of G by gi, and define μ := maxx∈F
�
2
#{i :

gi = x}. We suppose that
∣∣ExK,IV

[
Cor(σ(0)G, ζ)

]∣∣ = c for some c � 0 and
8�/c2 ≤ N ≤ 2�.

Precomputation. Given sufficient amount of keystream bits, we first compute
ζ = (ζ0, . . . , ζN−1) and store them into qRAM. Then, we compute gi and store
the data (i, gi) into a list in a sequential order for all i. Along with gi, store the
information of how many times the value gi has appeared before. That is, store
a counter set to be 0 if gj �= gi for all j < i, and increment it to 1 if there is
unique j < i such that gj = gi, and so on. (Eventually, each entry of the list has
the form (i, gi, ctri).) Then, store the list into qRAM.

Note that 0 ≤ ctri ≤ μ − 1 for all i, and the value ctri is represented as
a log μ bit string. If gi can be computed with O(1) operations for each i, this
precomputation can be completed with O(N log N) operations.

How to Prepare |ψ〉. We implement a unitary U satisfying U |0n〉 = |ψ〉 as the
following algorithm4.

Algorithm PREP1.

1. Create the superposition
∑

0≤i≤N−1

√
1/N |i〉.

4 The idea of applying Hadamrd to the rightmost register in Step 4 and then using
QAA is inspired from the state preparation technique by Sanders et al. [66].

Quantum FCA on LFSR-Based Stream Ciphers 411

2. Access qRAM to obtain
∑

0≤i≤N−1

√
1/N |i〉|gi〉|ctri〉. (By abuse of notation,

we denote gN by g0.)
3. Multiply each basis state by the phase (−1)ζi by accessing qRAM. Now the

state is
∑

0≤i≤N−1

√
1/N(−1)ζi |i〉|gi〉|ctri〉.

4. Set the leftmost register to |0�〉. This is done by searching for the tuple
(gi, ctri) in qRAM and adding the corresponding index to the first register.
The resulting state is |0�〉∑

0≤i≤N−1

√
1/N(−1)ζi |gi〉|ctri〉.

5. Apply the Hadamard gates to the rightmost register. Some calculations show
that the resulting state is

1√
N

√
μ

|0�〉
(

∑

w

Ψ(w)|w〉
)

|0log μ〉 + |ε〉, (12)

where the third register of |ε〉 is orthogonal to |0log μ〉.
6. Apply QAA (that returns a correct answer with certainty) on (12) to amplify

the state of which the third register is 0log μ. This can be done by performing
Steps 1–5 and their uncomputations at most p

−1/2
init times each in total, where

pinit :=
∑

w |Ψ(w)|2/Nμ.

The complexity of PREP1 depends on G and ζ but it is small in most cases.
For example, suppose gi �= gj holds for i �= j. Then μ = 1 and

∑
w |Ψ(w)|2 =

N hold, which implies pinit = 1. In particular, QAA is actually not necessary
and a single execution of Steps 1–5 is sufficient to prepare |ψ〉.

Even if ζ and each gi are random, the number of QAA iterations in Step
6 is at most O(�/ log �) on average: Since gi is random, μ ≤ �/ log � holds
with an overwhelming probability by the standard balls-into-bins arguments [61,

Lem. 5.12]. In addition, the value |Ψ(w)|2 =
∣∣∣
∑

i:gi=w (−1)ζi

∣∣∣
2

is always a non-

negative integer, and Pr
[|Ψ(w)|2 �= 0

] ≥ 1/2 holds for each w because ζ is
random. Hence, the expected value

∑
w |Ψ(w)|2 is at least #{w : Ψ(w) �=

0} × (1/2) ≥ N/2μ, and pinit =
∑

w |Ψ(w)|2/Nμ ≥ 1/(2μ2) � (log �)2/(2�2)
on average.

The Entire Algorithm and Analysis. Our Q1 attack runs as follows.

Algorithm QFCA1.

1. Get a keystream segment long enough to mount the attack.
2. Perform the precomputation described on p.15.
3. Run QAAw/oKp on p.8 with U := H⊗� · PREP1 on the Boolean function

f : F�
2 → F2 such that f(x) = 1 iff x = σ(0). (How to compute f depends on

attack targets.)

Let p be the probability that we obtain an x satisfying f(x) = 1 when we
measure the state H⊗� · PREP1|0�〉(= H⊗�|ψ〉). That is,

p =
N2 · Cor(σ(0)G, ζ)2

2� · ∑
w |Ψ(w)|2 . (13)

412 A. Hosoyamada

By the claim at the end of Sect. 3.3, with probability at least 0.9 (when K and
IV are randomly chosen and � is sufficiently large, e.g., � ≥ 10), Cor(xG, ζ)2 ≤
c2/4 holds for all x �= σ(0) and Cor(σ(0)G, ζ)2 ≥ c2/2 holds. Provided these
inequalities really hold,

p ≥ N2c2

2�+1 · ∑
w |Ψ(w)|2 (14)

holds, and the attack finds the correct decoding result σ(0) in expected time
complexity at most about

Ttotal = Tprecomp + (9/2)p−1/2 (2 · Tprepare + Tf) , (15)

where Tprepare (resp., Tf) is the running time of the algorithm PREP1 (resp.,
the time complexity required to compute f). In addition, Tprecomp is the time
complexity to collect necessary data and perform the precomputation. How to
compute f depends on the internal structure of the target cipher.

Typically, we have Tprepare � Tf , Tprecomp = O(N), and
∑

w |Ψ(w)|2 =
O(N), when the complexity (15) becomes roughly about (N + Tf · 2�/2√

Nc2
). Bal-

ancing the two terms, we obtain

N = 2�/3 · (Tf/c)2/3. (16)

In summary, with probability at least 0.9 (on the randomness of K and IV),
the attack recovers σ(0) in expected time complexity 2�/3+1 · (Tf/c)2/3.

4.3 Discussions and Observations

The above algorithm QFCA1 is a very natural extension of classical fast correla-
tion attacks. By applying QFCA1 to speed up existing classical fast correlation
attacks, we expected to achieve quantum attacks faster than the Grover search
However, we have not obtained a meaningful speedup so far with this approach.

One reason is that the absolute correlations in some classical attacks are too
small. For instance, the attack on Grain v1 by Todo et al. [75] utilizes linear
approximations of absolute correlation c = 2−36, while both the LFSR and key
lengths of Grain v1 are 80. If a single linear approximation is used, we need the
data complexity at least c−2 ≥ 272, which is much larger than the exhaustive
key search with Grover’s algorithm. The data complexity (and time complexity
possibly also) decreases to some extent by using multiple approximations, but
we find it still hard to achieve an attack faster than the Grover search.

Another reason is that the LFSR length is quite large in some ciphers. For
instance, SNOW 2.0 [28] is based on a 512-bit LFSR. As explained around
Eq. (16), we will have a factor of order 2�/2 or 2�/3 in the time complexity,
which is too large when � = 512. Classical attacks reduce the dimension of the
code (i.e., the parameter �) by solving k-sum problems. However, in the Q1 set-
ting, we observe that the cost to solve k-sum problems sufficiently reducing the
dimension is too heavy (even with the dedicated quantum algorithms [38,63,68])
compared to the quantum exhaustive key search with Grover’s algorithm when

Quantum FCA on LFSR-Based Stream Ciphers 413

k is small (e.g., k = 2), and the correlations after dimension reduction become
too small when k is large (e.g., k = 4).

Due to these reasons, we suspect it is quite hard to mount a fast correlation
attack that is faster than the generic attack in the Q1 setting, or more fairly
non-trivial techniques will be required. Given this situation, we next focus on
Q2 attacks.

Remark 1. The state H⊗�|ψ〉 in Eq. (11) is a superposition of candidate messages
|x〉 and the quantum amplitude is proportional to the correlation Cor(xG, ζ)
and so can be regarded as an analogy of the correlation state in Schrottenloher’s
quantum linear key recovery. Still, our technique and Schrottenloher’s are quite
different. Unlike the preparation of the correlation state, convolutions are not
computed in preparing H⊗�|ψ〉. Moreover, in the Q2 attack in Sect. 6, we will
use Shor’s algorithm to efficiently prepare a state corresponding to H⊗�|ψ〉.
Remark 2. Measuring the state (11), we obtain x with a probability propor-
tional to |W(Ψ)(x)|2. This can be regarded as a random sampling according to
the distribution induced by W(Ψ). A possible alternative approach could be to
iteratively perform this sampling and estimate the values |W(Ψ)(x)|2 instead of
applying QAA, but so far, we have not found more efficient attacks with this
idea. Leveraging such random samplings in a better way could be a possible
future research to investigate.

Remark 3. The attacks in this section essentially rely on linear approximations
of which the linear masks cover the entire state of LFSR. If one were to use
masks that only cover part of LFSR (as done in, e.g., [7]), the attacks would
proceed by applying our method for the part covered by the linear masks and
guessing the remaining part with the Grover search. The same thing holds true
for the Q2 attacks shown later.

5 New Attack Model and Security Definition in Q2

This section introduces a new attack model and a security definition for stream
ciphers in the Q2 setting.

When studying Q2 attacks, we must carefully consider which attack breaks
what security notion. This is because the Q2 setting allows adversaries to perform
operations that were never anticipated when some classical security notions were
defined, e.g., querying all the messages at once in superposition. Let us briefly
illustrate this with attacks on MACs as an example. A classical attack on a
deterministic MAC is considered meaningful if it forges a valid tag for a message
that has not been queried by the adversary. Meanwhile, Q2 attacks are typically
allowed to query all messages simultaneously in quantum superposition. This
makes it unclear how we should interpret the meaning of a Q2 attack on a MAC
if it produces several valid message-tag pairs after making a single quantum query
consisting of exponentially many messages in superposition. The seminal work

414 A. Hosoyamada

by Kaplan et al. [48] carefully addresses this issue and demonstrates that (some
of) their attacks on MACs are valid in that they break Boneh and Zhandry’s
EUF-qCMA security [10].

As we will see below, there is also a subtle issue regarding Q2 attacks on
stream ciphers. In what follows, We denote a random function by RF, of which
the domain and range will be clear from the context.

Classical Security Notion: IV-Based Stream Ciphers as PRFs. As
shown by Berbain and Gilbert [6], the classical security definition appropriate for
IV-based stream ciphers is the Pseudo-Random Function (PRF) security. Here,
stream ciphers are regarded as keyed functions SC : Fκ

2 × F
iv
2 → F

D
2 that take

key and IV as input and return a keystream of length D for some D � 1. Recall
that the PRF advantage of an oracle-aided algorithm A for SC is defined as

AdvPRF
SC (A) :=

∣∣Pr
[ASCK outputs 1

] − Pr
[ARF outputs 1

]∣∣ , (17)

where the probability is taken over both the randomness of A and the choice of
the secret key K or the random function RF. The ciphers are considered secure
iff no adversary A with reasonable computational resources can distinguish SC
and RF with a non-negligible advantage.

qPRF Security and Some Issues. The counterpart of the PRF security
in the Q2 setting is the quantum pseudo-random function (PRF) security by
Zhandry [82], where the oracle of the keyed function and the random function
are replaced with the corresponding quantum oracles that accept inputs and
returns outputs in quantum superposition. Thus, to choose a security defini-
tion for stream ciphers in the Q2 setting, the easiest way is simply to adapt the
qPRF security.

However, the qPRF security does not mesh well with stream ciphers. Typical
Q2 attacks assume a moderate (polynomial) size quantum computer with qRAM,
whereas the quantum oracle of stream ciphers returns an exponentially long out-
put in quantum superposition all at once. In other words, a quantum computer
of a moderate (e.g., 220) size has a register of a very large (e.g., 260) size to
receive outputs from the oracle, which is quite unbalanced. A potential solution
to this problem is to limit the output length of oracles, but this overlooks one
of the primary features of stream ciphers, which is that a long keystream can be
generated from a single IV. An alternative solution could be to assume that the
oracle’s outputs are written into qRAM, but this approach would require a sub-
stantial amount of operations for adversaries just to read the oracle’s outputs.
It undermines the meaning of studying Q2 attacks because unexpectedly effi-
cient and intriguing Q2 attacks are usually achieved by efficiently processing a
superposition of many outputs from an oracle.

qBPRF Security. To remedy this, we introduce a new security definition,
which we call the quantum Booleanized PRF security, or qBPRF security for
short.

Quantum FCA on LFSR-Based Stream Ciphers 415

First, let us define the Booleanization of a function F : F
n
2 → F

m
2 as the

Boolean function BF : Fn
2 × F

log m → F2 such that BF (x, i) = (F (x))i, and the
quantum Boolianized PRF (qBPRF) security as the qPRF security of BF .

We define the qBPRF advantage of an algorithm A for a stream cipher
SC : Fκ

2 × F
iv
2 → F

D
2 as the qPRF advantage of its Booleanization, namely,

AdvqBPRF
SC (A) :=

(
AdvqPRF

BSC (A) =
) ∣∣∣Pr

[
ABSCK outputs 1

]
− Pr

[
ARF outputs 1

]∣∣∣ ,

where A is allowed to make quantum queries to the oracles. We say that the
stream cipher SC is qBPRF-secure if no adversary faster than the generic attack
can have a non-negligible qBPRF advantage.

Put differently, we regard an attack on the cipher breaks its qBPRF security
if its computational cost is less than the generic attack with Grover’s algorithm
while the qBPRF advantage is close to 1, and we aim to find such (fast corre-
lation) attacks in the next section. In particular, we assume that the quantum
oracle of the Booleanized version of the target cipher is given to an adversary. By
considering the Booleanized versions, we can keep the output length of the oracle
short while taking long keystreams into account, addressing the aforementioned
issues. To prevent trivial attacks, we set an appropriate limit on D, of which the
details will be discussed later.

Feasibility. The attack model in the definition of qBPRF security is quite strong
because it essentially assumes an adversary can query not only IVs but also
indices for keystream bits in quantum superposition. Yet, we argue that qBPRF
security is worth studying and feasible in that some stream ciphers based on
the CTR mode, e.g., (some members of) Salsa20 [9] and ChaCha [8] families,
seem to achieve it. Below, we explain this by showing a security reduction.

Let F : F
κ
2 × F

iv
2 × F

ctr
2 → F

m
2 be a keyed function where F

κ
2 is the key

space, and D′ � 1 be a parameter. Let CTRF : Fκ
2 ×F

iv
2 → F

D′·m
2 be the stream

cipher generating a keystream segment as

CTRF
K(IV) := FK(IV, 0)||FK(IV, 1)|| · · · ||FK(IV,D′)

Then, the following proposition holds.

Proposition 4. Suppose D′ < 2iv. For any quantum algorithm A making q
queries, there is another quantum algorithm B making q quantum queries such
that

AdvqBPRF

CTRF (A) ≤ AdvqPRF
F (B),

where the time, memory complexity, and qubits required to run B are at most
O(1) times larger than those for A.

Proof. We construct B so that it simply emulates the oracle for A by using the
one given to itself. That is, when A queries a pair (IV, i), B queries (IV, �i/m�)
to its own oracle, truncating the response y from the oracle and sending the
(i−m · �i/m�)-th bit of y to A. (Note that arbitrary bit of y can be computed in
quantum superposition by making only a single query to B’s oracle [43].) Using
this B, the claim of the proposition obviously holds. ��

416 A. Hosoyamada

Roughly speaking, the above proposition states that CTRF is qBPRF-secure as
long as there is no attack breaking the qPRF security of F (as long as D′ < 2iv).
ChaCha and Salsa20 families adapt the structure of the above CTR for some
F , and there have been reported no Q2 attacks distinguishing their underly-
ing function F faster than the Grover search. Therefore, some of these ciphers,
including Salsa20/12, Salsa20/20, and ChaCha20, will likely achieve the qBPRF
security5.

Upper Limit of Keystream Bit Index. When studying attacks to break the
qBPRF security of a stream cipher SC : Fκ

2 × F
iv
2 → F

D
2 , we must set an appro-

priate upper limit for the keystream bit index, i.e., the parameter D, to prevent
trivial attacks. For example, if the (i + j)-th bit of each keystream is always
equal to the i-th bit for some exponentially large j, the parameter D should be
less than j. Otherwise, an adversary can efficiently break the qBPRF security
by, e.g., getting the first κ bits and (j +1)-th, . . . , (j +κ)-th bits of a keystream
and check whether they are equal.

When studying LFSR-based stream ciphers, we set D to be the period of the
underlying LFSR, which is 2� −1 if LFSR’s bit length is �. This may exceed data
limits specified by the designers of a target cipher. Still, considering that even in
the classical setting, the first step is to show an attack exceeding the designers’
limit (e.g., [71]), we set the limit D as large as possible in the quantum setting.

Remarks. The oracle of the Booleanized version of a stream cipher enables an
adversary to efficiently get the i-th bit of a keystream for arbitrarily large i (as
long as i is smaller than an appropriately set upper limit). Some readers may
be concerned that such oracles may significantly speed up some attacks even
in the classical setting. Indeed, if such a classical oracle is available, the data
complexity of some classical fast correlation attacks will be reduced to some
extent because only specific bits of keystream segments are used [76]. However,
we expect that the time complexity of fast correlation attacks will not be signif-
icantly affected because the decoding algorithms do not care much whether the
size of the indices i involved in decoding procedures is large or not.

Our primary objective of studying attacks on qBPRF security is to uncover
interesting properties and deepen our understanding of the power of Q2 attacks.
We do not claim that the practical security of a scheme is affected, even if
we discover an efficient attack that only compromises the qBPRF security. We
argue that it is worthwhile to study attacks on qBPRF security because we can
obtain an interesting new type of large quantum speed-up for fast correlation
attacks on some LFSR-based stream ciphers, while some other stream ciphers
including Salsa20/12, Salsa20/20, and ChaCha20 are almost completely intact,
as we showed around Proposition 4.

5 Some members of the families, e.g., Salsa20/8, have already been broken in the
classical setting [3], but we are unsure whether they can be converted into a Q2
attack faster than the Grover search.

Quantum FCA on LFSR-Based Stream Ciphers 417

Often, quantum attacks breaking a rather theoretical security notion do not
immediately imply attacks that compromise more practical security notions.
Still, some of such attacks later have become the indispensable basis of other
attacks with much more practical implications. For example, the Q2 attacks on
the Even-Mansour and FX constructions [51,52] paved the way for the tech-
nique to exponentially reduce memory complexity in some Q1 attacks by using
Simon’s algorithm [12] and achieving a more-than-quadratic speed-up in the Q1
model [14]. The subsequent sections present attacks on the qBPRF security,
hoping they will serve as the foundation for even more impactful attacks.

6 Quantum Fast Correlation Attack in the Q2 Model

6.1 Overview and Rough Idea

When mounting fast correlation attacks in the Q2 model, we aim to break the
qBPRF security of a target stream cipher, assuming that the Booleanized version
of the cipher is given as a quantum oracle.

The oracle allows an adversary to query IVs in quantum superposition as well
as indices of keystreams, but we fix an arbitrarily chosen IV through an attack
like in the classical and Q1 settings. Namely, the primary goal of the attack is
to recover the initial state of an LFSR for a single pair of the key and an IV,
and we make superposition queries only for keystream indices. The basic idea of
the attack is the same as in Sect. 4.1. That is, we (i) prepare the quantum state
|ψ〉 of Eq. (10), (ii) apply the Hadamard transform on |ψ〉, and then (iii) apply
QAA to amplify the quantum amplitude of the correct decoding result |σ(0)〉.

The difference is as follows.

• We focus on decoding problems derived from a single linear approximation
as explained below Eq. (7). In particular, the parameter � is equal to the bit
length of the LFSR, G is an matrix of which the i-th column is M i−1 · Γ for
some Γ (recall that M is the LFSR’s state update matrix) and a decoding
algorithm returns σ(0) = s(0), the initial state of the LFSR.

• We set the parameter N (the number of columns of G) to be 2� − 1, the
period of the LFSR. This implies that G is an � × (2� − 1) matrix over F2.
At first glance, it might seem that this would make the preparation of |ψ〉
prohibitively costly. However, our core observation is that |ψ〉 can be prepared
quite efficiently by regarding the state update of LFSR as multiplication in a
finite field and applying Shor’s algorithm for the discrete logarithm problem
to find the index i satisfying gi = x for a given x. (The main reason for only
focusing on G derived from a single linear approximation is to utilize this
technique.)

418 A. Hosoyamada

• The Boolean function f(x) is computed by checking whether the value
Cor(xG, ζ)2 is above a certain threshold by using the quantum counting algo-
rithm, like Kaplan et al. [49] did for quantum linear distinguishers6. We do
not use methods depending on the structure of target ciphers because the
method with the quantum counting algorithm is the most efficient for all the
applications we have found so far.

As the structure of G is restricted and we compute f independently from the
structure of target ciphers, our Q2 attack can be formulated as an algorithm to
solve the following general problem.

Problem 1. Let M be the state update matrix (Eq. (2)) of an LFSR of length L
over F2n and G be an �× (2� −1) matrix over F2 of which the i-th column vector
is M i−1 · Γ � for some Γ ∈ F

�
2(= F

L
2n), where � := n · L. Let s(0) be a vector

in F
�
2 and ζ be a binary sequence of length 2� − 1 defined as ζ := (s(0)G) ⊕ e,

where the bits of e = (e0, . . . , e2�−2) are independently and randomly chosen in
such a way that Pr [ei = 1] = p for all i, with p ≈ (1 + c)/2 or (1 − c)/2 for
some c > 0. Given the quantum oracle of the Boolean function that returns ζi

on an input i ∈ {0, . . . , 2� − 2}, compute s(0).

The next subsection presents a quantum algorithm to solve this problem.

6.2 Formal Details

We first explain how to compute f , and then show an algorithm to prepare |ψ〉.
After that, we describe the entire algorithm and provide analysis.

We denote the i-th column vector of G by gi as before and put N := 2� −1(=
2nL−1). Note that gi �= gj for i �= j and that {gi}1≤i≤N = F

�
2\{0} (

= F
nL
2 \ {0})

follows from the definition of G and Eq. (5). In particular, we have that Ψ(gi) =
(−1)ζi for all i and

∑
w �=0 |Ψ(w)|2 = 2� − 1(= N), which implies

|ψ〉 =
∑

1≤i≤N

(−1)ζi−1

√
N

|gi〉.

In what follows, we use these properties without any mention.

Computing a Boolean Function for QAA by Quantum Counting. Here
we explain how to compute f(x) such that f(x) = 1 iff x = s(0).

Define a Boolean function f ′ by f ′(x) = 1 iff Cor(xG, ζ)2 ≥ 3c2/8. Then,
the claim at the end of Sect. 3.3 ensures PrK,IV [f(x) = f ′(x) for all x] ≥ 0.9.

6 Saying it differently, we prepare a superposition of |x〉 with the amplitude being
proportional to the correlation Cor(xG, ζ), and then amplify the “good” x by com-
puting the correlation again and checking whether it is large enough. The idea of
using a single value for both preparation and amplification is not new and has already
appeared in, e.g., [4].

Quantum FCA on LFSR-Based Stream Ciphers 419

With this in mind, we implement the unitary operator Sf ′ satisfying Sf ′ |x〉 =
(−1)f ′(x)|x〉. To implement this, we count the number of i satisfying (xG)i = ζi

for each i = 0, 1, . . . , N − 1 by using the quantum counting algorithm with a
sufficiently high precision. Proposition 3 ensures that the error probability of
the quantum counting algorithm is as small as 0.2, but this is still large if the
algorithm is used in QAA as a subroutine. To make the error probability small
enough, we run multiple instances and perform a majority vote.

Concretely, to implement Sf ′ , we run the following algorithm. Here, r is a
parameter fixed later, and hx : {0, . . . , N} → F2 is the Boolean function defined7

by hx(i) = (xG)i ⊕ ζi ⊕ 1 for 0 ≤ i ≤ N − 1 and hx(N) = 0.

Algorithm JDG.

0. (Assume a basis state |x〉 is given as an input.)
1. For j = 1, . . . , r, perform the following procedure.

(a) Run the quantum counting algorithm (QC on page 8) with q = 27/c to
compute an estimation of Z := |h−1

x (1)|. Let Z̃j be the resulting output.

(b) Let C̃j := 2Z̃j−N
N . Compute (C̃j)2 and write it into a new auxiliary reg-

ister.
(c) Uncompute Step (a).

2. Check whether at least r/2 values among (C̃1)2, . . . , (C̃r)2 are greater than or
equal to 3c2/8. If so, multiply the entire state by the phase (−1). Otherwise,
do nothing.

3. Uncompute Step 1.

Proposition 5. Assume � ≥ 10, Cor(xG, ζ)2 ≤ c2/4 holds for all x �= s(0), and
Cor(s(0)G, ζ)2 ≥ c2/2. By abuse of notation, let JDG also denote the unitary
operator corresponding to the above algorithm. Then, f = f ′ holds, and the
operator norm of (JDG−Sf) is upper bounded as ‖JDG − Sf‖op ≤ 2(�/2)−(0.1r)+1.
The depth required to implement JDG on a quantum circuit is at most about
211r�3/c, and JDG makes 28r/c queries to the oracle.

See Section D of the full version of this paper [42] for a proof. We will set r = 25�
such that the difference ‖JDG − Sf‖op is extremely small (≤ O(2−2�)) and we
can use JDG instead of Sf in QAA while keeping the success probability almost
unchanged.

The amount of auxiliary qubits required for JDG is at most the maximum of

– the qubits needed to compute hx ,
– the qubits needed to perform the classical computation in Step 2,
– the qubits needed for Calc on page 8,

which is in O(�2). (See Section E of the full version of this paper [42] for details on
the qubits required for hx . For Calc, we assume that the sin function is approx-
imately computed using a constant number of terms in the Taylor expansion.)

7 hx is defined so that hx (i) = 1 iff (xG)i = ζi for i < N . The domain size is set as
(N + 1) instead of N to make it a power of two.

420 A. Hosoyamada

How to Prepare |ψ〉. Roughly speaking, we prepare |ψ〉 by (i) making a super-
position of all x ∈ F

�
2 \ {0}, (ii) compute i such that the i-th column of G

(denoted by gi) is equal to x, and (iii) multiply the phase (−1)ζi−1 by querying
to the quantum oracle.

To perform (ii), we utilize Shor’s algorithm and the relationship between
the state update of LFSR and multiplication in the finite field. Let ξ be the
isomorphism defined in Eq. (3). The most important observation is that we have

i = logα (ξ(gi)/ξ(Γ)) + 1 = logα (ξ(gi)) − logα (ξ(Γ)) + 1 (18)

for each i because

ξ (gi) = ξ
(
Γ (M�)i−1

)
=

Eq. (4)
ξ(Γ) · αi−1,

holds. Therefore, we can compute i such that gi = x for a given x ∈ F
�
2 \{0} as

i = logα (ξ(gi)) − logα (ξ(Γ)) + 1, applying Shor’s discrete logarithm in the
multiplicative group F× = (F2n [x]/(f∗(x)))× ∼= Z/NZ.

First, we describe our algorithm when a unitary operator DLOG satisfying

DLOG|x〉|0〉 = |x〉|logα(x)〉
is available as a quantum circuit. After that, we discuss the complexity to approx-
imate it with sufficiently high precision by using Shor’s algorithm.

Algorithm PREP2.

1. Prepare the superposition

∑

x∈F
�
2\{0}

1√
N

|x〉.

2. For each basis state x, run DLOG twice to compute logα(ξ(x))) and
logα(ξ(Γ)). Then compute i := logα(ξ(x))) − logα(ξ(Γ)) + 1. Now the state
is ∑

x∈F
�
2\{0}

1√
N

|x〉|logα(ξ(x)))〉|logα(ξ(Γ))〉|i〉.

3. By querying (i − 1) to the oracle, multiply the entire state by the phase
(−1)ζi−1 (Recall that now we are assuming the oracle that returns ζi for the
input i in quantum superposition.)

4. Uncompute Step 2. Now, the state is |ψ〉.
Both the T -depth and the number of ancillary qubits are dominated by Step 2

(and its uncomputation). By running 8� instances of Shor’s algorithm DLOG can
be approximated with error (w.r.t. operator norm) in O(2−2�), T -depth at most
28�3 + O(�2), and O(�2) ancillary qubits (see Section F of the full version of this
paper [42] for details). Therefore, PREP2 can be implemented with error in
O(2−2�), T -depth 29�3 + O(�2), and O(�2) ancillary qubits.

Quantum FCA on LFSR-Based Stream Ciphers 421

The Entire Algorithm and Analysis. Our algorithm solving Problem 1
runs as follows.

Algorithm QFCA2. Run QAAw/oKp on p.8 with U := H⊗� · PREP2 on the
Boolean function f : F

�
2 → F2 such that f(x) = 1 iff x = s(0). Here, f is

computed by using the algorithm JDG. The parameter r for JDG is chosen as
r := 25�.

Below we analyze the complexity of QFCA2 assuming � ≥ 10 (so that the
assumption of Proposition 5 will be satisfied) and c ≤ �−1, which is the case
for the applications we will see later.

Let p be the probability that we obtain an x satisfying f(x) = 1 when we
measure the state H⊗� · PREP2|0�〉(= H⊗�|ψ〉). That is,

p =
N2 · Cor(s(0)G, ζ)2

2� · ∑
w |Ψ(w)|2 =

2�

2� − 1
· Cor(s(0)G, ζ)2. (19)

By the claim at the end of Sect. 3.3, Cor(xG, ζ)2 ≤ c2/4 holds for all x �= s(0),
with probability at least 0.9 (when K and IV are randomly chosen). Provided
this condition hold,

p ≥ 2�

2� − 1
· c2 ≈ c2 (20)

follows from Eq. (19), and the attack finds the correct decoding result s(0) in
expected time complexity at most about

Ttotal = (9/2)p−1/2 (2 · Tprepare + Tf) � (9/2)
1
c

(2 · Tprepare + Tf) (21)

where Tprepare (resp., Tf) is the running time of the algorithm PREP2 (resp.,
JDG). Since we set r = 25� for JDG,

Tf � 25 · 211�4/c

follows from Proposition 5. In addition, c ≤ �−1 is assumed. Meanwhile, as
discussed before, Tprepare = 29�3 + O(�2) holds. Hence Tprepare � Tf holds and
the total time complexity can be estimated as

Ttotal � (9/2) · 1
c

· (
25 · 211�4/c

) ≤ 218 · �4/c2. (22)

In addition, since PREP2 makes only O(1) queries, the number of queries made by
QFCA2 can be approximated by the number of queries made by JDG multiplied
by the number of applications of JDG. Therefore, the number of quantum queries
made by QFCA2 is at most about (9/2)p−1/2 · (28(25�)/c) � 215�/c2.

Next, we analyze the success probability. Failure of QFCA2 is attributed to
the following four factors:

(1) Whether the assumption of Proposition 5 about the correlations (i.e., the
assumption of the claim at the end of Sect. 3.3) is satisfied or not.

422 A. Hosoyamada

(2) The error in JDG approximating Sf (provided the assumption of Proposi-
tion 5 is satisfied).

(3) The error in approximating DLOG.
(4) Failure of QAA to find the correct value s(0).

The error probability coming from (1) is at most 0.1 (because of the claim at
the end of Sect. 3.3 and the assumption � ≥ 10), and (4) is already taken into
account in the expected complexity of QAA shown in Proposition 2. Hence, if (2)
and (3) could be ignored, the algorithm would successfully recover s(0) in the
expected time complexity shown in Eq. (22) with a probability of at least 0.9
(with respect to the randomness of K and IV).

Regarding (2), the distance between JDG and Sf is at most O(2−2�). This
means that the failure probability of QAA with t applications of Sf increases by
O(t · 2−2�) if Sf is replaced with JDG. The same holds for the approximation of
DLOG. As the overall complexity of QFCA2 is O(�4c−2), the success probability
decreases by O(�4c−22−2�) in total when (2) and (3) are taken into account.
Therefore, the success probability of the algorithm can be estimated as at least
0.9 − O(�4c−22−2�).

Summary. Assuming � ≥ 10 and c ≤ �−1, QFCA2 solves Problem 1 with time and
query complexity (approximately) at most 218�4/c2 and 215�/c2. The probability
of success is estimated as at least 0.9 − O(�4c−22−2�). The number of ancillary
qubits required is O(�2) since both JDG and (the approximation of) DLOG are
implemented with O(�2) qubits.

In the applications below, we will only discuss the cases where the term
O(�4c−22−2�) is negligibly small.

Remark 4. If QFCA2 is applied to a stream cipher with an �-bit LFSR, it requires
O(�2) qubits. Meanwhile, the exhaustive key search with Grover’s algorithm
would require only O(�) qubits. Strictly speaking, the validity of a dedicated
quantum attack such as QFCA2 should be compared to the parallelized Grover
search using the same amount of qubits. However, O(�2) qubits would allow
to run only O(�) parallel instances, which yields a speed-up by a factor of at
most O(

√
�). This factor is not so large as to affect the validity of the attacks

considered in this paper, and the cost of the Grover search also varies depending
on implementations of a target cipher. Hence, in what follows, we do not take
parallelization into account.

6.3 Applications

We show applications of QFCA2 on SNOW 2.0 [28], SNOW 3G [31], and Sose-
manuk [5]. Our goal is to break the qBPRF security of the ciphers when the
quantum oracle of the Booleanized version of the cipher is given.

SNOW 2.0. SNOW 2.0 is a stream cipher designed by Ekdahl and Johans-
son [28], which is standardized by ISO/IEC [45]. It consists of an LFSR of

Quantum FCA on LFSR-Based Stream Ciphers 423

length L = 16 over F232 (512 bits long in total) and a finite state machine that
keeps 64-bit states. The state update and keystream generation are carried out
in 32-bit words. The cipher outputs a 32-bit keystream segment at each clock,
updating the internal state registers. (see Fig. 2). The key length is either 128
or 256 bit, and IVs are 128 bits. In the initialization phase, a key and an IV are
linearly expanded and loaded to the registers and then mixed by updating the
states 32 times, with the output bits fed back to the LFSR.

Fig. 2. SNOW 2.0. Each line corresponds to a 32-bit word. R1 and R2 are additional
32-bit registers. Modular additions are denoted by �. The circled “S” at the center is a
non-linear permutation.

Linear Approximations and Classical Attacks. In the classical setting, many
(linear attacks and) fast correlation attacks have been proposed on SNOW
2.0 [32,36,37,53,65,79,84]. Among others, [32,35,36] found linear approxima-
tion

〈s(t),Γ 〉F2 ≈ 〈zt,Λ1〉F2 ⊕ 〈zt+1,Λ2〉F2 (23)

for some Λ1,Λ2 ∈ F232 and Γ ∈ F2512 which holds with absolute linear correla-
tion 2−14.411. Here, s(t) is the state of the LFSR at clock t, and zt ∈ F232 is the
32-bit word (keystream segment) output by the cipher at clock t. A recent work
by Gong et al. [35] also found multiple approximations with the same absolute
correlation. As far as we know, 2−14.411 is the highest (absolute) linear correla-
tion of SNOW 2.0 that has been found so far.

The current fastest classical attack on SNOW 2.0 is the fast correlation attack
in [37] that uses a few linear correlations, including the above, which recovers
not only the initial state of the LFSR but also the key with about 2159 data and
2162 time complexity.

Application of QFCA2. We apply QFCA2 on the decoding problem (Problem 1)
derived from the linear approximation of Eq. (23). The parameters are set as
c := 2−14.411 and � := 512, and the sequence ζ = (ζ0, ζ2, . . . , ζN−1) is defined as
ζt := 〈zt,Λ1〉F2 ⊕ 〈zt+1,Λ2〉F2 .

424 A. Hosoyamada

Recall that we aim to break the qBPRF security. Here, we briefly review the
attack model. We assume the quantum oracle of the Booleanized oracle of SNOW
2.0, which we denote by OBSNOW2.0. Given a superposition of indices i as an
input, the oracle returns the i-th bit of the keystream in quantum superposition.
Since the period of LFSR is 2� − 1, the upper limit of i is set as i < 2� − 1
to prevent trivial attacks. (The oracle also allows an adversary to query IV .
However, when mounting fast correlation attacks, we choose an IV arbitrarily
and fix it during the attack, as in classical attacks.)

Problem 1 (and QFCA2) assumes the quantum oracle that returns ζi for
each i (in superposition), whereas the oracle OBSNOW2.0 returns a keystream
bit of SNOW 2.0. Thus, to apply QFCA2, we simulate the oracle of ζi by using
OBSNOW2.0 as follows8.

0. (Assume a basis state |t〉 is given as an input)
1. Query t, t + 1, . . . , t + 63 to OBSNOW2.0 to obtain zt, zt+1 ∈ F32.
2. Compute ζt := 〈zt,Λ1〉F2 ⊕ 〈zt+1,Λ2〉F2 .
3. Copy the value ζt into the output register.
4. Uncompute Step 1–2.

Since Λ1 and Λ2 are predetermined constants, Step 2 can be executed by only
applying CNOT gates. Hence, the T -depth of Step 2 is zero, and the above simu-
lation requires 2×64 = 27 depth and the same amount of queries to OBSNOW2.0.

Using this simulation, QFCA2 recovers the initial state of the LFSR of
SNOW 2.0 (and breaks its qBPRF security) with time complexity at most
27 · (

218 · (512)4 ·(214.411)2
) ≤ 289.3, making quantum queries at most 27 ·(

215 · (512) · (214.411)2
) ≤ 259.3 times.

On the other hand, the running time of the exhaustive key search with the
Grover search is at least 210 ·2κ/2 for κ-bit keys, because of the following reasons:
The Grover search performs 2κ/2 iterations to search for a κ-bit secret key. It
evaluates a Boolean function f such that f(x) = 1 iff x matches the secret key
in each iteration. The only way (that we are aware of) to implement such f is
to compute a keystream segment for each input x and check whether it matches
the real keystream segment. As the initialization phase requires 32 state updates
and each update involves at least one 32-bit modular addition (in the finite state
machine), the T -depth of f should be at least 32 · 32 = 210.

In particular, when the key length is 256, our attack (time complexity 289.3) is
significantly faster than the generic attack by the Grover search (time complexity
at least 2138).

A Note on Key Recovery. Our primary aim here is to break the qBPRF security
of SNOW 2.0. Still, once the LFSR’s initial state is recovered, the remaining
64-bit state of the finite state machine can also be recovered with at most about

8 Strictly speaking, the last bit ζN cannot be computed due to the upper limit of
the index i that can be queried to OBSNOW2.0. So, we just set ζN := 0. Since N is
quite large (N = 2512−1), this modification has little effect on the attack complexity
and the success probability.

Quantum FCA on LFSR-Based Stream Ciphers 425

264 classical operations. In particular, since the initialization phase of SNOW
2.0 is reversible, we can recover the secret key with almost the same complexity.

Remark 5. A previous work [24] shows that a quantum guess-and-determine
attack on SNOW 2.0 with 256-bit keys breaks the cipher in time around 288.
However, the attack uses a large quantum computer of size around 288 to run
a parallelized Grover search, whereas our paper does not consider parallel com-
putation. In addition, [24] defines the unit of time (resp., size) as the time to
execute the target cipher once (resp., the size to implement the target cipher).
Under this cost metric, if a quantum computer of size 288 is available, the generic
attack (simple parallelized Grover search) recovers a 256-bit key with time com-
plexity about

√
2256/288 = 284. Thus, the attack on SNOW 2.0 with 256-bit

keys is slower than the generic attack.

We also applied QFCA2 on SNOW 3G [31] and Sosemanuk [5], of which the
structures are quite close to SNOW 2.0. For SNOW 3G, the time and query
complexity are 2102.9 and 272.9, which is slower than the Grover search but
significantly faster than the classical attacks [35–37,65,80]. On Sosemanuk, the
time and query complexity are 2101.11 and 273.15. This is slower than the quantum
guess-and-determine attack [24], but faster than the Grover search for long keys
(e.g., 256-bit keys). See Section G of the full version of this paper [42] for details.

6.4 Discussions

We also tried speeding up other classical fast correlation attacks [35,54,70,71,
75,76,78,85], which recover the initial state (or even the secret key) of Grain
v1 [41], Grain-128 [40], Grain-128a [1], Fruit-v2 [34], Fruit-80 [33], Plantlet [60],
SNOW-V [29], and SNOW-Vi [30] faster than the classical exhaustive key search.
However, we have not found Q2 attacks faster than the exhaustive key search
with Grover’s algorithm.

Except for SNOW-V/Vi, the problem is that the absolute correlations are too
small. For SNOW-V/Vi, which uses 512-bit LFSRs and 256-bit keys, the absolute
correlations are in a moderate order (> 2−50), but still the time complexity of
QFCA2 becomes at least 2150 due to the factor 218�4 in Eq. (22) with � = 512.

Acknowledgements. We thank anonymous reviewers for their insightful comments.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-
128 with optional authentication. Int. J. Wirel. Mob. Comput. 5(1), 48–59 (2011)

2. Ågren, M., Löndahl, C., Hell, M., Johansson, T.: A survey on fast correlation
attacks. Cryptogr. Commun. 4(3-4), 173–202 (2012)

3. Aumasson, J., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of
latin dances: Analysis of salsa, chacha, and rumba. In: FSE 2008, Revised Selected
Papers. LNCS, vol. 5086, pp. 470–488. Springer (2008)

426 A. Hosoyamada

4. Bera, D., Tharrmashastha, S.: Quantum and randomised algorithms for non-
linearity estimation. ACM Transactions on Quantum Computing 2(2) (June 2021)

5. Berbain, C., Billet, O., Canteaut, A., Courtois, N.T., Gilbert, H., Goubin, L.,
Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.:
Sosemanuk, a fast software-oriented stream cipher. In: New Stream Cipher Designs
- The eSTREAM Finalists, LNCS, vol. 4986, pp. 98–118. Springer (2008)

6. Berbain, C., Gilbert, H.: On the security of IV dependent stream ciphers. In:
Biryukov, A. (ed.) FSE 2007, Revised Selected Papers. LNCS, vol. 4593, pp. 254–
273. Springer (2007)

7. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of grain. In: Robshaw, M.J.B.
(ed.) FSE 2006, Revised Selected Papers. LNCS, vol. 4047, pp. 15–29. Springer
(2006)

8. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC.
vol. 8 (2008)

9. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: New Stream Cipher
Designs - The eSTREAM Finalists, LNCS, vol. 4986, pp. 84–97. Springer (2008)

10. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
EUROCRYPT 2013, Proceedings. LNCS, vol. 7881, pp. 592–608. Springer (2013)

11. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Proceedings, Part I.
LNCS, vol. 11921, pp. 552–583. Springer (2019)

12. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline simon’s algorithm.
In: ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 552–583. Springer (2019)

13. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019, Revised Selected Papers. LNCS,
vol. 11959, pp. 492–519. Springer (2019)

14. Bonnetain, X., Schrottenloher, A., Sibleyras, F.: Beyond quadratic speedups in
quantum attacks on symmetric schemes. In: Dunkelman, O., Dziembowski, S.
(eds.) EUROCRYPT 2022, Proceedings, Part III. LNCS, vol. 13277, pp. 315–344.
Springer (2022)

15. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4-5), 493–505 (1998)

16. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

17. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer (1998)

18. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In: EUROCRYPT 2000, Proceeding. LNCS, vol. 1807,
pp. 573–588. Springer (2000)

19. Canteut, A.: LFSR-based stream ciphers, https://www.rocq.inria.fr/secret/Anne.
Canteaut/MPRI/chapter3.pdf (Accessed on September 19, 2024)

20. Chepyzhov, V.V., Johansson, T., Smeets, B.J.M.: A simple algorithm for fast cor-
relation attacks on stream ciphers. In: FSE 2000, Proceedings. LNCS, vol. 1978,
pp. 181–195. Springer (2000)

21. Chepyzhov, V.V., Smeets, B.J.M.: On A fast correlation attack on certain stream
ciphers. In: EUROCRYPT ’91, Proceedings. LNCS, vol. 547, pp. 176–185. Springer
(1991)

https://www.rocq.inria.fr/secret/Anne.Canteaut/MPRI/chapter3.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/MPRI/chapter3.pdf

Quantum FCA on LFSR-Based Stream Ciphers 427

22. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of
view. In: EUROCRYPT 2002, Proceedings. LNCS, vol. 2332, pp. 209–221. Springer
(2002)

23. Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity of mat-
sui’s linear cryptanalysis. In: Nam, K., Rhee, G. (eds.) ICISC 2007, Proceedings.
LNCS, vol. 4817, pp. 77–88. Springer (2007)

24. Ding, L., Wu, Z., Zhang, G., Shi, T.: Quantum guess and determine attack on
stream ciphers. Comput. J. 67(1), 292–303 (2024)

25. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks on
aes-like hashing with low quantum random access memories. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 727–757. Springer
(2020)

26. ECRYPT: eSTREAM: ECRYPT stream cipher project, https://www.ecrypt.eu.
org/stream/

27. Einsele, S., Wunder, G.: Quantum speed-up of fast correlation attacks against
stream ciphers. Crypto day matters 36

28. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: SAC
2002, Revised Papers. LNCS, vol. 2595, pp. 47–61. Springer (2002)

29. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher
called SNOW-V. IACR Trans. Symmetric Cryptol. 2019(3), 1–42 (2019)

30. Ekdahl, P., Maximov, A., Johansson, T., Yang, J.: Snow-vi: an extreme perfor-
mance variant of SNOW-V for lower grade cpus. In: WiSec 2021. pp. 261–272.
ACM (2021)

31. ETSI/SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW 3G Specification. Version 1.1 (2006)

32. Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Several milp-aided attacks against
SNOW 2.0. In: CANS 2018, Proceedings. LNCS, vol. 11124, pp. 394–413. Springer
(2018)

33. Ghafari, V.A., Hu, H.: Fruit-80: A secure ultra-lightweight stream cipher for con-
strained environments. Entropy 20(3), 180 (2018)

34. Ghafari, V.A., Hu, H., Chen, Y.: Fruit-v2: Ultra-lightweight stream cipher with
shorter internal state. IACR Cryptology ePrint Archive 2016/355 (2016)

35. Gong, X., Hao, Y., Wang, Q.: Combining milp modeling with algebraic bias evalu-
ation for linear mask search: improved fast correlation attacks on snow. Des. Codes
Cryptogr. 92, 1663–1728 (2024)

36. Gong, X., Zhang, B.: Fast computation of linear approximation over certain com-
position functions and applications to SNOW 2.0 and SNOW 3g. Des. Codes Cryp-
togr. 88(11), 2407–2431 (2020)

37. Gong, X., Zhang, B.: Comparing large-unit and bitwise linear approximations of
SNOW 2.0 and SNOW 3g and related attacks. IACR Trans. Symmetric Cryptol.
2021(2), 71–103 (2021)

38. Grassi, L., Naya-Plasencia, M., Schrottenloher, A.: Quantum algorithms for the k
-xor problem. In: ASIACRYPT 2018, Proceedings, Part I. LNCS, vol. 11272, pp.
527–559. Springer (2018)

39. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
ACM STOC 1996. pp. 212–219. ACM (1996)

40. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: Proceedings 2006 IEEE International Symposium on Information Theory,
ISIT 2006, The Westin Seattle, Seattle, Washington, USA, July 9-14, 2006. pp.
1614–1618. IEEE (2006)

https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/

428 A. Hosoyamada

41. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream
ciphers. In: New Stream Cipher Designs - The eSTREAM Finalists, LNCS,
vol. 4986, pp. 179–190. Springer (2008)

42. Hosoyamada, A.: Quantum algorithms for fast correlation attacks on lfsr-based
stream ciphers. IACR Cryptology ePrint Archive 2024/894 (Full version of this
paper)

43. Hosoyamada, A., Sasaki, Y.: Quantum Demirci-Selçuk Meet-in-the-Middle
Attacks: Applications to 6-Round Generic Feistel Constructions. In: SCN 2018.
LNCS, vol. 11035, pp. 386–403. Springer (2018)

44. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 249–279.
Springer (2020)

45. ISO/IEC: 18033-4:2011 Information technology — Security techniques — Encryp-
tion algorithms. Part 4 Stream Ciphers (2011)

46. Johansson, T., Jönsson, F.: Fast correlation attacks based on turbo code tech-
niques. In: CRYPTO ’99, Proceedings. LNCS, vol. 1666, pp. 181–197. Springer
(1999)

47. Johansson, T., Jönsson, F.: Improved fast correlation attacks on stream ciphers
via convolutional codes. In: EUROCRYPT ’99, Proceeding. LNCS, vol. 1592, pp.
347–362. Springer (1999)

48. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: CRYPTO 2016, Part II. LNCS,
vol. 11693, pp. 207–237. Springer (2016)

49. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

50. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: ISIT 2010. pp. 2682–2685. IEEE (2010)

51. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012. pp. 312–316. IEEE (2012)

52. Leander, G., May, A.: Grover Meets Simon - Quantumly Attacking the FX-
construction. In: ASIACRYPT 2017. LNCS, vol. 10625, pp. 161–178. Springer
(2017)

53. Lee, J., Lee, D.H., Park, S.: Cryptanalysis of sosemanuk and SNOW 2.0 using linear
masks. In: Pieprzyk, J. (ed.) ASIACRYPT 2008, Proceedings. LNCS, vol. 5350,
pp. 524–538. Springer (2008)

54. Ma, S., Jin, C., Shi, Z., Cui, T., Guan, J.: Correlation attacks on snow-v-like stream
ciphers based on a heuristic milp model. IEEE Transactions on Information Theory,
Early Access (2023)

55. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993, Proceedings. LNCS, vol. 765, pp. 386–397. Springer (1993)

56. Meier, W.: Fast correlation attacks: Methods and countermeasures. In: FSE 2011,
Revised Selected Papers. LNCS, vol. 6733, pp. 55–67. Springer (2011)

57. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers (extended
abstract). In: EUROCRYPT ’88, Proceedings. LNCS, vol. 330, pp. 301–314.
Springer (1988)

58. Mihaljevic, M.J., Fossorier, M.P.C., Imai, H.: Fast correlation attack algorithm
with list decoding and an application. In: FSE 2001, Revised Papers. LNCS,
vol. 2355, pp. 196–210. Springer (2001)

Quantum FCA on LFSR-Based Stream Ciphers 429

59. Mihaljevic, M.J., Golic, J.D.: A fast iterative algorithm for A shift register ini-
tial state reconstruction given the nosiy output sequence. In: AUSCRYPT ’90,
Proceedings. LNCS, vol. 453, pp. 165–175. Springer (1990)

60. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Trans. Symmetric Cryptol. 2016(2), 52–79 (2016)

61. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis (2nd edition). Cambridge
university press (2017)

62. National Institute of Standards and Technlology: Submission requirements
and evaluation criteria for the post-quantum cryptography standardiza-
tion process (2016), https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

63. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and
k-xor-sum algorithms. In: EUROCRYPT 2020, Proceedings, Part II. LNCS, vol.
12106, pp. 311–340. Springer (2020)

64. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2010)

65. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Fast
Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria,
March 15-17, 2006, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 4047, pp. 144–162. Springer (2006)

66. Sanders, Y.R., Low, G.H., Schere, A., Berry, D.W.: Black-box quantum state
preparation without arithmetic. Phys. Rev. Lett. 122, 020502 (Jan 2019)

67. Santoli, T., Schaffner, C.: Using simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

68. Schrottenloher, A.: Improved quantum algorithms for the k-xor problem. In: SAC
2021, Revised Selected Papers. LNCS, vol. 13203, pp. 311–331. Springer (2021)

69. Schrottenloher, A.: Quantum linear key-recovery attacks using the QFT. In:
CRYPTO 2023, Proceedings, Part V. LNCS, vol. 14085, pp. 258–291. Springer
(2023)

70. Shi, Z., Jin, C., Jin, Y.: Improved linear approximations of SNOW-V and snow-vi.
IACR Cryptology ePrint Archive 2021/1105 (2021)

71. Shi, Z., Jin, C., Zhang, J., Cui, T., Ding, L., Jin, Y.: A correlation attack on full
SNOW-V and snow-vi. In: EUROCRYPT 2022, Proceedings, Part III. LNCS, vol.
13277, pp. 34–56. Springer (2022)

72. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science. pp. 124–134.
IEEE Computer Society (1994)

73. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984)

74. Simon, D.R.: On the Power of Quantum Computation. In: 35th Annual Symposium
on Foundations of Computer Science. pp. 116–123 (1994). https://doi.org/10.1109/
SFCS.1994.365701

75. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited - cryptanalysis on full grain-128a, grain-128, and grain-v1. In: Crypto 2018,
Proceedings, Part II. LNCS, vol. 10992, pp. 129–159. Springer (2018)

76. Todo, Y., Meier, W., Aoki, K.: On the data limitation of small-state stream ciphers:
Correlation attacks on fruit-80 and plantlet. In: Paterson, K.G., Stebila, D. (eds.)
SAC 2019, Revised Selected Papers. LNCS, vol. 11959, pp. 365–392. Springer
(2019)

https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1109/SFCS.1994.365701

430 A. Hosoyamada

77. Wagner, D.A.: A generalized birthday problem. In: Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings. LNCS, vol. 2442, pp. 288–303.
Springer (2002)

78. Wang, S., Liu, M., Lin, D., Ma, L.: On grain-like small state stream ciphers against
fast correlation attacks: Cryptanalysis of plantlet, fruit-v2 and fruit-80. Comput.
J. 66(6), 1376–1399 (2023)

79. Watanabe, D., Biryukov, A., Cannière, C.D.: A distinguishing attack of SNOW
2.0 with linear masking method. In: SAC 2003, Revised Papers. LNCS, vol. 3006,
pp. 222–233. Springer (2003)

80. Yang, J., Johansson, T., Maximov, A.: Vectorized linear approximations for attacks
on SNOW 3g. IACR Trans. Symmetric Cryptol. 2019(4), 249–271 (2019)

81. Zeng, K., Yang, C., Rao, T.R.N.: An improved linear syndrome algorithm in crypt-
analysis with applications. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO ’90,
Proceedings. LNCS, vol. 537, pp. 34–47. Springer (1990)

82. Zhandry, M.: How to construct quantum random functions. In: FOCS. pp. 679–687.
IEEE Computer Society (2012)

83. Zhang, B., Liu, R., Gong, X., Jiao, L.: Improved fast correlation attacks on
the Sosemanuk stream cipher. IACR Trans. Symmetric Cryptol. 2023(4), 83–111
(2023)

84. Zhang, B., Xu, C., Meier, W.: Fast correlation attacks over extension fields, large-
unit linear approximation and cryptanalysis of SNOW 2.0. In: CRYPTO 2015,
Proceedings, Part I. LNCS, vol. 9215, pp. 643–662. Springer (2015)

85. Zhou, Z., Feng, D., Zhang, B.: Efficient and extensive search for precise linear
approximations with high correlations of full SNOW-V. Des. Codes Cryptogr.
90(10), 2449–2479 (2022)

Author Index

A
Adhikary, Supriya 132

B
Battarbee, Christopher 330
Borin, Giacomo 330
Brough, Julian 330
Budroni, Alessandro 35

C
Cartor, Ryann 330
Chen, Yi 207
Chevignard, Clémence 299
Chi-Domínguez, Jesús-Javier 35

D
D’Alconzo, Giuseppe 35
Di Scala, Antonio J. 35
Dong, Xiaoyang 207

F
Feng, Xiutao 358
Fouque, Pierre-Alain 299

G
Gao, Yiming 3
Guo, Jian 207

H
Han, Kyoohyung 266
He, Binang 3
Hemmert, Tobias 330
Heninger, Nadia 330
Hosoyamada, Akinori 396
Hu, Honggang 3

J
Jana, Amit 168
Jao, David 330

K
Kahrobaei, Delaram 330
Karayalçın, Sengim 99
Karmakar, Angshuman 132
Kim, Seongkwang 266
Kim, Taechan 237
Krček, Marina 99
Kulkarni, Mukul 35
Kundu, Anup Kumar 168
Kundu, Suparna 132

L
Lee, Byeonghak 266

M
Maddison, Laura 330
Mondal, Puja 132

P
Paul, Goutam 168
Perin, Guilherme 99
Persichetti, Edoardo 330
Picek, Stjepan 99

R
Ran, Lars 66
Robinson, Angela 330

S
Samardjiska, Simona 66
Schrottenloher, André 299
Shen, Yantian 207
Shi, Haotian 358
Smith-Tone, Daniel 330
Son, Yongha 266
Steinwandt, Rainer 330

W
Wang, Anyu 207
Wang, Jinghui 3
Wang, Xiaoyun 207
Wu, Lichao 99

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15491, p. 431, 2025.
https://doi.org/10.1007/978-981-96-0944-4

https://doi.org/10.1007/978-981-96-0944-4

	 Preface
	 Organization
	 Contents – Part VIII
	Cryptanalysis on Public-Key Schemes
	Attacking ECDSA with Nonce Leakage by Lattice Sieving: Bridging the Gap with Fourier Analysis-Based Attacks
	1 Introduction
	1.1 Contributions
	1.2 Comparison with Related Work

	2 Preliminaries
	2.1 Lattices and Hard Problems
	2.2 Lattice Algorithms
	2.3 Hidden Number Problem
	2.4 Breaking ECDSA with Nonce Leakage
	2.5 Solving the HNP with Lattices

	3 Improved Algorithms
	3.1 New Lattice Construction Based on Decomposition Technique
	3.2 Improved Linear Predicate
	3.3 Predicate for Decomposition Technique

	4 Hidden Number Problem with Erroneous Input
	4.1 Theoretical Analysis
	4.2 Modified Algorithms

	5 Key Recovery of ECDSA with Nonce Leakage
	5.1 Compared with Other Lattice-Based Attacks
	5.2 New Records of Lattice-Based Attacks Against ECDSA

	References

	Don't Use it Twice! Solving Relaxed Linear Equivalence Problems
	1 Introduction
	1.1 Overview of the Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Linear Codes and Equivalence Problems
	2.3 Code Equivalence Problems with Multiple Samples
	2.4 Code Equivalences Modeled as Group Actions

	3 Solving Code Equivalence with Multiple Instances
	3.1 Implications to ILCE and IMCE
	3.2 Experimental Validation of Assumptions
	3.3 Solving when is not maximal

	4 Further Improvements by Exploiting the Monomial Matrix Structure
	4.1 Solving 2-LCE for k=n/2 in polynomial-time
	4.2 Solving ILCE for k=n/2 in polynomial-time
	4.3 Solving 2-PCE and IPCE for self-dual codes
	4.4 Comparisons with Saeed's Algorithm ch2PDFTHESIS:Saeed17

	5 Experiments
	5.1 Solving 2-LCE
	5.2 Solving ILCE
	5.3 Solving Self Dual 2-PCE and IPCE Instances

	6 Cryptographic Implications
	References

	Rare Structures in Tensor Graphs
	1 Introduction
	2 Preliminaries
	2.1 The Tensor Isomorphism Problem (TI) and Related Problems
	2.2 Graphs Associated with Tensors
	2.3 Gröbner Basis Algorithms

	3 Algorithms for Solving TI
	3.1 Graph-Theoretic Algorithm of Narayanan Et Al. ch3NQT24
	3.2 Purely Algebraic Algorithms for Solving TI

	4 A Hybrid Algorithm for Solving TI
	4.1 Triangles
	4.2 Finding Triangles
	4.3 From Matching Triangles to Isometry
	4.4 Putting It All Together

	5 Application to ATFE
	5.1 Finding Triangles
	5.2 Post-collision
	5.3 A Peculiar Set of Degree Falls

	6 Potential Generalizations and Future Work
	A Lower Bounds on Probabilities of Triangles
	A.1 MCE
	A.2 ATFE

	References

	Fault Attacks and Side-Channel Analysis
	It's a Kind of Magic: A Novel Conditional GAN Framework for Efficient Profiling Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 GANs and CGANs
	2.2 Generative Models for SCA
	2.3 Signal-to-Noise Ratio (SNR)

	3 CGAN-SCA Framework
	3.1 Threat Model and Notations
	3.2 A Novel Conditional GAN Framework
	3.3 CGAN Architecture
	3.4 Assessing CGAN's Efficiency

	4 Experimental Results
	4.1 Datasets
	4.2 CGAN Hyperparameter Search
	4.3 ASCADr as the Reference Dataset
	4.4 Profiling Complexity of the CGAN-SCA Framework

	5 The Analysis of the Latent Space
	5.1 Varying fref Leakage Pattern
	5.2 Varying Reference Feature Selection Method

	6 Visualizing Generator's Feature Extraction with LRP Attribution Method
	7 Profiling Attacks and Comparison with State-of-the-Art
	8 Discussion
	9 Conclusions and Future Work
	References

	ZKFault: Fault Attack Analysis on Zero-Knowledge Based Post-quantum Digital Signature Schemes
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 LESS Signature Scheme
	2.3 Parameter Set

	3 Our Work: Fault Analysis of LESS
	3.1 An Observation on LESS
	3.2 Identification of Attack Surfaces
	3.3 Fault Models
	3.4 Effective Fault Detection
	3.5 Attack Template
	3.6 Secret Recovery from Single Fault

	4 Extending Our Attack to CROSS
	5 Simulation Result
	6 Countermeasures
	6.1 Countermeasure with Larger Signature Size
	6.2 Countermeasure with Same Small Signature Size

	7 Discussion and Future Direction
	A Comparison of LESS with Other Code-Based Signature Schemes
	B Verification Algorithm of LESS
	References

	More Vulnerabilities of Linear Structure Sbox-Based Ciphers Reveal Their Inability to Resist DFA
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Description of DEFAULT Cipher
	2.2 Specification of BAKSHEESH
	2.3 Differential Fault Attack
	2.4 Revisiting Learned Information via the Linear Structure SBox

	3 Our Improvements of DFA on DEFAULT Cipher
	3.1 Attacks on Simple Key Schedule
	3.2 Attacks on Rotating Key Schedule
	3.3 Experimental Results on DEFAULT Under DFA

	4 Introducing SDFA: Statistical-Differential Fault Attack on DEFAULT Cipher
	4.1 Learned Information via SDFA
	4.2 Attack on Simple Key Schedule
	4.3 Attack on Rotating Key Schedule
	4.4 Generic Attack on Truely Independent Random Keys
	4.5 Experimental Results on DEFAULT Under SDFA

	5 Attacks on BAKSHEESH
	5.1 DFA on BAKSHEESH
	5.2 SDFA on BAKSHEESH
	5.3 Experimental Results on BAKSHEESH

	6 Discussion
	7 Conclusion
	A Appendix
	References

	Cryptanalysis on Various Problems
	Hard-Label Cryptanalytic Extraction of Neural Network Models
	1 Introduction
	1.1 Our Results and Techniques

	2 Preliminaries
	2.1 Basic Definitions and Notations
	2.2 Adversarial Goals and Assumptions

	3 Auxiliary Concepts
	3.1 Model Activation Pattern
	3.2 Model Signature
	3.3 Decision Boundary Point

	4 Overview of Our Cryptanalytic Extraction Attacks
	5 Idealized Hard-Label Model Extraction Attack
	5.1 Zero-Deep Neural Network Extraction
	5.2 k-Deep Neural Network Extraction

	6 Instantiating the Extraction Attack in Practice
	6.1 Finding Decision Boundary Points
	6.2 Filtering Duplicate Affine Transformations
	6.3 Filtering Functionally Inequivalent Extracted Models

	7 Experiments
	7.1 Computing (, 0)-Functional Equivalence
	7.2 Experiments on Untrained Neural Networks
	7.3 Experiments on Trained Neural Networks

	8 Conclusion
	A Proof of Lemma 1
	B Complexity of Hard-Label Model Extraction Attacks
	C Extraction on 1-Deep Neural Networks
	References

	Analysis on Sliced Garbling via Algebraic Approach
	1 Introduction
	2 Preliminaries
	2.1 Garbling Schemes

	3 Algebraic Understanding of Garbling Schemes
	3.1 Review on Existing Schemes

	4 Analysis on Sliced Garbling
	4.1 A Generalized Framework for Garbling Schemes
	4.2 Garbled Circuits for 3-Input Gates

	5 (Im)possibility of Higher Fan-In Gates Garbling
	5.1 Garbling Equations
	5.2 Main Results
	5.3 Discussions

	A How to Randomize the Control Bits
	B How to Choose Control Matrices
	B.1 Formulas for the Control Matrices

	References

	Revisiting OKVS-Based OPRF and PSI: Cryptanalysis and Better Construction
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Vector Oblivious Linear Evaluation
	2.3 Oblivious Key-Value Store

	3 Oblivious PRF and OKVS-Based Constructions
	3.1 Ideal Functionalities and Generic PSI Construction
	3.2 OKVS-Based OPRF Constructions

	4 Security Flaws of OKVS-Based OPRFs
	4.1 Caution for Possible Semi-honest OPRF
	4.2 Malicious Flaw: Hardness of OKVS Overfitting Game
	4.3 Efficacy of Extra Evaluation

	5 Overfitting Attacks on Various OKVS
	5.1 Overfitting PaXoS
	5.2 Overfitting 3H-GCT or RR22
	5.3 Overfitting RB-OKVS
	5.4 Efficacy of the Attacks

	6 Generic Security Considerations
	6.1 Mitigations for Attacks and Revised Parameter Selection
	6.2 Revised Security Proof
	6.3 Double Execution of OPRF

	7 Better OPRFs from Intermediate Fields
	7.1 Concrete Instantiations
	7.2 Performance Evaluation

	A Details for RB-OKVS Overfitting Attack
	References

	Quantum Cryptanalysis
	Reducing the Number of Qubits in Quantum Information Set Decoding
	1 Introduction
	2 Preliminaries
	2.1 Prange's Algorithm
	2.2 Wiedemann's Inversion Algorithm

	3 Quantum Preliminaries
	3.1 Quantum Search
	3.2 Quantum ISD
	3.3 Quantum Prange Using Wiedemann Inversion
	3.4 Quantum Circuit Components

	4 Space-Optimized Reversible Wiedemann Inversion
	4.1 Evaluation of Matrix Powers
	4.2 Reversible Berlekamp-Massey
	4.3 Benchmarks

	5 Implementing the Multiplication Circuit
	5.1 Space-Optimized Circuits
	5.2 Toffoli-Optimized Circuits
	5.3 Gate-Optimized Multiplication Circuit for Circulant Matrices

	6 Evaluation of Costs for Code-Based Cryptosystems
	6.1 Comparison of Circuits
	6.2 Discussion

	7 Conclusion
	References

	On the Semidirect Discrete Logarithm Problem in Finite Groups
	1 Introduction
	1.1 Paper Organization and Contributions

	2 Preliminaries
	2.1 Essential Group Theory Notions
	2.2 Related Work and Known Results

	3 The Main Reduction
	3.1 Reduction to SDLP in Simple Groups
	3.2 Computing Automorphism Invariant Normal Subgroups
	3.3 The Decomposition Algorithm

	4 Reduction to Matrix Power Problem
	5 SDLP in Simple Groups
	5.1 Infinite Families
	5.2 Sporadic Groups
	5.3 Determining the Isomorphism Type of a Black Box Simple Group

	6 Conclusion
	A Appendix: Finding Maximal Normal Subgroups
	References

	Quantum Circuits of AES with a Low-Depth Linear Layer and a New Structure
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Quantum Computation
	2.3 Optimization Goals

	3 State-of-Art Heuristics for Optimizing the Depth of CNOT Circuits
	3.1 CNOT Circuits
	3.2 Computing the Depth of Given Circuits
	3.3 Greedy Method

	4 Our Method and Its Applications
	4.1 Our Method
	4.2 Application to AES MixColumns
	4.3 Applications to Many Proposed Matrices

	5 The Compressed Pipeline Structure for Iterative Primitives
	5.1 Existing Structures
	5.2 Compressed Pipeline Structure
	5.3 Comparison of Different Structures

	6 Quantum Circuits of AES
	6.1 Quantum Circuits of AES S-Box
	6.2 Round Function and Key Schedule
	6.3 Encryption Circuits of AES-128
	6.4 AES Encryption Oracle with Lower T-Depth
	6.5 Key Schedule of the Shallowed Pipeline Structure with Lower Width

	7 Conclusion
	A The Depth 10 Implementation of AES MixColumns
	B The Key Schedules and Cost Analysis of Our Compressed Pipeline Structure for AES-192 and AES-256
	References

	Quantum Algorithms for Fast Correlation Attacks on LFSR-Based Stream Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computation
	2.2 LFSR Basics

	3 Classical Fast Correlation Attack
	3.1 Simplest Case
	3.2 More General Cases
	3.3 Summary and Note on the Size of N

	4 Quantam Fast Correlation Attack in the Q1 Model
	4.1 Overview and Rough Idea
	4.2 Formal Details
	4.3 Discussions and Observations

	5 New Attack Model and Security Definition in Q2
	6 Quantum Fast Correlation Attack in the Q2 Model
	6.1 Overview and Rough Idea
	6.2 Formal Details
	6.3 Applications
	6.4 Discussions

	References

	Author Index

